The influence of molecular shape and electronic properties on the formation of the ferroelectric nematic phase. [Dataset]

CRUICKSHANK, E., TUFAHA, N., WALKER, R., BROWN, S., GORECKA, E., POCIECHA, D., STOREY, J.M.D. and IMRIE, C.T.

The influence of molecular shape and electronic propertieson the formation of the ferroelectric nematic phaseEwan Cruickshank ${ }^{1, \ddagger, *}$, Naila Tufaha ${ }^{1}$, Rebecca Walker ${ }^{1}$, Stevie Brown ${ }^{1}$, Ewa Gorecka ${ }^{2}$, DamianPociecha² John M.D. Storey ${ }^{1}$ \& Corrie T. Imrie ${ }^{1}$${ }^{1}$ Department of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, U.K.\ddagger Present Address: School of Pharmacy and Life Sciences, Robert Gordon University,Aberdeen, AB10 7GJ, U.K.${ }^{2}$ Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland*Author for correspondence: e.cruickshank2@rgu.ac.uk

Materials and Methods

Reagents

All reagents and solvents that were available commercially were purchased from Sigma Aldrich, Fisher Scientific or Fluorochem and were used without further purification unless otherwise stated.

Thin Layer Chromatography

Reactions were monitored using thin layer chromatography, and the appropriate solvent system, using aluminium-backed plates with a coating of Merck Kieselgel 60 F254 silica which were purchased from Merck KGaA. The spots on the plate were visualised by UV light (254 $\mathrm{nm})$.

Column Chromatography

For normal phase column chromatography, the separations were carried out using silica gel grade $60 \AA ̊, 40-63 \mu \mathrm{~m}$ particle size, purchased from Fluorochem and using an appropriate solvent system.

Structure Characterisation

All final products and intermediates that were synthesised were characterised using ${ }^{1} \mathrm{H} N M R$, ${ }^{19} \mathrm{~F}$ NMR, ${ }^{13} \mathrm{C}$ NMR and infrared spectroscopies. The NMR spectra were recorded on a 400 MHz Bruker Avance III HD NMR spectrometer. The infrared spectra were recorded on a Perkin Elmer Spectrum Two FTIR with an ATR diamond cell.

High Resolution Mass Spectrometry

In order to determine if the molecular ions of the final products or their adducts were present, high-resolution mass spectrometry was carried out using a Waters XEVO G2 Q-Tof mass spectrometer by Dr. Morag Douglas at the University of Aberdeen.

Synthesis and Analytical Data

4-Methoxy-2-ethoxy-benzaldehyde (1)

To a pre-dried flask flushed with argon and fitted with a condenser, 4-hydroxy-2methoxybenzaldehyde ($1 \mathrm{eq}, 5.00 \mathrm{~g}, 0.0329 \mathrm{~mol}$), and potassium carbonate ($2 \mathrm{eq}, 9.09 \mathrm{~g}$, 0.0658 mol) were combined in DMF (80 mL). To the mixture, iodoethane ($1.05 \mathrm{eq}, 2.77 \mathrm{~mL}$, $5.38 \mathrm{~g}, 0.0345 \mathrm{~mol}$) and stirred at $90^{\circ} \mathrm{C}$ overnight. The extent of the reaction was monitored by TLC using 100 \% dichloromethane (RF value quoted in the product data). The reaction mixture was cooled to room temperature and poured into water (150 mL). The resulting suspension was extracted with ethyl acetate ($2 \times 250 \mathrm{~mL}$). The organic fractions were combined, washed with water ($3 \times 100 \mathrm{~mL}$), and dried over anhydrous magnesium sulfate. The magnesium sulfate was removed using vacuum filtration and the solvent evaporated under vacuum to leave an orange solid. The product was carried forwards without any further purification.

Yield: $5.12 \mathrm{~g}, 86.4 \%$ RF: 0.189 . M.P $=62^{\circ} \mathrm{C}$
$v_{\text {max }} / \mathrm{cm}^{-1}: 2977,2862,2778,1664,1598,1576,1502,1473,1456,1425,1398,1334,1262$, $1207,1172,1115,1096,1039,1024,970,898,837,816,800,676,640,559,493,461$.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.28(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $8.7 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.89(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 188.34,165.60,163.61,130.76,118.93,106.11,98.39,63.99$, 55.59, 14.66.

Methyl 2-ethoxy-4-methoxy-benzoate (2)

To a pre-dried flask flushed with argon and fitted with a condenser, methyl 4methoxysilicylate ($1 \mathrm{eq}, 5.00 \mathrm{~g}, 0.0274 \mathrm{~mol}$), and potassium carbonate ($2 \mathrm{eq}, 7.57 \mathrm{~g}, 0.0548$ mol) were combined in DMF (80 mL). To the mixture, iodoethane ($1 \mathrm{eq}, 2.20 \mathrm{~mL}, 4.27 \mathrm{~g}$, 0.0274 mol) and stirred at $90^{\circ} \mathrm{C}$ overnight. The extent of the reaction was monitored by TLC using 40% ethyl acetate:60 \% 40:60 petroleum ether (RF value quoted in the product data). The reaction mixture was cooled to room temperature and poured into water (150 mL). The resulting suspension was extracted with ethyl acetate ($2 \times 250 \mathrm{~mL}$). The organic fractions were combined, washed with water ($3 \times 100 \mathrm{~mL}$), and dried over anhydrous magnesium sulfate. The magnesium sulfate was removed using vacuum filtration and the solvent evaporated under vacuum to leave a yellow solid. The product was carried forwards without any further purification.

Yield: $4.36 \mathrm{~g}, 75.6$ \%. RF: 0.559 . M.P $=47^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2982, 2941, 2842, 1726, 1688, 1669, 1603, 1575, 1505, 1440, 1423, 1393, 1370, $1326,1256,1206,1192,1132,1111,1090,1029,982,970,893,847,822,770,728,695,652$, 625, 585, 540, 469.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.08(2 \mathrm{H}, \mathrm{q}$, J $\left.7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{O}-\mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.46(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}$, $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 166.21,164.09,160.71,133.73,112.65,104.65,100.04,64.60$, 55.43, 51.58, 14.66.

Methyl 2,4-diethoxy-benzoate (3)

To a pre-dried flask flushed with argon and fitted with a condenser, methyl 2,4dihydroxybenzoate ($1 \mathrm{eq}, 3.00 \mathrm{~g}, 0.0178 \mathrm{~mol}$), and potassium carbonate ($4 \mathrm{eq}, 9.84 \mathrm{~g}, 0.0712$ mol) were combined in DMF (80 mL). To the mixture, iodoethane ($2 \mathrm{eq}, 2.86 \mathrm{~mL}, 5.55 \mathrm{~g}$, 0.0356 mol) and stirred at $90^{\circ} \mathrm{C}$ overnight. The extent of the reaction was monitored by TLC using 40% ethyl acetate:60 \% 40:60 petroleum ether (RF value quoted in the product data). The reaction mixture was cooled to room temperature and poured into water (150 mL). The resulting suspension was extracted with ethyl acetate ($2 \times 250 \mathrm{~mL}$). The organic fractions were combined, washed with water ($3 \times 100 \mathrm{~mL}$), and dried over anhydrous magnesium sulfate. The magnesium sulfate was removed using vacuum filtration and the solvent evaporated under vacuum to leave a yellow oil. The product was carried forwards without any further purification.

Yield: 3.06 g, 76.7 \%. RF: 0.487.
$v_{\max } / \mathrm{cm}^{-1}$: 2982, 2947, 2890, 1724, 1697, 1606, 1573, 1505, 1475, 1439, 1392, 1323, 1296, 1244, 1188, 1140, 1111, 1084, 1037, 1003, 965, 915, 844, 821, 812, 768, 699, 642, 606, 589, 565, 461.
$\delta_{H} /$ ppm ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.43(2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\mathrm{H}), 4.04(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{O}-\mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, $1.44\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
סc/ppm (100 MHz, CDCl_{3}): 166.22, 163.50, 160.71, 133.72, 112.43, 105.10, 100.46, 64.56, 63.69, 51.55, 14.68, 14.67.

