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Bubbling Blow-Up in Critical
Elliptic and Parabolic Problems

Monica Musso
Mathematical models are often expressed by nonlinear
partial differential equations. Solutions of a given par-
tial differential equation can be interpreted as attainable
states for the underlying model. In steady as well as in
time-dependent problems, a central issue is to determine
the behaviour of solutions or the presence of blow-up.
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Blow-up takes place in regions or instants where solu-
tions, or some quantities depending on them, become
unbounded or exhibit irregular behaviour. This usually
means that the original model loses validity near these re-
gions and space-time scaling is required to make an accu-
rate description. A particular type of blow-up are the ones
that are triggered by bubbling. We will briefly discuss bub-
bling blow-up in two classical critical elliptic and parabolic
problems.
Bubbling in critical elliptic problems. Many problems of
physical and geometrical interest have a variational struc-
ture. For such problems, the failure of compactness at cer-
tain energy levels reflects highly interesting phenomena re-
lated to internal symmetries of the systems under study. In
several of these situations, bubbling may occur. The term
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bubbling refers to the presence of families of solutions that
at main order look like scalings of a single profile which in
the limit become singular but at the same time have an ap-
proximately constant energy level. Such phenomena have
been observed for the first time by Sacks-Uhlenbeck (1981)
in the context of two-dimensional harmonic maps, and in-
dependently by Wente (1980) in the context of surfaces of
prescribed constant mean curvature.

Classical models where bubbling occurs are semilinear
boundary value problems near criticality in ℝ𝑁 . Consider
the problem of finding positive solutions to

Δ𝑢 + 𝑢𝑞 = 0 in Ω, 𝑢 = 0 on 𝜕Ω, (1)

where Ω ⊂ ℝ𝑁 , 𝑁 ≥ 3, is a bounded domain with smooth
boundary 𝜕Ω and 𝑞 > 1. This equation in (1) is sometimes
called the Lane-Emden-Fowler equation. It was used first
in themid-19th century in the study of internal structure of
stars, on the other hand it constitutes a basic model equa-
tion for steady states of reaction-diffusion systems, nonlin-
ear Schrodinger equations, fast diffusion equations, and
nonlinear dispersive equations. The case 𝑞 = 𝑁+2

𝑁−2
is es-

pecially meaningful. In geometry, it is related to the well-
known problem of finding conformal metrics on a given
manifold with prescribed scalar curvature, as in the Yam-
abe problem. In the study of nonlinear dispersive equa-
tions, it is related to the soliton resolution conjecture for
nonlinear wave equations and nonlinear wave maps [10],
[16].

The critical exponent 𝑞 = 𝑁+2
𝑁−2

sets a threshold where
the structure of the solution set of (1) suffers a dramatic
change. If 𝑞 < 𝑁+2

𝑁−2
a solution may always be found by

minimizing the Rayleigh quotient

𝑄(𝑢) ≡
∫Ω |∇𝑢|2

( ∫Ω |𝑢|𝑞+1)
2

𝑞+1

, 𝑢 ∈ 𝐻1
0(Ω) ⧵ {0}. (2)

In fact, the quantity 𝑆𝑞(Ω) ≡ infᵆ∈𝐻1
0(Ω)⧵{0} 𝑄(𝑢) is

achieved thanks to compactness of Sobolev embeddings
𝐻1
0(Ω) ↪ 𝐿𝑞+1(Ω) for 𝑞 < 𝑁+2

𝑁−2
. A suitable scalar multi-

ple of a minimizer turns out to be a solution of (1). The
case 𝑞 ≥ 𝑁+2

𝑁−2
is considerably more delicate: for 𝑞 = 𝑁+2

𝑁−2
compactness of the embedding is lost while for 𝑞 > 𝑁+2

𝑁−2
there is no such an embedding. This obstruction is not just
technical for the solvability question, but essential. If Ω is
strictly star-shaped around a point 𝑥0 ∈ Ω and 𝑢 solves (1)
then Pohozaev’s identity (1965) yields

(𝑁 − 2
2 − 𝑁

𝑞 + 1)∫Ω
𝑢𝑞+1 𝑑𝑥

= −12 ∫𝜕Ω
|∇𝑢|2(𝑥 − 𝑥0) ⋅ 𝜈𝑑𝜎 < 0,

where 𝜈 is the unit outer normal to 𝜕Ω. Hence necessarily
𝑞 < 𝑁+2

𝑁−2
, and thus no solutions at all exist if 𝑞 ≥ 𝑁+2

𝑁−2
.

