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Denoising and decoding spontaneous vagus nerve recordings with
machine learning

Mafalda Ribeiro1,2, Ryan G. L. Koh3, Tom Donnelly1,2, Christof Lutteroth1,2, Michael J. Proulx1,2,4,
Paulo R. F. Rocha5, Benjamin Metcalfe1,2

Abstract— Neural interfaces that electrically stimulate the
peripheral nervous system have been shown to successfully
improve symptom management for several conditions, such as
epilepsy and depression. A crucial part for closing the loop
and improving the efficacy of implantable neuromodulation
devices is the efficient extraction of meaningful information
from nerve recordings, which can have a low Signal-to-Noise
ratio (SNR) and non-stationary noise. In recent years, machine
learning (ML) models have shown outstanding performance
in regression and classification problems, but it is often un-
clear how to translate and assess these for novel tasks in
biomedical engineering. This paper aims to adapt existing
ML algorithms to carry out unsupervised denoising of neural
recordings instead. This is achieved by applying bandpass
filtering and two novel ML algorithms to in-vivo spontaneous,
low-SNR vagus nerve recordings. The performance of each
approach is compared using the task of extracting respiratory
afferent activity and validated using cross-correlation, MSE,
and accuracy in terms of extracting the true respiratory rate.
A variational autoencoder (VAE) model in particular produces
results that show better correlation with respiratory activity
compared to bandpass filtering, highlighting that these models
have the potential to preserve relevant features in complex
neural recordings.

I. INTRODUCTION

Neural implants that electrically stimulate the central or
peripheral nervous systems have been an active topic in
neural engineering research and in industry, given the pos-
sibility to treat neurological conditions in a more localised
way [1]. There are commercially-available systems capable
of stimulating the nervous system for the treatment of
epilepsy and depression (i.e. brain, vagus nerve), for bladder
control (i.e. sacral roots), and other applications [2], [3].
However, given the variability between different patients,
and even within the same patient under different conditions,
initial stimulation parameters may not always deliver optimal
treatment, requiring tuning by a clinician. To address this,
various approaches and technologies for conducting electrical
recordings of the brain and peripheral nerves are being
proposed in order to close the loop.

Cuff electrodes have been a popular choice for electri-
cal stimulation given that they surround peripheral nerves
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without penetrating the epineurium, whilst still being able
to selectively recruit specific fibre types. However, given
their positioning on the nerve, additional sources of non-
stationary noise and interference, such as biological and
instrumentation noise will also be recorded. Therefore, spon-
taneous electroneurogram (ENG) signals recorded using cuff
electrodes typically have a very low signal-to-noise ratio
(SNR), rendering them difficult to filter and process.

Currently, the most common approach for denoising neural
recordings is through the use of analogue or digital bandpass
filters centered around frequencies of action potentials (APs),
which typically range from 100Hz-10 kHz [4]. Wavelet-
based denoising has also been proposed, yet this requires
the fine-tuning once again of parameters such as the mother
wavelet, the decomposition level, the threshold definition,
among others [5]. In other domains, such as biomedical
image denoising and segmentation, machine learning (ML)
techniques have started to be proposed and deployed success-
fully. Of particular interest for denoising neural recordings
are models which do not require exact ground-truth labels,
given the difficulty in ascertaining these for less-invasive
recordings, such as those using cuff electrodes.

Bearing these developments in mind, this work details the
implementation and comparison of two ML algorithms for
denoising problems. The first was a variational autoencoder
(VAE) model inspired by the Coordinate-VAE proposed by
[6], which is a recent unsupervised model specifically aimed
at cuff recordings. The second model examined was the
Noise2Noise model proposed by [7], which is a supervised
regression model that works on noisy samples only, previ-
ously applied to image denoising problems. This model can
be modified for the task of denoising neural recordings by
changing 2D convolutions for processing noisy images into
1D convolutions for processing noisy signal sequences. Both
of the proposed ML models were compared to conventional
bandpass filtering, and applied in a spontaneous cuff record-
ing task.