2-Alkoxy-4-methoxybenzoic acids (4)

4.1 4-Ethoxy-2-methoxybenzoic acid

To a pre-dried flask flushed with argon, Compound 1 (1 eq, $5.12 \mathrm{~g}, 0.0284 \mathrm{~mol}$) and resorcinol (1.5 eq, $4.69 \mathrm{~g}, 0.0426 \mathrm{~mol}$) were solubilised in DMSO (120 mL). Sodium chlorite (4 eq, 10.31 $\mathrm{g}, 0.114 \mathrm{~mol}$) and sodium hydrogen phosphate monohydrate ($3.5 \mathrm{eq}, 13.72 \mathrm{~g}, 0.994 \mathrm{~mol}$) were solubilised in water (90 mL) before being slowly poured into the reaction flask and the resultant mixture was stirred at room temperature overnight. The extent of the reaction was monitored by TLC using an appropriate solvent system (RF values quoted in the product data). The reaction mixture was diluted with water (300 mL) and the pH of the mixture was adjusted to 1 using 32% hydrochloric acid (50 mL). An orange solid precipitated after acidification and was collected by vacuum filtration. The product was carried forwards without any further purification.

Yield: 4.69 g, 84.2 \%. RF: 0.048. M.P = $128{ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: $2943,2891,1666,1615,1569,1507,1454,1428,1396,1274,1253,1203,1164$, 1113, 1095, 1035, 976, 918, 882, 819, 792, 762, 689, 639, 564, 429.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 12.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.09\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / p p m\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 166.86,163.41,161.07,133.74,112.92,105.89,99.73,63.95$, 56.20, 14.97.

4.2 2-Ethoxy-4-methoxybenzoic acid and 4.3 2,4-Diethoxybenzoic acid

To a pre-dried flask flushed with argon and fitted with a condenser, potassium hydroxide (3 eq) was added to water. Compound 2/3 (1 eq) was solubilised in EtOH, added to the flask and the resultant mixture stirred at reflux overnight. The quantities of the reagents used in each reaction are listed in Table 1. The extent of the reaction was monitored by TLC using an appropriate solvent system (RF values quoted in the product data). The reaction mixture was cooled to room temperature and the pH of the mixture was adjusted to 1 using 32% hydrochloric acid (25 mL) and a white solid precipitated. The solid was collected by vacuum filtration and the product was carried forwards without any further purification.

Table 1. Quantities of reagents used in the syntheses of the 2-alkoxy-4-methoxybenzoic acids.

m	n	$(\mathbf{1})$	Ethanol	Potassium Hydroxide	Water

2	1	$5.00 \mathrm{~g}, 0.0238 \mathrm{~mol}$	50 mL	$4.00 \mathrm{~g}, 0.0714 \mathrm{~mol}$	30 mL
2	2	$10.5 \mathrm{~g}, 0.0468 \mathrm{~mol}$	80 mL	$7.85 \mathrm{~g}, 0.140 \mathrm{~mol}$	100 mL

4.2 2-Ethoxy-4-methoxybenzoic acid

Yield: 4.30 g, 92.0 \%. RF: 0.306 (40 \% ethyl acetate:60 \% 40:60 petroleum ether). M.P = 121 ${ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}: 2985,2874,1666,1613,1569,1506,1451,1413,1386,1311,1275,1254,1202$, $1174,1150,1114,1094,1034,918,890,831,815,793,765,736,690,632,616,578,490,464$, 410.
$\delta_{H} /$ ppm ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $12.07(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $2.2 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.08\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right)$: 166.97, 163.96, 160.22, 133.60, 113.52, 105.72, 100.24, 64.58, 55.92, 14.97.

4.3 2,4-Diethoxybenzoic acid

Yield: 9.02 g, 91.7 \%. RF: 0.030 (20 \% ethyl acetate:80 \% 40:60 petroleum ether). M.P = 106 ${ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: $3258,2985,1725,1608,1577,1506,1477,1444,1398,1326,1288,1260,1234$, $1190,1153,1125,1108,1086,1041,1026,1001,913,850,834,814,770,734,706,684,646$, 595, 571, 532, 462, 436.
$\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 12.05(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}$, Ar-H), $6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.07\left(4 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.32(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): 166.96,163.26,160.21,133.62,113.35,106.04,100.63,64.54$, 63.91, 14.98, 14.96.

4-Formyl-3-methoxyphenyl 2-alkoxy-4-alkoxybenzoates (5)

To a pre-dried flask flushed with argon, Compound 4 (1 eq), 4-hydroxy-2methoxybenzaldehyde (1.1 eq) and 4-dimethylaminopyridine (0.13 eq) were added. The solids were solubilised with dichloromethane (100 mL) and tetrahydrofuran (20 mL) while being stirred for 10 min before N, N^{\prime}-dicyclohexylcarbodiimide (1.3 eq) was added to the flask and the reaction was allowed to proceed overnight. The quantities of the reagents used in each reaction are listed in Table 2. The extent of the reaction was monitored by TLC using an appropriate solvent system (RF values quoted in the product data). The precipitate which formed was removed by vacuum filtration and the filtrate collected. The collected solvent was evaporated under vacuum to leave a solid which was recrystallised from hot ethanol (volumes used are listed in Table 2).

Table 2. Quantities of reagents used in the syntheses of the 4-formyl-3-methoxyphenyl 2-alkoxy-4-alkoxybenzoates.

m	n	(4)	4-Hydroxy-2- methoxybenzalde hyde	4- Dimethylaminopy ridine	Dicyclohexylcarbo diimide	

1	1	$3.00 \mathrm{~g}, 0.0164$ mol	$2.75 \mathrm{~g}, 0.0275$ mol	$0.260 \mathrm{~g}, 2.13 \times 10^{-3}$ mol	$4.39 \mathrm{~g}, 0.0213$ mol	400 mL
1	2	$1.80 \mathrm{~g}, 9.17 \times 10^{-3}$ mol	$1.54 \mathrm{~g}, 0.0101$ mol	$0.145 \mathrm{~g}, 1.19 \times 10^{-3}$ mol	$2.46 \mathrm{~g}, 0.0119$ mol	200 mL
2	1	$2.00 \mathrm{~g}, 0.0102$ mol	$1.70 \mathrm{~g}, 0.0112$ mol	$0.162 \mathrm{~g}, 1.33 \times 10^{-3}$ mol	$2.74 \mathrm{~g}, 0.0133$ mol	250 mL
2	2	$3.00 \mathrm{~g}, 0.0143$ mol	$2.39 \mathrm{~g}, 0.0157$ mol	$0.227 \mathrm{~g}, 1.86 \times 10^{-3}$ mol	$3.84 \mathrm{~g}, 0.0186$ mol	250 mL

5.1 4-Formyl-3-methoxyphenyl 2,4-dimethoxybenzoate

White solid. Yield: $4.30 \mathrm{~g}, 82.9 \%$. RF: 0.400 (40% ethyl acetate: $60 \% 40: 60$ petroleum ether). M. P = $169^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}:$ 2976, 2861, 1738, 1638, 1607, 1574, 1509, 1495, 1454, 1416, 1393, 1306, 1272, $1233,1215,1196,1156,1102,1044,1020,870,821,795,756,740,684,670,633,612,559$, 527, 465, 412.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.41(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 8.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}$, J $8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.87(1 \mathrm{H}$, dd, J $8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.57$ (1 H , dd, J $8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $6.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$, 3.90 ($3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}$).
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $188.77,165.36,162.81,162.72,162.52,157.38,134.65,129.79$, $122.40,114.51,110.42,105.95,104.97,99.03,56.07,55.91,55.64$.

5.2 4-Formyl-3-methoxyphenyl 4-ethoxy-2-methoxybenzoate

Off-white solid. Yield: $2.14 \mathrm{~g}, 70.6$ \%. RF: 0.242 (20 \% ethyl acetate:80 \% 40:60 petroleum ether). M.P $=135^{\circ} \mathrm{C}$
$v_{\text {max }} / \mathrm{cm}^{-1}: 2872,1739,1684,1608,1571,1509,1494,1459,1414,1395,1310,1265,1234$, $1213,1197,1177,1156,1103,1050,1039,1022,977,880,864,827,819,795,757,746,686$, 674, 646, 618, 563, 534, 486, 464, 416.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.41(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 8.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}$, J 8.4 Hz, Ar-H), 6.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, ~ A r-H), 6.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.57$ (1 H , dd, J $8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.92(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $188.77,164.79,162.80,162.72,162.53,157.41,134.64,129.77$, 122.37, 114.52, 110.18, 105.96, 105.38, 99.45, 63.98, 56.04, 55.90, 14.67.