Pohozaev’s result puts in evidence the central role of
topology or geometry in the domain for solvability. Kaz-
dan and Warner (1975) observed that Problem (1) is actu-
ally solvable for any 𝑞 > 1 if Ω is a radial annulus, as com-
pactness in the Rayleigh quotient 𝑄 is gained within the
class of radially symmetric functions. On the other hand
Coron (1984) found via a variational method that (1) is
solvable at the critical exponent 𝑞 = 𝑁+2

𝑁−2
whenever Ω is a

domain exhibiting a small hole. Substantial improvement
of this result was found by Bahri and Coron [1], proving
that if some homology group of Ω with coefficients in 𝐙2
is not trivial, then (1) has at least one solution for 𝑞 criti-
cal, in particular in any three-dimensional domain which
is not contractible to a point. Examples showing that this
condition is actually not necessary for solvability at the crit-
ical exponent were found by Dancer (1988), Ding (1989)
and Passaseo (1989, 1998).

The change of structure of the solution set taking place
at the critical exponent is strongly linked to the presence
of unbounded sequences of solutions or bubbling solutions.
By a bubbling solution for (1) near the critical exponent we
mean an unbounded sequence of solutions 𝑢𝑛 of (1) for
𝑞 = 𝑞𝑛 →

𝑁+2
𝑁−2

. Setting

𝑀𝑛 ≡ max
Ω

𝑢𝑛 = 𝑢𝑛(𝜉𝑛) → +∞,

we see then that the scaled function

𝑣𝑛(𝑦) ≡ 𝑀−1
𝑛 𝑢𝑛(𝜉𝑛 +𝑀−(𝑞𝑛−1)/2𝑛 𝑦),

satisfies

Δ𝑣𝑛 + 𝑣𝑞𝑛𝑛 = 0
in the expanding domain Ω𝑛 = 𝑀(𝑞𝑛−1)/2𝑛 (Ω − 𝜉𝑛). As-
suming for instance that 𝜉𝑛 stays away from the boundary
of Ω, elliptic regularity implies that locally over compacts
around the origin, 𝑣𝑛 converges up to subsequences to a
positive solution of

Δ𝑈 + 𝑈
𝑁+2
𝑁−2 = 0

in entire space. Positive solutions to this equation are
known from the classical works of Rodemich (1966),
Aubin (1976), Obata (1972) and Talenti (1976) to be the
functions

𝑈𝜆,𝜉(𝑦) = 𝜆−
𝑁−2
2 𝑈 (𝑦 − 𝜉

𝜆 ) ,

where

𝑈(𝑦) = (𝑁(𝑁 − 2))
𝑁−2
4 ( 1

1 + |𝑦|2 )
𝑁−2
2

for any scalar 𝜆 > 0 and any point 𝜉 ∈ ℝ𝑁 .
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Figure 1. Three bubbles with different values for the
concentration parameter 𝜆, all centered at the same point.

These are the only positive solutions [4] and they are
known as the bubbles. They corresponds precisely to an ex-
tremal of the critical Sobolev embedding

𝒮𝑁 = inf
ᵆ∈𝐶1

0(ℝ𝑁)⧵{0}

∫ℝ𝑁 |∇𝑢|2

( ∫ℝ𝑁 |𝑢|
2𝑁
𝑁−2 )

𝑁−2
𝑁

. (3)

Coming back to the original variable, one expects then that
“near 𝜉𝑛” the behavior of 𝑢𝑛(𝑥) can be approximated as

𝑢𝑛(𝑥) ∼ 𝜆
−𝑁−2

2𝑛 𝑈 (𝑥 − 𝜉𝑛
𝜆𝑛

) (1 + 𝑜(1))

with 𝜆𝑛 ≔ 𝑀
− 2

𝑁−2𝑛 .
(4)

A natural problem is that of constructing solutions exhibit-
ing this property around one or several points of the do-
main when the exponent 𝑞 approaches the critical value
𝑁+2
𝑁−2

.