In this work, respiratory activity is also derived from
blood pressure measurements and used to validate denoising
performance for the first time. In comparison, previous ML-
based denoising approaches have relied on human labels for
specific types of neural activity.

II. METHODS

A. Experimental data collection

The procedures for collecting single animal recordings for
this work were performed in accordance with the Danish An-



imal Experiments Inspectorate (approval no. 2013-15-2934-
00753), as well as the care and use of laboratory animals
as described by the U.S National Institutes of Health, and
are described in full in [8]. Spontaneous neural activity was
obtained from cuff recordings from pig right cervical vagus
nerve, using a cuff with ten platinum-iridium electrodes [9].
The electrodes were connected as nine bipolar channels,
and a bandpass filter from 100Hz-10 kHz was applied to
the data. A sampling rate of 100 kHz was chosen given the
small propagation delays in faster APs, which were as low as
175 µs. In total, the full dataset of spontaneous neural activity
consisted of 2 minutes of continuous recording. Arterial
blood pressure was also monitored.

B. Denoising models

Convolutional neural networks (CNNs) are useful for
processing 1D or 2D sequences of data, and improve an
ML system through sparse interactions, parameter sharing,
and equivariant representations [10]. This implies fewer
parameters are required, only one set of parameters needs
to be learnt for each location on the input, and changes
at the input modify the representation in the same way. In
terms of denoising, encoder/decoder CNNs leverage smaller
latent spaces to encode inputs and sometimes allow "skip"
connections to allow some leakage of information from
encoding to decoding layers (typically referred to as U-Nets),
both of which can benefit the model in learning the required
task [11].

The Coordinate VAE model proposed by [6] is aimed
specifically at denoising PNS data collected from cuff elec-
trodes. As shown in Figure 1(a), VAE models comprise of
encoder and decoder blocks, with the main objective of min-
imising the error between the original input and reconstructed
output. However, unlike conventional autoencoders, VAEs
encode the input as a distribution over the latent space.
In the Coordinate-VAE model applied specifically to cuff
recordings, this is attained by using small windows of data
(∼8.5ms) as the input to the encoder, which then produces
a corresponding one-hot vector in the latent space using a
Gumbel-Softmax activation [12]. The loss was defined as a
weighted sum between the mean squared error (MSE) be-
tween the original input and reconstruction, and the negative
of the Kullback-Leibler (KL) divergence. An additional block
added to this model consisted of a coordinate encoder, which
leveraged information about time samples near the baseline
to minimise the size of the encoded one-hot vector.

The Noise2Noise model proposed by [7] has been predom-
inantly applied to various imaging tasks such as denoising
or undersampling. This model follows a U-Net structure
as shown in Figure 1(b), which contains contracting and
expanding paths for downsampling and subsequently recon-
structing the input. The upsampling layers get concatenated
with outputs from prior contracting layers to relay context
information to higher resolution layers [11]. A key contribu-
tion from the Noise2Noise model was the ability to denoise
input data using corrupted targets only. This is achieved by
using pairs of the same image, corrupted by the same type of
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Fig. 1: ML model architectures, (a) Variational Autoencoder
(VAE) and (b) Noise2Noise model

noise at different locations. The authors further highlight that
the optimal network parameters remain unchanged if input-
conditioned target distributions p(y|x) are replaced with
arbitrary distributions with the same conditional expected
values [7]. In turn, this implies networks can be trained
with targets containing zero-mean noise without changing
the learnt reconstruction.