5.3 4-Formyl-3-methoxyphenyl 2-ethoxy-4-methoxybenzoate

White solid. Yield: $2.78 \mathrm{~g}, 82.5 \%$. RF: 0.388 (40% ethyl acetate: $60 \% 40: 60$ petroleum ether). M.P $=160^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}: 2872,1743,1682,1608,1571,1508,1475,1446,1431,1417,1390,1265,1235$, $1207,1174,1158,1103,1040,1020,963,870,817,796,755,735,684,669,635,610,575$, 526, 495, 462.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.41(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}$, J 8.2 Hz, Ar-H), $6.89(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{dd}, 8.8 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{d}, 8.8 \mathrm{~Hz}, \mathrm{Ar}-$
H), $4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.48(3 \mathrm{H}, \mathrm{t}$, J $\left.7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 188.76,165.21,162.98,162.83,161.84,157.47,134.54,129.82$, $122.38,114.53,110.70,105.94,105.04,99.89,64.67,55.89,55.60,14.67$.

5.4 4-Formyl-3-methoxyphenyl 2,4-diethoxybenzoate

White solid. Yield: 3.81 g, 77.4 \%. RF: 0.212 (100 \% dichloromethane). M.P = $109{ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2986, 2876, 1740, 1682, 1606, 1569, 1508, 1476, 1454, 1444, 1436, 1391, 1308, $1272,1263,1232,1197,1156,1102,1042,1020,948,915,876,863,844,818,797,757,740$, 686, 674, 645, 617, 606, 579, 531, 488, 463, 414.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.40(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{d}$, J $8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $6.87(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}$, $\mathrm{Ar}-\mathrm{H}), 4.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.46\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 188.76,164.64,162.98,162.83,161.85,157.50,134.52,129.80$, $122.35,114.54,110.46,105.94,105.47,100.30,64.62,63.92,55.88,14.68,14.67$.

4-((2-Alkoxy-4-alkoxybenzoyl)oxy)-2-methoxybenzoic acid (6)

To a pre-dried flask flushed with argon, Compound 5 (1 eq) and resorcinol (1.5 eq) were solubilised in DMSO (80 mL). Sodium chlorite (4 eq) and sodium hydrogen phosphate monohydrate (3.5 eq) were solubilised in water $(60 \mathrm{~mL})$ before being slowly poured into the reaction flask and the resultant mixture was stirred at room temperature overnight. The quantities of the reagents used in each reaction are listed in Table 3. The extent of the reaction was monitored by TLC using an appropriate solvent system (RF values quoted in the product data). The reaction mixture was diluted with water (300 mL) and the pH of the mixture was adjusted to 1 using 32% hydrochloric acid (25 mL). A white solid precipitated after acidification which was collected by vacuum filtration and recrystallised from hot ethanol (200 mL).

Table 3. Quantities of reagents used in the syntheses of the 4-((2-alkoxy-4-alkoxybenzoyl)oxy)-2-methoxybenzoic acids.

m	n	(5)	Sodium Chlorite	Sodium Hydrogen Phosphate Monohydrate	Resorcinol
1	1	$2.30 \mathrm{~g}, 7.27 \times 10^{-3}$ mol	$2.63 \mathrm{~g}, 0.0291 \mathrm{~mol}$	$3.05 \mathrm{~g}, 0.0254 \mathrm{~mol}$	$1.20 \mathrm{~g}, 0.0109 \mathrm{~mol}$
1	2	$2.00 \mathrm{~g}, 6.05 \times 10^{-3}$ mol	$2.19 \mathrm{~g}, 0.0242 \mathrm{~mol}$	$2.93 \mathrm{~g}, 0.0212 \mathrm{~mol}$	$1.00 \mathrm{~g}, 9.08 \times 10^{-3}$ mol
2	1	$1.40 \mathrm{~g}, 4.24 \times 10^{-3}$ mol	$1.54 \mathrm{~g}, 0.0170 \mathrm{~mol}$	$2.04 \mathrm{~g}, 0.0148 \mathrm{~mol}$	$0.700 \mathrm{~g}, 6.36 \times 10^{-3}$ mol
2	2	$1.90 \mathrm{~g}, 5.52 \times 10^{-3}$ mol	$2.00 \mathrm{~g}, 0.0221 \mathrm{~mol}$	$2.66 \mathrm{~g}, 0.0193 \mathrm{~mol}$	$0.912 \mathrm{~g}, 8.28 \times 10^{-3}$

6.1 4-((2,4-Dimethoxybenzoyl)oxy)-2-methoxybenzoic acid

Yield: 2.30 g, 95.2 \%. RF: 0.024 (100 \% ethyl acetate). M.P = $171^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2990, 1732, 1716, 1609, 1587, 1568, 1508, 1453, 1417, 1404, 1304, 1282, 1210, $1185,1154,1118,1078,1043,1017,869,826,803,769,754,741,678,649,612,578,549$, 524, 463, 427.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 12.59(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}$, J 8.4 Hz, Ar-H), 7.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 6.72 (1 H, d, J $2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $6.68(1 \mathrm{H}$, dd, J $8.7 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$, 3.82 (3 H, s, O- $\underline{\mathrm{CH}}_{3}$).
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}^{2}\right.$) : $167.05,165.36,162.89,162.20,159.91,154.99,134.51,132.29$, $118.74,114.20,110.38,107.32,106.14,99.46,56.55,56.47,56.19$.

6.2 4-((4-Ethoxy-2-methoxybenzoyl)oxy)-2-methoxybenzoic acid

Yield: 1.57 g, 74.9 \%. RF: 0.020 (100 \% dichloromethane). M.P $=159{ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2979, 2906, 1735, 1701, 1673, 1607, 1582, 1569, 1504, 1469, 1406, 1306, 1235, 1205, 1189, 1149, 1119, 1079, 1050, 1034, 1016, 871, 826, 804, 775, 759, 688, 666, 649, 611, 579, 555, 525, 463, 427.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 12.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}$, J $8.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.69$ (1 H, d, J $2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.86(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} /$ ppm (100 MHz, DMSO-d $)$: 167.07, 164.65, 162.88, 162.20, 159.90, 154.98, 134.54, 132.28, $118.79,114.20,110.23,107.31,106.38,99.87,64.23,56.55,56.44,14.93$.

6.3 4-((2-Ethoxy-4-methoxybenzoyl)oxy)-2-methoxybenzoic acid

Yield: 1.31 g, 89.2 \%. RF: 0.028 (40 \% ethyl acetate:60 \% 40:60 petroleum ether). M.P = 197 ${ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: $3446,2989,1745,1723,1694,1668,1611,1569,1508,1464,1433,1406,1391$, $1331,1307,1240,1205,1189,1158,1136,1114,1092,1041,1028,1015,964,871,854,816$, 800, 772, 757, 745, 736, 686, 663, 608, 594, 562, 525, 463, 444.
$\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 12.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}$, J $8.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.67(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.35(3 \mathrm{H}, \mathrm{t}$, J $\left.6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 167.06,165.20,163.07,161.44,159.91,155.04,134.36,132.32$, $118.74,114.14,110.72,107.20,106.64,100.26,64.71,56.53,56.15,14.92$.

6.4 4-((2,4-Ethoxybenzoyl)oxy)-2-methoxybenzoic acid

Yield: 1.29 g, 64.9 \%. RF: 0.028 (40 \% ethyl acetate:60 \% 40:60 petroleum ether). M.P = 138 ${ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2983, 2886, 1730, 1701, 1658, 1596, 1568, 1499, 1473, 1434, 1404, 1389, 1329, $1294,1237,1203,1162,1127,1071,1040,1024,953,918,848,831,807,781,760,687,674$, 643, 589, 567, 528, 472, 436.
$\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 12.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}$, J $8.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.65(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar}-\mathrm{H}), 4.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.