For 𝑞 slightly sub-critical, 𝑞 = 𝑁+2
𝑁−2

− 𝜀, 𝜀 > 0, a solu-
tion 𝑢𝜀 given by a minimizer of the Rayleigh quotient (2)
clearly cannot remain bounded as 𝜀 ↓ 0, since otherwise
Sobolev’s constant 𝒮𝑁 in (3) would be achieved by a func-
tion supported inΩ. In this case, 𝑢𝜀 has asymptotically just
a single maximum point 𝜉𝜀 and the asymptotic (4) holds

globally in Ω with 𝑀𝜀 ∼ 𝜀−
1
2 . Moreover, 𝜉𝜀 approaches a

critical point of Robin’s function 𝐻(𝑥, 𝑥). Here 𝐻(𝑥, 𝑦) is
the regular part of Green’s function 𝐺(𝑥, 𝑦) for the Laplace
operator in Ω under Dirichlet boundary conditions.

This conclusion can be refined to the case of solu-
tions 𝑢𝜀 exhibiting bubbling at multiple points, for both
slightly sub-critical and super-critical exponents 𝑞 = 𝑁+2

𝑁−2
∓

𝜀. The general result can be phrased in the following
terms: Given a nondegenerate critical point or a topologi-
cally nontrivial critical point of the reduced functional of

(𝜉, 𝜆) = (𝜉1, … , 𝜉𝑘, 𝜆1, … , 𝜆𝑘) ∈ Ω𝑘 × ℝ𝑘
+,

Ψ∓𝜀
𝑘 (𝜉, 𝜆) =

𝑘
∑
𝑗=1

𝐻(𝜉𝑗 , 𝜉𝑗)𝜆𝑁−2
𝑗

− 2∑
𝑖<𝑗

𝐺(𝜉𝑖, 𝜉𝑗)𝜆
𝑁−2
2

𝑖 𝜆
𝑁−2
2

𝑗

∓ 2𝜀 log(𝜆1⋯𝜆𝑘),

(5)

there exists a 𝑘-bubble solution

𝑢𝜀(𝑥) ∼
𝑘
∑
𝑗=1

𝜆
−𝑁−2

2
𝑗𝜀 𝑈 (

𝑥 − 𝜉𝑗
𝜆𝑗𝜀

) ,

with 𝜆𝑗𝜀 ∼ 𝜀
1

𝑁−2 as 𝜀 → 0,

to problem (1) with 𝑞 = 𝑁+2
𝑁−2

∓𝜀. Needless to say, it is a del-
icate task to find critical points for this reduced functional
for a general domain Ω, and they may even not exist.

But what is the origin of the reduced functional Ψ∓𝜀
𝑘 ?

An alternative way to find a solution to (1) is as a critical
point of the energy functional

𝐸𝑞(𝑢) =
1
2 ∫Ω

|∇𝑢|2 − 1
𝑞 + 1 ∫Ω

𝑢𝑞+1. (6)

The scaled bubbles give a precise description of the solu-
tion near the blow up points. Far from these points, the
bubbles need to be correct to match the zero Dirichlet
boundary condition. An efficient way to do this is by using
a proper multiple of the regular part 𝐻(𝑥, 𝑦) of the Green’s
function. Hence a better approximate solution is given by

𝑣𝜀(𝑥) =
𝑘
∑
𝑗=1

𝜆
−𝑁−2

2
𝑗𝜀 𝑈 (

𝑥 − 𝜉𝑗
𝜆𝑗𝜀

) − 𝜆
𝑁−2
2

𝑗𝜀 𝐻(𝑥, 𝜉𝑗).

The energy evaluated at 𝑣𝜀 has the expansion, for 𝜀 → 0,
𝐸𝑁+2

𝑁−2∓𝜀
(𝑣𝜀) ∼ 𝑘 𝒮𝑁 + Ψ∓𝜀

𝑘 (𝜉, 𝜆).

Hence finding a critical point of the reduced functional
suggests the existence of a solution 𝑢𝜀 close (in some topol-
ogy) to the sum 𝑣𝜀 of 𝑘 corrected bubbles. As mentioned
before, in the sub-critical setting 𝑞 = 𝑁+2

𝑁−2
− 𝜀, the natu-

ral topology for this problem is the energy space 𝐻1
0(Ω).