C. Data processing

A fourth-order bandpass filter with cutoff frequencies
250Hz and 10 kHz was applied to the raw recording data,
with the frequency range corresponding to a broad interval
where neural activity is expected to lie. The data were
then split into training, validation, and test sets (70%, 10%,
20%). Furthermore, the raw vagus ENG recordings contained
artifacts occurring periodically, likely owing to interference
from neighbouring equipment. As such, any points above
two standard deviations of the data were replaced with
the channel median. The data were then standardised and
rescaled to the range of [-1, 1] as described in [6]. Non-
overlapping windows of 10.24ms (1024 samples) from all
nine bipolar channels were extracted both from the raw and
bandpass-filtered data to be used as inputs to the ML models.
Data augmentation was also applied by extracting windows
from the training data at two different offsets.

D. Algorithm training and evaluation

The implemented VAE model contained CNN-based en-
coder and decoder blocks, and a Gumbel-Softmax activation
in the latent space [12]. For this study, the coordinate
encoder described in the previously mentioned Coordinate
VAE model [6] was omitted since plausible reconstructions
could not be obtained with any parameter combinations. To
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Fig. 2: Comparison of bandpass filtering and two ML denoising approaches. (a) Window of original vagus recording before
(faint blue) and after bandpass filtering with cutoff frequencies 250-10 kHz (orange), (b) Unsupervised VAE reconstruction
(orange) compared with bandpass filter (faint blue), (c) Noise2Noise model reconstruction (orange) compared with bandpass
filter (faint blue).

compensate for this and the larger input size, the latent
space was made larger with 50 filters. For this network,
the loss was defined as the weighted sum of the MSE
between the input and output waveforms (reconstruction
error), the KL divergence, and the MSE between the blood
pressure respiratory envelope and the moving root mean
square (RMS) plot of the ENG data. For these experiments
the weights for each term were set to 65%, 20%, and 15%,
respectively.

The Noise2Noise model followed the same structure de-
scribed in its original publication [7], but it was adapted for
performing 1D convolutions instead. The loss function was
also updated to include an MSE term between the respiratory
envelope and moving RMS ENG data, weighed at 50% of
the total loss. Finally, given the relatively small dataset being
used, the sizes of the encoding and decoding layers were
decreased and a lower learning rate was used. In both the
VAE and Noise2Noise model, kernel sizes of 5 and 13 were
used respectively, and the AdamW optimiser was used with
a learning rate of 0.005 [13].

The VAE model used bandpass filtered data as input,
whereas the Noise2Noise model used both the raw and
bandpass filtered datasets. Finally, to quantify the complexity
of these models, the parameter counts and training times are
reported in the results section. Training was carried out on
a machine with an NVIDIA RTX 3090.

E. Respiration activity task

Respiration activity can be extracted from the envelope of
a blood pressure waveform. This relationship between blood
pressure and respiration has been previously quantified as
being proportional to changes in intrathoracic pressure during
inspiration and expiration [14]. For this work, blood pres-
sure windows recorded alongside ENG data in the training
and test sets were obtained, and the positive envelope was
extracted. During training, consecutive blood pressure win-
dows were combined for each batch and compared against
a moving RMS window of 1 s from each denoised ENG
recording. This approach was also applied to windows from
an unshuffled test set, which were similarly combined into
a longer recording and compared against a moving RMS

window of corresponding ENG recordings. In both cases,
the envelope and moving RMS data were normalised using
z-score normalisation. The MSE was calculated for training
purposes, and both cross-correlation at zero lag (Pearson
correlation coefficient) and MSE were used for validating
test results. Given the animal was mechanically ventilated
at a rate of 0.25Hz, the respiratory rate was also extracted
from the moving RMS recordings and compared.