3-Methoxy-4-((4-nitrophenoxy)carbonyl)phenyl
 2-alkoxy-4-alkoxybenzoates (7-m-n)

To a pre-dried flask flushed with argon and kept in an ice bath in order to maintain the temperature at $0^{\circ} \mathrm{C}$, Compound $6(1 \mathrm{eq}), 4$-nitrophenol (1.5 eq) and 4-dimethylaminopyridine $(0.15 \mathrm{eq})$ were added. The solids were solubilised with dichloromethane $(30 \mathrm{~mL})$ and stirred for 10 min before N, N^{\prime}-dicyclohexylcarbodiimide (1.5 eq) or N-ethyl- N^{\prime}-(3dimethylaminopropyl)carbodimide hydrochloride (1.5 eq for $m=1, n=1$ and $m=2, n=1$) was added to the flask. The quantities of the reagents used in each reaction are listed in Table 4. The temperature of the reaction mixture was increased to room temperature and the reaction was allowed to proceed overnight. For the reactions with N, N^{\prime} dicyclohexylcarbodiimide, the white precipitate which formed was removed by vacuum filtration and the filtrate collected. The solvent was removed under vacuum and the crude product was purified using a silica gel column with an appropriate solvent system (RF values quoted in product data). The eluent fractions of interest were evaporated under vacuum to leave a white solid which was recrystallised from hot ethanol ($50 \mathrm{~mL}, 100 \mathrm{~mL}$ for $m=2, n=$ 1).

Table 4. Quantities of reagents used in the syntheses of the 3-methoxy-4-((4nitrophenoxy)carbonyl)phenyl 2-alkoxy-4-alkoxybenzoates.

m	n	(6)	4-Nitrophenol	4- Dimethylaminopyri dine	$\mathrm{N}, \mathrm{N}^{\prime}$ - Dicyclohexylcarbodi imide/ N -Ethyl- $\mathrm{N}^{\prime}-$ $(3-$ dimethylaminoprop yl)carbodiimide hydrochloride
1	1	$0.300 \mathrm{~g}, 9.03 \times 10^{-4}$ mol	$0.188 \mathrm{~g}, 1.35 \times 10^{-3}$ mol	$0.016 \mathrm{~g}, 1.35 \times 10^{-4}$ mol	$0.259 \mathrm{~g}, 1.35 \times 10^{-3}$ mol
1	2	$0.300 \mathrm{~g}, 8.66 \times 10^{-4}$ mol	$0.181 \mathrm{~g}, 1.30 \times 10^{-3}$ mol	$0.016 \mathrm{~g}, 1.30 \times 10^{-4}$ mol	$0.268 \mathrm{~g}, 1.30 \times 10^{-3}$ mol
2	1	$0.600 \mathrm{~g}, 1.73 \times 10^{-3}$ mol	$0.361 \mathrm{~g}, 2.60 \times 10^{-3}$ mol	$0.032 \mathrm{~g}, 2.60 \times 10^{-4}$ mol	$0.498 \mathrm{~g}, 2.60 \times 10^{-3}$ mol
2	2	$0.300 \mathrm{~g}, 8.33 \times 10^{-4}$ mol	$0.174 \mathrm{~g}, 1.25 \times 10^{-3}$ mol	$0.015 \mathrm{~g}, 1.25 \times 10^{-4}$ mol	$0.258 \mathrm{~g}, 1.25 \times 10^{-3}$

7.1 3-Methoxy-4-((4-nitrophenoxy)carbonyl)phenyl 2,4-dimethoxybenzoate (7-1-1)

Yield: $0.163 \mathrm{~g}, 39.8$ \%. RF: 0.553 (2 \% ethyl acetate: 98 \% dichloromethane).
$\mathrm{T}_{\text {CrI }} 169^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{NF}_{\mathrm{F}}}\left(104{ }^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}: 2947,1757,1741,1607,1580,1516,1491,1463,1440,1408,1353,1336,1271$, $1216,1202,1167,1136,1124,1090,1028,1007,942,865,827,759,743,719,687,650,611$, 601, 541, 497, 462.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.11(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.41(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8$ $\mathrm{Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{d}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.91(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $165.43,162.67,162.57,162.46,161.67,156.76,155.85,145.25$, 134.67, 133.62, 125.17, 122.77, 114.63, 114.02, 110.31, 106.64, 105.02, 99.02, 56.33, 56.09, 55.65.
$\mathrm{MS}=[\mathrm{M}+\mathrm{Na}]^{+}$: Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{9} \mathrm{Na}: 476.0958$. Found: 476.0954. Difference: 0.8 ppm

7.2 3-Methoxy-4-((4-nitrophenoxy)carbonyl)phenyl 4-ethoxy-2-methoxybenzoate (7-1-2)

Yield: $0.060 \mathrm{~g}, 14.8 \%$. RF: 0.275 (40% ethyl acetate: 60% 40:60 petroleum ether).
$\mathrm{T}_{\mathrm{Cr}} 134^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{NF}^{\prime}}\left(97^{\circ} \mathrm{C}\right)$
$v_{\text {max }} / \mathrm{cm}^{-1}$: 3088, 2978, 1758, 1746, 1610, 1567, 1519, 1487, 1456, 1439, 1416, 1390, 1343, 1299, 1270, 1238, 1206, 1189, 1164, 1145, 1130, 1110, 1055, 1039, 1010, 944, 863, 843, 832, $821,802,758,748,693,672,654,631,618,584,522,496,471,406$.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.08(1 \mathrm{H}$, d, J 8.5 Hz, Ar-H), 7.41 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 6.97 ($1 \mathrm{H}, \mathrm{d}$, J $2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 6.93 (1 H , dd, J 8.5 $\mathrm{Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.56(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$, $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 164.85, 162.68, 162.58, 162.46, 161.67, 156.79, 155.86, 145.25, $134.66,133.61,125.17,122.77,114.60,114.02,110.08,106.64,105.41,99.45,64.01,56.32$, 56.07, 14.67.
$\mathrm{MS}=[\mathrm{M}+\mathrm{Na}]^{+}$: Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{9} \mathrm{Na}: 490.1114$. Found: 490.1097. Difference: 3.5 ppm

7.3 3-Methoxy-4-((4-nitrophenoxy)carbonyl)phenyl 2-ethoxy-4-methoxybenzoate (7-2-1)

Yield: $0.271 \mathrm{~g}, 33.5 \%$. RF: 0.108 (10 \% ethyl acetate:90 \% 40:60 petroleum ether).
$\mathrm{T}_{\mathrm{Cr}} 145^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{NF}^{\prime}}\left(81^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}: 2981,1749,1707,1610,1574,1514,1452,1440,1398,1343,1328,1307,1289$, 1266, 1239, 1201, 1188, 1177, 1163, 1122, 1039, 1014, 949, 881, 865, 845, 814, 760, 753, 743, 687, 675, 641, 622, 593, 579, 541, 526, 498, 467.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$): $8.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.97$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}$, dd, J $8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.69(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.90(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{O}-\mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 165.34,162.82,162.70,161.58,161.28,156.70,156.01,145.52$, $134.48,133.62,125.77,123.87,115.16,114.61,110.48,107.64,106.26,100.26,64.74,56.91$, 56.18, 14.92.
$\mathrm{MS}=[\mathrm{M}+\mathrm{H}]^{+}$: Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO} 9$: 468.1295. Found: 468.1310. Difference: 3.2 ppm

7.4 3-Methoxy-4-((4-nitrophenoxy)carbonyl)phenyl 2,4-ethoxybenzoate (7-2-2)

Yield: 0.090 g, 22.4 \%. RF: 0.231 (5 \% tetrahydrofuran: 10 \% ethyl acetate: 85 \% 40:60 petroleum ether).
$\mathrm{T}_{\mathrm{CrI}} 130^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}_{\mathrm{F}}}\left(79^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}$: 2986, 1759, 1741, 1608, 1586, 1567, 1517, 1489, 1463, 1449, 1437, 1409, 1391, $1343,1305,1284,1267,1230,1195,1186,1162,1147,1124,1112,1051,1029,1004,948$, 882, $864,841,826,758,747,687,675,653,630,613,594,527,505,462,409$.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 8.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.96$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}$, dd, J $8.6 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.67(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.36$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$).
$\delta_{c} /$ ppm (100 MHz, DMSO-d ${ }_{6}$): $164.64,162.80,162.70,161.57,161.28,156.72,156.01,145.52$, 134.51, 133.62, 125.77, 123.86, 115.13, 114.61, 110.31, 107.63, 106.52, 100.64, 64.69, 64.22, 56.91, 14.93, 14.92.
$\mathrm{MS}=[\mathrm{M}+\mathrm{Na}]^{+}$: Calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{9} \mathrm{Na}$: 504.1271 . Found: 504.1291. Difference: 4.0 ppm