In this regime, the reported results have been obtained by
Brezis-Peletier [3], Han (1991), Rey (1990) and Bahri-Li-
Rey [2]. In the super-critical regime 𝑞 = 𝑁+2

𝑁−2
+ 𝜀 the em-

bedding 𝐻1
0(Ω) ↪ 𝐿𝑞+1(Ω) is not available. New weighted

𝐿∞ spaces were first introduced in [7] to treat the super-
critical regime.

Amain implication of the result in [7] states that in a do-
main with a small hole problem (1) with 𝑞 = 𝑁+2

𝑁−2
+ 𝜀 has

a two-bubble solution. More generally, if several spherical
holes are drilled, a solution obtained by gluing together
several two-bubbles can be found. Two-bubble solutions
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are the simplest to be obtained: single-bubble solutions
for Problem (1) with 𝑞 = 𝑁+2

𝑁−2
+ 𝜀 do not exist, as shown by

M. Ben Ayed, K. El Mehdi, M. Grossi, O. Rey (2003). So-
lutions with different blow-up orders, known as tower of
bubbles were found in [18].
Bubbling in critical parabolic problems. The parabolic
version of problem (1)

𝜕𝑡𝑢 = Δ𝑢 + 𝑢𝑞 in Ω × [0, 𝑇],
𝑢 = 0 on 𝜕Ω × [0, 𝑇], (7)

for 0 < 𝑇 ≤ ∞, is a widely studied classical problem, usu-
ally referred to as the Fujita problem, after his work in
1969. The heat operator 𝜕𝑡𝑢 = Δ𝑢 in (7) describes the
diffusion of a density-function 𝑢 = 𝑢(𝑥, 𝑡), where 𝑥 is the
space variable and 𝑡 denotes time, and the term 𝑓(𝑢) = 𝑢𝑞
represents a source. This is the simplest model of semilin-
ear parabolic equations, which are ubiquitous as they can
be found in numerous applications ranging from physics
and biology to materials and social sciences. We refer the
reader to reference [20] for a comprehensive survey on
Problem (7) and more general versions of it.

Despite its simple look, Problem (7) encodes the fun-
damental features of a general semilinear parabolic prob-
lem. If the initial condition 𝑢0 = 𝑢0(𝑥) at time 𝑡 = 0 is
smooth and has value 0 on the boundary of Ω, Problem
(7) has a unique (classical) solution 𝑢 = 𝑢(𝑥, 𝑡) defined
on some time interval [0, 𝑇) with 0 < 𝑇 ≤ ∞. If we call
𝑇 = 𝑇(𝑢0) the maximal possible time of existence, the
solution cannot be extended beyond 𝑇. If 𝑇 < ∞, then
necessarily the solution blows up at 𝑇, in the sense that
‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) → ∞ as 𝑡 ↗ 𝑇. If 𝑇 = ∞, we say that the
solution is global. In this case, two possibilities can occur:
either 𝑢 remains bounded as 𝑡 → ∞, or

lim sup
𝑡→∞

‖𝑢(⋅, 𝑡)‖𝐿∞(Ω) = ∞.

The latter is sometimes referred to as infinite time blow-
up or grow-up of 𝑢. One of the fundamental problems
concerning equation (7) is whether the infinite time blow-
up can actually occur for some 𝑢0 or not.

When 𝑞 is the critical Sobolev exponent 𝑞 = 𝑁+2
𝑁−2

, one
expects that blow-up by bubbling for specific situations ap-
pears in the form

𝑢(𝑥, 𝑡) ∼
𝑘
∑
𝑗=1

𝜆𝑗(𝑡)−
𝑁−2
2 𝑈 (

𝑥 − 𝜉𝑗(𝑡)
𝜆𝑗(𝑡)

) (8)

where now 𝜆𝑗(𝑡) and 𝜉𝑗(𝑡) are functions of the time vari-
able 𝑡, with 𝜆𝑗(𝑡) → 0 as 𝑡 → 𝑇. Those solutions are usu-
ally asymptotically not self-similar and, while not generic,
their presence is among the most important features of the
full dynamics since they correspond to threshold solutions
between different generic regimes.