III. RESULTS

Figures 2(a)-(c) highlight the differences in the different
denoising methods in the time domain, with examples being
drawn from a hold-out, unshuffled test set. Figure 3 also
shows a comparison the respiratory envelope extracted from
blood pressure and moving RMS plots of the denoised ENG
signals. In the time domain, it can be seen that the VAE and
Noise2Noise models produce significantly different results
in terms of the activity that is preserved. Particularly, the
VAE removes any baseline wander and preserves less of the
original signal content compared to the Noise2Noise model.
From Figure 3, it can also be seen that both ML models track
the respiratory envelope differently to the bandpass filter.
Three performance metrics were also quantified for each
approach, namely the cross-correlation and MSE between
the respiratory envelope and denoised ENG signals, and the
accuracy in extracting the mechanical ventilation rate of
0.25 Hz. Bearing these metrics in mind, the VAE shows
performance improvements in comparison to conventional
bandpass filtering in terms of cross-correlation and MSE.
In particular, it is able to reconstruct ENG signals whilst
preserving detail also seen in respiratory data from blood
pressure. The Noise2Noise model only outperformed band-
pass filtering and the VAE model in extracting the underlying
respiratory rate of the recording.

IV. DISCUSSION

In this work, two recent ML models were implemented,
trained, and tested on the task of denoising very low-SNR
recordings of pig vagus ENG data. Alongside this data, blood
pressure recordings were also collected, which provided a
separate physiological signal to compare with the denoising
results. From the plots in Figures 2 and 3, and Table I, it can



Model Cross-correlation
with BP (Mean (SD))

Respiratory rate
error (%) (Mean (SD))

MSE
(Mean (SD))

Parameter
count

Training
time (min)

Bandpass filtering 0.813 (0.00911) 11.4 (0.231) 0.371 (0.0183) - -
VAE 0.825 (0.00600) 12.2 (0.211) 0.351 (0.0120) 470,957 82
Noise2Noise 0.788 (0.0160) 11.0 (0.293) 0.422 (0.0315) 71,625 20

TABLE I: Quantification of performance and complexity for each model, with the results presented as the mean and standard
deviation across all nine channels of data. The latter two categories were omitted for bandpass filtering given it is a non-ML
method that does not require prior training.

Fig. 3: Blood pressure recording and average of all channels
of moving RMS plots for the test set signals using a moving
window size of 1s. Blood pressure recording is in blue,
bandpass filtering with cutoff frequencies 250-10 kHz in
orange, VAE model results in green, and Noise2Noise model
results in red

be seen that the VAE in particular poses improvements over
conventional bandpass filtering in terms of cross-correlation
and MSE between the moving RMS of ENG data and blood
pressure data. More specifically, the ability to incorporate
respiratory activity as part of the loss function provides a
potential advantage to ML models, which are then able to
denoise whilst preserving relevant features for the task at
hand; in this case, extracting respiratory activity from vagus
nerve recordings. It is hypothesised that ML models such as
those described in this work could be further improved with
larger datasets with more diverse and realistic data, since the
current dataset was limited to a few minutes of activity from
a single animal at a constant respiratory rate of 0.25Hz.

The primary metric used to quantify the performance for
the task was the cross-correlation between the respiration
envelope and moving RMS plots for each denoising method.
It could also be worthwhile investigating the resulting ve-
locity spectra from the denoised recordings for this task
[8]. This approach would offer a more fine-grained view
of whether particular conduction velocities, or afferent and
efferent activity, can be more easily extracted with differing
denoising methods.

V. CONCLUSIONS

Although ML models have been used successfully in a
number of domains, it can be unclear how to translate and
assess these for novel problems in biomedical engineering.

This work describes the process of selecting, adapting, and
analysing two candidate ML models to denoise low-SNR
neural signals. In particular, the models take into account
additional physiological signals from an organ innervated by
the nerve in question, in this case the lungs and the vagus
nerve. The results from the denoising task were examined in
the time-domain, as well as validated against multiple metrics
to assess the performance of each denoising approach. In
short, the VAE model showed performance improvements
for the task of respiration activity extraction in comparison
to a bandpass filter. In future, it would be worthwhile to in-
vestigate whether a more complex unsupervised model could
be trained on larger volumes of more diverse data. From the
perspective of extracting information from ENG recordings,
it would also be worthwhile comparing the performance of
different denoising approaches in the velocity domain.
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