3-Methoxy-4-((3-fluoro-4-nitrophenoxy)carbonyl)phenyl alkoxybenzoates (8-m-n)

To a pre-dried flask flushed with argon and kept in an ice bath in order to maintain the temperature at $0^{\circ} \mathrm{C}$, Compound $6(1 \mathrm{eq})$, 3 -fluoro-4-nitrophenol (1.2 eq, 1.5 eq for $m=1, n=$ 1 and $m=2, n=2$) and N, N^{\prime}-dicyclohexylcarbodiimide (1.5 eq) or N-ethyl- N^{\prime}-(3dimethylaminopropyl)carbodiimide hydrochloride (1.5 eq for $m=2, n=2$) were added to the flask. The solids were solubilised with dichloromethane (30 mL) and stirred for 30 min before 4-dimethylaminopyridine (0.15 eq) was added. The quantities of the reagents used in each reaction are listed in Table 5. The temperature of the reaction mixture was increased to room temperature and the reaction was allowed to proceed overnight. For the reactions with N, N^{\prime} dicyclohexylcarbodiimide, the white precipitate which formed was removed by vacuum filtration and the filtrate collected. The solvent was removed under vacuum and the crude product was purified using a silica gel column with an appropriate solvent system (RF values quoted in product data). The eluent fractions of interest were evaporated under vacuum to leave a white solid which was recrystallised from hot ethanol (50 mL).

Table 5. Quantities of reagents used in the syntheses of the 3-methoxy-4-((3-fluoro-4nitrophenoxy)carbonyl)phenyl 2-alkoxy-4-alkoxybenzoates.

m	n	(6)	3-Fluoro-4- nitrophenol	4- Dimethylaminopyri dine	$\mathrm{N}, \mathrm{N}^{\prime}-$ Dicyclohexylcarbodi imide/ N -Ethyl- $\mathrm{N}^{\prime}-$ $(3-$ dimethylaminoprop yl)carbodiimide hydrochloride
1	1	$0.300 \mathrm{~g}, 9.03 \times 10^{-4}$ mol	$0.212 \mathrm{~g}, 1.35 \times 10^{-3}$ mol	$0.016 \mathrm{~g}, 1.35 \times 10^{-4}$ mol	$0.279 \mathrm{~g}, 1.35 \times 10^{-3}$ mol

1	2	$0.300 \mathrm{~g}, 8.66 \times 10^{-4}$ mol	$0.163 \mathrm{~g}, 1.04 \times 10^{-3}$ mol	$0.016 \mathrm{~g}, 1.30 \times 10^{-4}$ mol	$0.268 \mathrm{~g}, 1.30 \times 10^{-3}$ mol
2	1	$0.300 \mathrm{~g}, 8.66 \times 10^{-4}$ mol	$0.163 \mathrm{~g}, 1.04 \times 10^{-3}$ mol	$0.016 \mathrm{~g}, 1.30 \times 10^{-4}$ mol	$0.268 \mathrm{~g}, 1.30 \times 10^{-3}$ mol
2	2	$0.300 \mathrm{~g}, 8.33 \times 10^{-4}$ mol	$0.196 \mathrm{~g}, 1.25 \times 10^{-3}$ mol	$0.015 \mathrm{~g}, 1.25 \times 10^{-4}$ mol	$0.240 \mathrm{~g}, 1.25 \times 10^{-3}$ mol

8.1 3-Methoxy-4-((3-fluoro-4-nitrophenoxy)carbonyl)phenyl 2,4-dimethoxybenzoate (8-1-1) Yield: $0.103 \mathrm{~g}, 24.2 \%$ RF: 0.500 (2% ethyl acetate: 98% dichloromethane).
$\mathrm{T}_{\text {Crl }} 204^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}^{\prime}}\left(99^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}: 2947,1757,1741,1607,1580,1516,1491,1463,1440,1408,1353,1336,1271$, $1216,1202,1167,1136,1124,1090,1028,1007,942,865,827,759,743,719,687,650,611$, 601, 541, 497, 462.
$\delta_{\mathrm{H}} /$ ppm ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $8.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}$, Ar-H), 7.28 (1 H, dd, J 11.4 Hz, 2.4 Hz, Ar-H), 7.21 (1 H, m, Ar-H), $6.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1 \mathrm{~Hz}$, Ar-H), 6.94 (1 H , dd, J $8.6 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.96$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{F}} / \mathrm{ppm}\left(376 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right):-115.42$ (s, Ar-F).
$\delta_{c} /$ ppm (100 MHz, DMSO-d ${ }_{6}$): 165.06, 162.17, 161.90, 161.72, 161.03, 156.40, 155.73 (d, J 11.4 Hz), 153.99 (d, J 262.4 Hz), 134.59 (d, J 7.1 Hz) $134.19,133.33,127.51$ (d, J 1.1 Hz), 119.27 (d, J 4.0 Hz), 114.28, 114.27, 112.84 (d, J 23.3 Hz), 109.66, 107.34, 105.77, 99.01, 56.49, 56.04, 55.77.
$\mathrm{MS}=[\mathrm{M}+\mathrm{Na}]^{+}:$Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{FNO}_{8} \mathrm{Na}: 494.0863$. Found: 494.0875. Difference: 2.4 ppm

8.2 3-Methoxy-4-((3-fluoro-4-nitrophenoxy)carbonyl)phenyl 4-ethoxy-2-methoxybenzoate (8-1-2)

Yield: 0.040 g, 9.5 \%. RF: 0.105 (100 \% dichloromethane).
$\mathrm{T}_{\mathrm{Cr}} 131^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}_{\mathrm{F}}}\left(86^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}: 2981,1740,1710,1604,1574,1521,1469,1450,1412,1354,1337,1287,1272$, 1209, 1193, 1146, 1124, 1114, 1093, 1003, 971 , $947,886,870,843,814,755,744,687,673$, 651, 619, 544, 461.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 8.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.97$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16$
 J $\left.6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$, $1.47\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{F}} / \mathrm{ppm}\left(376 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: -115.43 (s, Ar-F).
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$): 164.35, 162.14, 161.89, 161.70, 161.02, 156.40, 155.67 (d, J 11.4 Hz), 153.98 (d, J 264.0 Hz), 134.58 (d, J 7.2 Hz), 134.21, 133.32, 127.49 (d, J 1.6 Hz), 119.27 (d, J 3.7 Hz), 114.26, 114.24, 112.83 (d, J 23.7 Hz), 109.50, 107.33, 105.99, 99.42, 63.81, 56.48, 56.01, 14.46.
$\mathrm{MS}=[\mathrm{M}+\mathrm{Na}]^{+}:$Calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FNO}_{9} \mathrm{Na}: 508.1020$. Found: 508.1035. Difference: 3.0 ppm

8.3 3-Methoxy-4-((3-fluoro-4-nitrophenoxy)carbonyl)phenyl 2-ethoxy-4-methoxybenzoate (8-2-1)

Yield: 0.145 g, 34.5 \%. RF: 0.182 (100 \% dichloromethane).
$\mathrm{T}_{\mathrm{CrI}} 174{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}_{\mathrm{F}}}\left(82{ }^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}$: 2949, 1759, 1745, 1608, 1576, 1522, 1482, 1455, 1409, 1394, 1351, 1332, 1267, $1212,1195,1169,1152,1134,1122,1090,1025,1001,984,947,892,866,841,812,757,744$, 684, 611, 577, 545, 527, 467.
$\delta_{H} /$ ppm ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $8.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.97$ (1 H, d, J $8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}$, J $2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.00(1 \mathrm{H}$, dd, J $8.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.69(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.16(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.9 \mathrm{~Hz}$, $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{F}} / \mathrm{ppm}\left(376 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right):-115.42$ (s, Ar-F).
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 164.90,162.33,161.71,161.14,161.02,156.44,155.67$ (d, J 11.2 Hz), 153.99 (d, J 263.3 Hz), 134.58 (d, J 6.9 Hz), 134.03, 133.35, 127.50 (d, J 2.0 Hz),
119.27 (d, J 3.7 Hz), 114.23, 114.17, 112.83 (d, J 23.8 Hz), 109.98, 107.20, 105.80, 99.80, 64.28, 56.46, 55.72, 14.45.
$\mathrm{MS}=[\mathrm{M}+\mathrm{H}]^{+}$: Calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FNO}_{9} \mathrm{Na}: 508.1020$. Found: 508.1036. Difference: 3.1 ppm