Consider an initial condition of the form 𝑢0(𝑥) = 𝛼𝜑(𝑥),
where 𝜑 is a fixed positive smooth function in Ω with zero
boundary value and 𝛼 is a positive constant, and denote
by 𝑢𝛼(𝑥, 𝑡) the unique (local) solution to (7) with this ini-
tial condition. For all sufficiently small 𝛼, it is possible to
prove that 𝑢𝛼(𝑥, 𝑡) is globally defined and that 𝑢𝛼(𝑥, 𝑡) → 0
uniformly for 𝑥 ∈ Ω as 𝑡 → ∞. To see this, let 𝜆1 be the
first eigenvalue of −Δ in Ω under Dirichlet boundary con-
ditions and 𝜙1 a positive first eigenfunction:

−Δ𝜙1(𝑥) = 𝜆1𝜙1(𝑥), in Ω, 𝜙1(𝑥) = 0 on 𝜕Ω.
Let 𝛿 > 0 and consider the function 𝑢̄(𝑥, 𝑡) = 𝛿𝑒−𝛾𝑡𝜙1(𝑥),
where 0 < 𝛾 < 𝜆1. Then a direct computation gives

𝜕𝑡𝑢̄ − Δ𝑢̄ − 𝑢̄𝑞 = 𝛿𝜙1𝑒−𝛾𝑡[(𝜆1 − 𝛾) − 𝛿𝑞−1𝜙𝑞−11 ] > 0,
provided 𝛿 > 0 is small. By the maximum principle, 𝑢̄(𝑥, 𝑡)
is a supersolution of (7). Hence any solution to (7), whose
initial value at time 𝑡 = 0 is bounded above by 𝑢̄(𝑥, 0), stays
bounded by 𝑢̄(𝑥, 𝑡) at all times. If we take 0 < 𝛼 small, then
𝑢𝛼(𝑥, 0) = 𝛼𝜑(𝑐) ≤ 𝑢̄(𝑥, 0) and hence, for some positive
constant 𝐶 > 0, and any 𝑥 ∈ Ω

𝑢𝛼(𝑥, 𝑡) ≤ 𝐶𝑒−𝛾𝑡, as 𝑡 → ∞.
On the other hand, if we now take 𝛼 in the initial condition
𝑢0(𝑥) = 𝛼𝜙(𝑥) to be large, then 𝑢𝛼(𝑥, 𝑡) blows-up in finite
time. To see this, we assume that the solution 𝑢𝛼(𝑥, 𝑡) is
defined inΩ×[0, 𝑇), wemutiply the equation against 𝜙1(𝑥)
and integrate onΩ. Using the divergence Theorem, we get

𝜕
𝜕𝑡 ∫Ω

𝑢𝛼(𝑥, 𝑡)𝜙1(𝑥) 𝑑𝑥 = −𝜆1∫
Ω
𝑢𝛼(𝑥, 𝑡)𝜙1(𝑥) 𝑑𝑥

+∫
Ω
𝑢𝑞𝛼(𝑥, 𝑡)𝜙1(𝑥) 𝑑𝑥.

Let 𝑔(𝑡) = ∫Ω 𝑢𝛼(𝑥, 𝑡)𝜙1(𝑥) 𝑑𝑥. Then
𝑔′(𝑡) ≥ −𝜆1𝑔(𝑡) + 𝐶𝑔𝑞(𝑡)

for some positive constant 𝐶. Besides,

𝑔(0) = ∫
Ω
𝑢𝛼(𝑥, 0)𝜙1(𝑥) 𝑑𝑥 = 𝛼∫

Ω
𝜑(𝑥)𝜙1(𝑥) 𝑑𝑥.

Then for 𝛼 large, we have that −𝜆1𝑔(0) + 𝐶𝑔𝑞(0) > 0. Then
𝑔′(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑇) and, after integration

𝑇 ≤ ∫
∞

𝑔(0)

1
−𝜆1𝑔 + 𝐶𝑔𝑞 𝑑𝑔.

This gives 𝑇 < ∞, and blow-up in finite time occurs.
A consequence of the facts we just proves is that the

number

𝛼⋆ = sup{𝛼 > 0 ∶ lim
𝑡→∞

‖𝑢𝛼(⋅, 𝑡)‖𝐿∞(Ω) = 0}

is well defined and 0 < 𝛼⋆ < ∞. The solution 𝑢𝛼⋆(𝑥, 𝑡)
somehow lies in the dynamic threshold between solutions
globally defined in time and those that blow-up in finite
time. Ni, Sacks, Tavantzis (1984) prove that this solution
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is a well-defined 𝐿1-weak solution of the Fujita problem,
but it is not clear whether it will be smooth for all times.

When 1 < 𝑞 < 𝑁+2
𝑁−2

, 𝑢𝛼⋆(𝑥, 𝑡) is uniformly bounded
and smooth, and up to subsequences it converges to a
(positive) solution of the stationary problem (1). When
𝑞 > 𝑁+2

𝑁−2
, Ω is a ball, and 𝑢𝛼⋆ is radially symmetric then

𝑢𝛼⋆(𝑥, 𝑡) → 0 as 𝑡 → ∞. The case 𝑞 = 𝑁+2
𝑁−2

is completely
different: Galaktionov and Vázquez [13] proved that if
Ω = 𝐵(0, 1) and if the threshold solution 𝑢𝛼∗ is radially
symmetric, then no finite time singularities for 𝑢𝛼∗(𝑟, 𝑡) oc-
cur and it must become unbounded as 𝑡 → +∞, thus ex-
hibiting infinite-time blow up

lim
𝑡→∞

‖𝑢𝛼⋆(⋅, 𝑡)‖𝐿∞(Ω) = ∞.

Galaktionov and King [12] discovered that this radial
blow-up solution to (7) at 𝑞 = 𝑁+2

𝑁−2
does have a bub-

bling asymptotic profile as 𝑡 → +∞ of the form (8) with

𝑘 = 1 and 𝜆1(𝑡) ∼ 𝑡−
1

𝑁−4 → 0 for 𝑁 ≥ 5. This critical
infinite-time bubbling occurs also in the nonradial setting,
as shown in [6]: there are global solutions to (7) with
𝑞 = 𝑁+2

𝑁−2
which have infinite time blow-up at any collec-

tion of points 𝑝 = (𝑝1, … , 𝑝𝑘) ∈ Ω𝑘 if 𝑝 lies in the open
region of Ω𝑘 where a certain 𝑘 × 𝑘 matrix 𝒢(𝑞) is positive
definite. The matrix 𝒢 is explicitly defined in terms of the
Robin’s and the Green’s functions in Ω, introduced in the
previous section:

𝒢(𝑝) = (𝒢𝑖𝑗)𝑖,𝑗=1,…,𝑘
𝒢𝑖𝑖 = 𝐻(𝑝𝑖, 𝑝𝑖),
𝒢𝑖𝑗 = −𝐺(𝑝𝑖, 𝑝𝑗) 𝑖 ≠ 𝑗.

In other words, if 𝒢(𝑝) is positive definite, there exist an
initial datum 𝑢0 and smooth functions 𝜉𝑗(𝑡) → 𝑝𝑗 and 0 <
𝜆𝑗(𝑡) → 0, as 𝑡 → +∞, 𝑗 = 1, … , 𝑘, such that the positive

solution 𝑢𝑝 of Problem (7) at 𝑞 = 𝑁+2
𝑁−2

has the form (8)
with

𝜆𝑗(𝑡) = 𝑂(𝑡−
1

𝑁−4 ),

𝜉𝑗(𝑡) = 𝑝𝑗 + 𝑂(𝑡−
2

𝑁−4 ) as 𝑡 → +∞.
(9)

A consequence of the construction in [6] is that this bub-
bling phenomena has codimension 𝑘-stability in the sense
that there exists a codimension 𝑘 manifold in 𝐶1(Ω̄) that
contains 𝑢𝑝(𝑥, 0) such that if 𝑢0 lies in that manifold and it
is sufficiently close to 𝑢𝑝(𝑥, 0), then the solution 𝑢(𝑥, 𝑡) of
problem (7) has exactly 𝑘 bubbling points ̃𝑝𝑗, 𝑗 = 1, … , 𝑘
which lie close to the 𝑝𝑗, with the form (8).

Positive definiteness of 𝒢(𝑞) trivially holds if 𝑘 = 1. For
𝑘 = 2 this condition holds if and only if

𝐻(𝑞1, 𝑞1)𝐻(𝑞2, 𝑞2) − 𝐺(𝑞1, 𝑞2)2 > 0,

in particular it does not hold if both points 𝑞1 and 𝑞2 are
too close to a given point in Ω. Given 𝑘 > 1 we can always
find 𝑘 points where 𝒢(𝑞) is positive definite: it suffices to
take points located at a uniformly positive distance one to
each other, and then let them lie sufficiently close to the
boundary.