8.4 3-Methoxy-4-((3-fluoro-4-nitrophenoxy)carbonyl)phenyl 2,4-ethoxybenzoate (8-2-2)

Yield: 0.080 g, 19.2 \%. RF: 0.314 (5 \% tetrahydrofuran: 10 \% ethyl acetate: 85 \% 40:60 petroleum ether).
$\mathrm{T}_{\mathrm{CrI}} 133^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{NFI}}\left(76{ }^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}$: 2990, 1716, 1708, 1603, 1584, 1571, 1533, 1470, 1455, 1440, 1431, 1417, 1391, $1348,1290,1250,1234,1195,1168,1143,1132,1118,1094,1081,1048,1032,966,952,917$, 883, 845, 816, 755, 746, 684, 619, 585, 550, 520, 461, 436.
$\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 8.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.96$ (1 H, d, J $8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.16$ (1 H, d, J $2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.67(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right), 1.36\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{F}} / \mathrm{ppm}\left(376 \mathrm{MHz}, \mathrm{DMSO}^{2}\right.$): -115.42 (s, Ar-F).
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 164.19,162.30,161.70,161.13,161.01,156.45,155.61$ (d, J 10.6 Hz), 153.98 (d, J 262.8 Hz), 134.57 (d, J 7.2 Hz), 134.06, 133.34, 127.49 (d, J 2.0 Hz), 119.26 (d, J 3.8 Hz), 114.20, 114.16, 112.82 (d, J 23.7 Hz), 109.81, 107.19, 106.06, 100.17, 64.22, 63.76, 56.45, 14.46.

4-[(Benzyloxy)carbonyl]phenyl 2-alkoxy-4-alkoxybenzoates (9)

To a pre-dried flask flushed with argon, Compound 3 (1 eq), benzyl 4-hydroxybenzoate (1.1 eq) and 4-dimethylaminopyridine (0.13 eq) were added. The solids were solubilised with dichloromethane (80 mL) and stirred for 10 min before N, N^{\prime}-dicyclohexylcarbodiimide (1.3 eq) was added to the flask and the reaction was allowed to proceed overnight. The quantities of the reagents used in each reaction are listed in Table 6. The extent of the reaction was monitored by TLC using an appropriate solvent system (RF values quoted in the product data). The white precipitate which formed was removed by vacuum filtration and the filtrate collected. The collected solvent was evaporated under vacuum to leave a white solid which was recrystallised from hot ethanol (250 mL).

Table 6. Quantities of reagents used in the syntheses of the 4-[(benzyloxy)carbonyl]phenyl 2-alkoxy-4-alkoxybenzoates.

m	n	(3)	Benzyl 4- Hydroxybenzoate	4- Dimethylaminopyrid ine	$N, N^{\prime}-$ Dicyclohexylcarbodii mide
0	1	$3.00 \mathrm{~g}, 0.0197 \mathrm{~mol}$	$4.95 \mathrm{~g}, 0.0217 \mathrm{~mol}$	$0.313 \mathrm{~g}, 2.56 \times 10^{-3}$ mol	$5.28 \mathrm{~g}, 0.0256 \mathrm{~mol}$

2	2	$10.00 \mathrm{~g}, 0.0476 \mathrm{~mol}$	$11.96 \mathrm{~g}, 0.0524 \mathrm{~mol}$	$0.756 \mathrm{~g}, 6.19 \times 10^{-3}$ mol	$12.77 \mathrm{~g}, 0.0619 \mathrm{~mol}$

9.1 4-[(Benzyloxy)carbonyl]phenyl 4-methoxybenzoate

Yield: 4.47 g, 62.6 \%. RF: 0.378 (100 \% dichloromethane). M.P = $126^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 3063, 2970, 1727, 1712, 1602, 1581, 1509, 1494, 1471, 1454, 1422, 1413, 1379, $1307,1267,1253,1213,1172,1157,1106,1094,1062,1023,987,950,911,893,845,823$, 802, 784, 761, 748, 695, 653, 636, 609, 598, 520, 501, 458, 417.
$\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.15(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-$ H), $6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.38\left(2 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{O}_{\left.-\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right) \text {. }}^{(2)}\right.$
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.73,164.32,164.13,154.89,135.99,132.41,131.32,128.63$, 128.29, 128.19, 127.56, 121.87, 121.35, 113.95, 66.81, 55.56.

9.2 4-[(Benzyloxy)carbonyl]phenyl 2,4-diethoxybenzoate

Yield: $17.07 \mathrm{~g}, 85.3$ \%. RF: 0.469 (20 \% ethyl acetate: $80 \% 40: 60$ petroleum ether). M.P = 105 ${ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: $2985,1743,1716,1604,1568,1500,1471,1453,1433,1413,1392,1304,1275$, $1239,1195,1165,1147,1122,1107,1034,1011,909,875,826,808,783,764,756,740,690$, 667, 627, 598, 582, 545,526, 508, 460.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.40(5 \mathrm{H}$, m, Ar-H), 7.29 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8 \mathrm{~Hz}$, Ar-H), $6.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 6.54 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}$, $\mathrm{Ar}-\mathrm{H}), 5.37\left(2 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.46\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.83,164.48,163.23,161.74,155.10,136.05,134.48,131.22$, $128.61,128.25,128.14,127.23,122.02,110.77,105.39,100.34,66.73,64.62,63.89,14.68$.

4-(2-Alkoxy-4-alkoxybenzoyloxy)benzoic acids (10)

To a pre-dried flask flushed with argon, Compound 9 (1 eq) was dissolved in a mixture of dichloromethane and ethanol and stirred. The mixture was sparged with argon and 5 \% Pd/C catalyst was added. The argon atmosphere was evacuated under vacuum and replaced by hydrogen gas. The quantities of the reagents used in each reaction are listed in Table 7. The reaction was allowed to proceed for 4 h at room temperature, with the extent of the reaction monitored by TLC using an appropriate solvent system (RF values quoted in the product data). The hydrogen gas, after the reaction was completed, was evacuated under vacuum and the flask was purged using argon. The mixture was filtered through Celite, and the collected solvent was evaporated under vacuum to leave a white solid which was recrystallised from hot ethanol (200 mL)

Table 7. Quantities of reagents used in the syntheses of the 4-(2-alkoxy-4alkoxybenzoyloxy)benzoic acids.

m	n	(9)	5 \% Palladium on Carbon	Dichloromethane	Ethanol
0	1	$4.30 \mathrm{~g}, 0.0119 \mathrm{~mol}$	$0.252 \mathrm{~g}, 2.37 \times 10^{-3}$ mol	70 mL	70 mL
2	2	$8.30 \mathrm{~g}, 0.0197 \mathrm{~mol}$	$1.47 \mathrm{~g}, 0.0138 \mathrm{~mol}$	100 mL	100 mL

10.1 4-(2-Ethoxy-4-methoxybenzoyloxy)benzoic acid

Yield: $0.580 \mathrm{~g}, 17.9$ \%. RF: 0.026 (100 \% dichloromethane).
$\mathrm{T}_{\text {CrN }} 219^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{Nl}} 266^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}: 2843,1724,1686,1603,1580,1512,1421,1317,1297,1261,1208,1162,1129$, $1113,1065,1025,923,881,847,838,797,761,688,651,630,605,549,506,467,410$.
$\delta_{H} /$ ppm ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $13.04(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 8.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.04(2 \mathrm{H}, \mathrm{d}$, J 8.7 Hz, Ar-H), $7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / p p m\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 167.14,164.36,164.30,154.60,132.60,131.34,128.97,122.66$, 121.09, 114.81, 56.15.

10.2 4-(2,4-Methoxybenzoyloxy)benzoic acid

Yield: $5.32 \mathrm{~g}, 81.7$ \%. RF: 0.242 (100 \% ethyl acetate). M.P $=193^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2979, 2870, 1712, 1680, 1602, 175, 1506, 1477, 1440, 1423, 1388, 1368, 1294, $1264,1247,1208,1189,1153,1140,1110,1074,1037,1013,917,887,845,812,781,763$, $753,684,661,638,606,568,546,502,461,441,415$.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 13.00(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.92(1 \mathrm{H}, \mathrm{d}$, J $8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.66(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.35$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$).
$\delta_{c} /$ ppm (100 MHz , DMSO-d ${ }_{6}$): 167.13, 164.53, 163.17, 161.43, 154.81, 134.35, 131.31, 128.52, 122.66, 110.53, 106.52, 100.68, 64.68, 64.20, 14.93, 14.92.