The role of thematrix 𝒢(𝑞) in elliptic bubbling phenom-
ena of the stationary version of (1) at 𝑞 = 𝑁+2

𝑁−2
has been

known for a long time. But what is its origin in the para-
bolic setting? The energy functional introduced in (6) is
a Lyapunov functional for (7): for a solution 𝑢(𝑥, 𝑡) to (7)
we compute

𝑑
𝑑𝑡𝐸𝑞(𝑢(𝑥, 𝑡)) = −∫

Ω
|𝜕𝑡𝑢|2 𝑑𝑥.

Thus along an approximate solution

𝑣(𝑥, 𝑡) =
𝑘
∑
𝑗=1

𝜆
−𝑁−2

2
𝑗 𝑈 (

𝑥 − 𝜉𝑗
𝜆𝑗

) − 𝜆
𝑁−2
2

𝑗 𝐻(𝑥, 𝜉𝑗)

the energy

𝑡 → 𝐸𝑁+2
𝑁−2

(𝑣(𝑥, 𝑡)) ∼ 𝑘 𝒮𝑁 + Ψ0
𝑘(𝜉(𝑡), 𝜆(𝑡))

is decreasing, and we may end up at the 𝑘-bubble energy
𝑘𝒮𝑁 as 𝑡 → ∞ only if its value is greater than 𝑘𝒮𝑁 . If the
matrix 𝒢(𝑝) is positive definite that fact is guaranteed, as a
simple look at the definition of Ψ0

𝑘 in (5) suggests. A for-
mal consideration of balancing needed for the functions
𝜆𝑗(𝑡) and 𝜉𝑗(𝑡) yields at main order to the following system
of nonlinear ODEs

̇𝜆𝑗 + ∇𝜆𝑗Ψ
0
𝑘(𝜉, 𝜆) = 0, ̇𝜉𝑗 + ∇𝜉𝑗Ψ

0
𝑘(𝜉, 𝜆) = 0.

Under the positivity assumption on 𝒢, the first equation
has an admissible solution 𝜆𝑗(𝑡) → 0, as 𝑡 → ∞, and the
asymptotics (9) follow by a direct computation. This con-
struction is valid on manifolds [15] but it is still open in
dimensions 3 and 4, where one expects the paramenters 𝜆
and 𝜉 to satisfy a system of nonlocal nonlinear differential
equations, in analogy with a known result in dimension 3
on the whole space. Solutions with different blow-up or-
ders at infinity, generating what is now known as infinite-
time tower bubbling, have been obtained in [9].

When solutions blow-up in finite-time, the key issue is to
understand how and where explosion can take place. The
blow-up is said to be of type I if we have that

lim sup
𝑡→𝑇

(𝑇 − 𝑡)
1

𝑞−1 ‖𝑣(⋅, 𝑡)‖𝐿∞(Ω) < +∞

and of type II if

lim sup
𝑡→𝑇

(𝑇 − 𝑡)
1

𝑞−1 ‖𝑣(⋅, 𝑡)‖𝐿∞(Ω) = +∞.
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Type I means that the blow-up takes place like that of the
ODE 𝑣𝑡 = 𝑣𝑞, so that in the explosion mechanism the non-
linearity plays the dominant role. The second alternative
is rare and far less understood. The delicate interplay of
diffusion, nonlinearity and geometry of the domain is re-
sponsible for that scenario.

The role of the Sobolev critical exponent 𝑞 = 𝑁+2
𝑁−2

is
well-known to be central in the possible type of blow-up.
When 1 < 𝑞 < 𝑁+2

𝑁−2
solutions can only have type I blow-up,

as it was first established by Giga and Kohn (1984) for the
case of Ω convex. This is also the case for 𝑞 = 𝑁+2

𝑁−2
and

radial solutions of (7); see Filippas, Herrero, Velázquez
(2000).