4-[(4-Nitrophenoxy)carbonyl]phenyl 4-methoxybenzoate (11-0-1)

To a pre-dried flask flushed with argon and kept in an ice bath in order to maintain the temperature at $0^{\circ} \mathrm{C}$, Compound $\mathbf{1 0 . 1}$ ($1 \mathrm{eq}, 0.250 \mathrm{~g}, 9.18 \times 10^{-4} \mathrm{~mol}$), 4 -nitrophenol (1.2 eq , $0.153 \mathrm{~g}, 1.10 \times 10^{-3} \mathrm{~mol}$) and 4 -dimethylaminopyridine ($0.15 \mathrm{eq}, 0.017 \mathrm{~g}, 1.38 \times 10^{-4} \mathrm{~mol}$) were added. The solids were solubilised with dichloromethane (30 mL) and stirred for 10 min before N-ethyl- N^{\prime}-(3-dimethylaminopropyl)carbodiimide hydrochloride ($1.5 \mathrm{eq}, 0.265 \mathrm{~g}$, $1.38 \times 10^{-3} \mathrm{~mol}$) was added to the flask. The temperature of the reaction mixture was increased to room temperature and the reaction was allowed to proceed overnight. The solvent was removed under vacuum and the crude product was purified using a silica gel column with 100 \% dichloromethane (RF value quoted in product data). The eluent fractions of interest were evaporated under vacuum to leave a white solid which was recrystallised from hot ethanol (100 mL).

Yield: $0.125 \mathrm{~g}, 34.6$ \%. RF: 0.306 .
$\mathrm{T}_{\text {CrN }} 159^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}} 284^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}: 2850,1733,1605,1513,1492,1466,1413,1354,1322,1306,1263,1204,1159$, $1111,1058,1009,877,863,844,812,788,760,750,744,691,681,671,631,596,508,496$, 485, 410.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.97(1 \mathrm{H}$, d, J $8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $8.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9 \mathrm{~Hz}$, Ar-H), 7.42 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.01 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}$).
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $164.27,164.21,163.54,155.86,155.65,145.47,132.48,132.01$, $125.86,125.32,122.65,122.36,121.11,114.03,55.60$.
$\mathrm{MS}=[\mathrm{M}+\mathrm{H}]^{+}$: Calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{7}$: 394.0927 . Found: 394.0942 . Difference: 3.8 ppm

To a pre-dried flask flushed with argon and kept in an ice bath in order to maintain the temperature at $0 \quad{ }^{\circ} \mathrm{C}$, Compound 10 (1 eq), 3 -fluoro-4-nitrophenol and 4dimethylaminopyridine were added. The solids were solubilised with dichloromethane (30 mL) and stirred for 10 min before N-ethyl- N^{\prime}-(3-dimethylaminopropyl)carbodiimide hydrochloride ($m=0, n=1$) or N, N^{\prime}-dicyclohexylcarbodiimide ($m=2, n=2$) was added to the flask. The temperature of the reaction mixture was increased to room temperature and the reaction was allowed to proceed overnight. The quantities of the reagents used in each reaction are listed in Table 8. For the reaction with N, N^{\prime}-dicyclohexylcarbodiimide, the white precipitate which formed was removed by vacuum filtration and the filtrate collected. The solvent was removed under vacuum and the crude product was purified using a silica gel column with an appropriate solvent system (RF values quoted in product data). The eluent fractions of interest were evaporated under vacuum to leave a solid which was recrystallised from hot ethanol (100 mL).

Table 8. Quantities of reagents used in the syntheses of the 4-[(3-fluoro-4nitrophenoxy)carbonyl]phenyl 2-alkoxy-4-methoxybenzoates.

m	n	$(\mathbf{1 0})$	3-Fluoro-4- nitrophenol	4- Dimethylaminopyri dine	$\mathrm{N}, \mathrm{N}^{\prime}-$ Dicyclohexylcarbodi imide/ N -Ethyl- $\mathrm{N}^{\prime}-$ $(3-$ dimethylaminoprop yl)carbodiimide hydrochloride
0	1	$0.250 \mathrm{~g}, 9.18 \times 10^{-4}$ mol	$0.173 \mathrm{~g}, 1.10 \times 10^{-3}$ mol	$0.017 \mathrm{~g}, 1.38 \times 10^{-4}$ mol	$0.265 \mathrm{~g}, 1.38 \times 10^{-3}$ mol
2	2	$0.300 \mathrm{~g}, 9.08 \times 10^{-4}$ mol	$0.157 \mathrm{~g}, 9.99 \times 10^{-4}$ mol	$0.014 \mathrm{~g}, 1.18 \times 10^{-4}$ mol	$0.243 \mathrm{~g}, 1.18 \times 10^{-3}$ mol

12.1 4-[(3-Fluoro-4-nitrophenoxy)carbonyl]phenyl 4-methoxybenzoate (12-0-1)

Off-white solid. Yield: 0.090 g, 23.8% RF: 0.389 (100% dichloromethane).
$\mathrm{T}_{\text {CrN }} 160^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}} 252^{\circ} \mathrm{C}$
$v_{\text {max }} / \mathrm{cm}^{-1}: 1755,1733,1604,1527,1513,1489,1415,1356,1322,1266,1213,1168,1148$, 1096, 1049, 1015, 968, 878, 844, 810, 759, 749, 688, 669, 630, 598, 536, 506.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.21(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.42(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{dd}$, J $11.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$, Ar-H), $7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$. $\delta_{\mathrm{F}} / \mathrm{ppm}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $-113.04(\mathrm{~s}, \mathrm{Ar}-\mathrm{F})$.
סc/ppm ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.32, 164.19, 163.09, 156.06, 155.73 (d, J 10.4 Hz), 154.92 (d, J 267.0 Hz), 134.94 (d, J 6.9 Hz), 132.50, 132.09, 127.27 (d, J 2.1 Hz), 125.42, 122.46, 121.06, 118.10 (d, J 4.0 Hz), 114.05, 112.42 (d, J 23.8 Hz), 55.61.
$\mathrm{MS}=[\mathrm{M}+\mathrm{H}]^{+}:$Calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FNO}_{7}: 412.0833$. Found: 412.0824. Difference: 2.2 ppm
12.2 4-[(3-Fluoro-4-nitrophenoxy)carbonyl]phenyl 2,4-diethoxybenzoate (12-2-2)

White solid. Yield: $0.167 \mathrm{~g}, 39.2$ \%. RF: 0.500 (98% dichloromethane: 2% ethyl acetate).
$\mathrm{T}_{\mathrm{CrI}} 139^{\circ} \mathrm{C}^{\mathrm{N}_{\mathrm{F}}}\left(105^{\circ} \mathrm{C}\right) \mathrm{T}_{\mathrm{NI}}\left(110^{\circ} \mathrm{C}\right)$
$v_{\max } / \mathrm{cm}^{-1}: 2991,1738,1711,1702,1602,1571,1534,1507,1487,1444,1414,1390,1347$, $1308,1250,1215,1195,1158,1140,1109,1093,1050,1036,1015,966,888,839,815,747$, $756,685,671,643,628,611,569,539,505,477,461$.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.21(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8 \mathrm{~Hz}$, Ar-H), $7.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}$, $\mathrm{Ar}-\mathrm{H}), 6.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.47\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{F}} / \mathrm{ppm}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -113.11 ($\mathrm{s}, \mathrm{Ar}-\mathrm{F}$).
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.84,163.29,163.12,162.03,156.43,155.92$ (d, J 10.6 Hz),
155.03 (d, J 266.5 Hz), 134.98 (d, J 7.1 Hz), 134.69, 132.11, 127.37 (d, J 2.0 Hz), 125.18,
$122.72,118.24$ (d, J 4.0 Hz), 112.54 (d, J 23.8 Hz), 110.51, 105.62, 100.44, 64.75, 64.08, 14.81.
$\mathrm{MS}=[\mathrm{M}+\mathrm{Na}]^{+}:$Calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{FNO}_{8} \mathrm{Na}: 492.1071$. Found: 492.1089. Difference: 3.7 ppm

2-Hydroxy-4-(oxan-2-yloxy)benzaldehyde (13)

Under inert conditions, to a solution of 2,4 -dihydroxybenzaldehyde ($1 \mathrm{eq}, 10.0 \mathrm{~g}, 7.24 \times 10^{-2}$ mol) and 3,4-dihydropyran ($1.2 \mathrm{eq}, 7.30 \mathrm{~g}, 7.92 \mathrm{~mL}, 8.68 \times 10^{-2} \mathrm{~mol}$) in 30 mL dichloromethane (DCM), pyridinium p-toluenesulfonate ($0.1 \mathrm{eq}, 1.80 \mathrm{~g}, 7.16 \times 10^{-2} \mathrm{~mol}$) was added dissolved in 5 mL of DCM. The reaction mixture was allowed to react for 2 h and then quenched by the
addition of aqueous NaHCO_{3}. The mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$) and then dried with MgSO_{4}. The drying agent was filtered, and the solvent removed on the rotary evaporator. The product was then purified by flash column using a mixture of 5% ethyl acetate:95 \% hexane (RF value quoted in the product data) to obtain the pure compound as a colourless oil.