Type II blow-up solutions are much harder to be de-
tected. Herrero and Velázquez (1994) found a radial so-
lution that blows-up with type II rate, for 𝑁 ≥ 11 and
𝑞 > 𝑞𝐽𝐿(𝑁) where 𝑞𝐽𝐿(𝑁) is the Joseph-Lundgren exponent
defined as

𝑞𝐽𝐿(𝑑) = {
∞, if 3 ≤ 𝑁 ≤ 10,
1 + 4

𝑁−4−2√𝑁−1
, if 𝑑 ≥ 11.

The local profile locally resembles a time-dependent,
asymptotically singular scaling of a positive radial solution
of Δ𝑤 + 𝑤𝑞 = 0 in ℝ𝑁 [5]. In this range for exponents
𝑞, these solutions are stable. Matano and Merle [17] prove
that in the radially symmetric case no Type II blow-up can
take place if

𝑁+2
𝑁−2

< 𝑞 ≤ 𝑞𝐽𝐿(𝑁), a result that precisely com-
plements that for the Herrero-Velázquez range.

A question that has remained conspicuously open for
many years is whether or not type II blow-up solutions of
(7) can exist in the Matano-Merle range

𝑁+2
𝑁−2

< 𝑞 < 𝑞𝐽𝐿(𝑁).
The answer is positive [8]: in dimension 𝑁 ≥ 7 and 𝑞 =
𝑁+1
𝑁−3

(the critical Sobolev exponent in dimension 𝑁 − 1)
and in a class of domainswith axial symmetry there exists a
solution to (7) which remains uniformly bounded outside
any neighborhood of a certain curve Γ ⊂ 𝜕Ω while

lim
𝑡→𝑇

(𝑇 − 𝑡)𝛾‖𝑢(⋅, 𝑡)‖𝐿∞(Ω), > 0

𝛾 = (𝑁 − 3)(𝑁 − 4)
2(𝑁 − 5) .

Notice that for 𝑞 = 𝑁+1
𝑁−3

we have
1

𝑞−1
= 𝑁−3

4
< 𝛾 so that 𝑢

exhibits type II blow-up. This is again a blow-up by bub-
bling: at main order it is a bubble in dimension 𝑁 − 1
centered along a copy of the curve Γ, shifted inside Ω and
at distance 𝑑(𝑡) from 𝜕Ω, with scaled by 𝜆(𝑡). The blow-up
region is thus approaching the boundary, but the phenom-

ena still describes an interior bubbling as 𝜆(𝑡) ∼ (𝑇−𝑡)
𝑁−4
𝑁−5 ,

whereas 𝑑(𝑡) ∼ (𝑇 − 𝑡) as 𝑡 → 𝑇−. In other words, the en-
ergy density |∇𝑢(𝑥, 𝑡)|2 concentrates in the form of a Dirac
mass for the curve Γ, generating bubbling blow-up along

a curve. Bubbling blow-up along higher-dimensional sets,
like surfaces, is still unknown.

Let me conclude this note with a brief description of the
general strategy used in the proofs of the results that have
been presented here. The procedure to construct solutions
exhibiting the expected blow-up behaviour is to identify a
first approximation with the anticipated features and then
to get an actual solution, rather than an approximate one,
by using a perturbation argument. Finding the remainder
is a delicate and difficult step since the behaviour of a so-
lution near the region of blow-up may depend in an in-
tricate way on the entire dynamics, hence it is essential to
have a precise control on the perturbation. The inner-outer
scheme used in [6] consists in writing the solution as the
approximation plus a remainder, and in expressing the re-
mainder itself as sum of two parts, identified as the inner
and the outer parts. The inner and the outer parts solve a
coupled system of nonlinear partial differential equations,
with the property that the main operator for the inner part
catches the features of the problem near the singularity
and it is expressed in the variable of the blowing-up limit
profile, whilst the principal operator in the outer part sees
the whole picture in the original scale. A key and delicate
issue for the scheme to work is to ensure a fine control
on the coupling between the inner and outer parts. En-
ergy methods may fail to achieve this control, and suffi-
ciently fast decay at infinity needs to be prescribed on the
inner part. This general approach is quite flexible and has
been successfully used in several other contexts, among
which the construction of concentrated vorticities for the
two-dimensional Euler’s equations for incompressible flu-
ids, in singularity formation for the two-dimensional har-
monicmap flow into 𝑆2 as well as in the infinite-time blow-
up for the Patlak-Keller-Segel model for chemotaxis.
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