Yield: 10.45 g, 65.0 \%. RF: 0.38 (10 \% ethyl acetate: 90% hexane)
$v_{\max } / \mathrm{cm}^{-1}$: 3228, 2945, 2854, 1627, 1506, 1426, 1340, 1283, 1218, 1103, 1086, 952, 906, 867, 830, 772, 712, 626, 591, 544, 479, 458, 420.
$\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 11.35(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 9.71(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}$, Ar-H), $6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6,2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3.2 \mathrm{~Hz}, \mathrm{THP})$, 3.81 (1 H , ddd, J $11.2 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, \mathrm{THP}$), $3.62(1 \mathrm{H}, \mathrm{dtd}, \mathrm{J} 11.4 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, \mathrm{THP}$), $1.98-1.41$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{THP}$).
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): 194.69,164.46,164.29,135.41,115.87,109.52,103.79,96.35$, 62.31, 30.07, 25.08, 18.55.

2-Ethoxy-4-(oxan-2-yloxy)benzaldehyde (14)

A two-neck round bottom flash is charged with Compound 13 (1 eq, $4.00 \mathrm{~g}, 1.79 \times 10^{-2} \mathrm{~mol}$) and potassium carbonate ($1.2 \mathrm{eq}, 2.97 \mathrm{~g}, 2.16 \times 10^{-2} \mathrm{~mol}$) under inert conditions. The solids were dissolved in dimethylformamide (DMF) (40 mL) and then 1-bromoethane ($1.2 \mathrm{eq}, 2.28$ $\mathrm{g} 2.16 \times 10^{-2} \mathrm{~mol}$) was injected. The reaction was allowed to proceed overnight at $60^{\circ} \mathrm{C}$. After cooling, the reaction mixture was diluted with water and extracted with ethyl acetate (3×50 mL) and then dried with MgSO_{4} (RF value quoted in the product data). The drying agent was filtered, and the solvent removed on the rotary evaporator to obtain the pure compound as a colourless oil without further purification.

Yield: $4.27 \mathrm{~g}, 95.7 \%$ RF: 0.45 (20% ethyl acetate: 80% hexane)
$v_{\max } / \mathrm{cm}^{-1}$: 2941, 2852, 1674, 1596, 1575, 1498, 1436, 1389, 1356, 1253, 1173, 1097, 1034, 996, 948, 912, 872, 817, 675, 605, 574, 462.
$\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 10.21(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.75(1 \mathrm{H}$, d, J $2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{THP})$, $4.16(2 \mathrm{H}$, $\left.\mathrm{qd}, \mathrm{J} 6.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 3.72(1 \mathrm{H}, \mathrm{m}, \mathrm{THP})$, $3.59(1 \mathrm{H}, \mathrm{m}, \mathrm{THP}), 1.94-1.47(6 \mathrm{H}, \mathrm{m}$, THP), $1.38\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): 187.89,163.72,163.09,129.89,119.19,108.95,101.48,96.05$, 64.62, 62.10, 29.95, 25.00, 18.75, 14.82.

2-Ethoxy-4-hydroxybenzaldehyde (15)

To a solution of Compound 14 ($1 \mathrm{eq}, 4.00 \mathrm{~g}, 1.60 \times 10^{-2} \mathrm{~mol}$) in tetrahydrofuran/ethanol (1:1, 50 mL), solid pyridinium p-toluenesulfonate ($1.5 \mathrm{eq}, 6.05 \mathrm{~g}, 2.40 \times 10^{-2} \mathrm{~mol}$) was added. The reaction mixture was allowed to react at reflux overnight and then quenched by evaporation of the solvent to dryness. The reaction crude was dissolved in dichloromethane and washed with water and brine. The organic layer was dried with MgSO_{4}, the drying agent was filtered, and the solvent removed on the rotary evaporator. The product was then purified by flash column using a mixture of 50 \% ethyl acetate: 50% hexane (RF value quoted in the product data) to obtain the pure product as a yellow crystal.

Yield: $2.12 \mathrm{~g}, 80.0 \%$. RF: 0.11 (20% ethyl acetate: 80% hexane). M.P. $=167^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}: 3015,2980,2876,2805,2707,2585,1639,1615,1568,1466,1407,1283,1246$, $1185,1105,1033,804,737,654,584,502,461,410$.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 10.62(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OH}), 10.14(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}$), $6.50-6.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.9 \mathrm{~Hz},-\mathrm{O}_{\left.-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.37(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz},-1 .}\right.$ $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 186.89,165.13,163.15,129.77,116.99,108.47,99.52,63.82$, 14.39.

(3-Ethoxy-4-formylphenyl) 2,4-methoxybenzoate (16)

Under inert conditions, the required Compound 15 (1 eq, $0.85 \mathrm{~g}, 5.11 \times 10^{-3} \mathrm{~mol}$) and 2,4methoxybenzoic acid ($1.5 \mathrm{eq}, 1.11 \mathrm{~g}, 6.13 \times 10^{-3} \mathrm{~mol}$) were dissolved in dichloromethane (60 mL). To this, dissolved 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, $1.5 \mathrm{eq}, 1.47 \mathrm{~g}$, $7.65 \times 10^{-3} \mathrm{~mol}$) in 10 mL DCM was added and allowed to react on ice for $30-40 \mathrm{~min}$. A catalytic amount of solid 4-dimethylaminopyridine (DMAP) was added to the solution and left to react overnight slowly warming up to room temperature. The reaction mixture is then quenched by the addition of distilled water $(40 \mathrm{~mL})$ and washed with water and brine. The organic layer was dried with MgSO_{4}, the drying agent was filtered, and the solvent removed on the rotary evaporator. The product was then purified by hot recrystallization in ethanol (RF value quoted in the product data).

Yield: 0.737 g, 43.9 \%. RF: 0.09 (20 \% ethyl acetate: 80% hexane) M.P. $=130{ }^{\circ} \mathrm{C}$
$v_{\max } / \mathrm{cm}^{-1}$: 2991, 2852, 1739, 1684, 1604, 1571, 1501, 1468, 1390, 1235, 1207, 1160, 1044, 1016, 872, 825, 759, 670, 613, 548, 467, 413.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 10.33(1 \mathrm{H}, \mathrm{s},(\mathrm{C}=\mathrm{O})-\mathrm{H})$, $7.98(1 \mathrm{H}, \mathrm{d}, 8.8 \mathrm{~Hz}, \mathrm{Ar}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.5 Hz, Ar), $7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0 \mathrm{~Hz}, \mathrm{Ar}), 6.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, \mathrm{Ar}), 6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}$, Ar), $6.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}), 4.20\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz},-\mathrm{O}_{\left.-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)}\right.$, $3.89-3.88$ ($6 \mathrm{H}, 2 \times \mathrm{s}$, $\left.2 \times-\mathrm{O}-\mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$.
$\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz}, \mathrm{DMSO}^{2}\right.$ -) : 188.24, 165.03, 162.16, 161.98, 161.85, 157.14, 134.14, 128.89, 121.87, 114.71, 109.70, 107.75, 105.74, 99.00, 64.62, 56.02, 55.76, 14.34.

2-Ethoxy-4-(2,4-methoxybenzoyl)oxybenzoic acid (17)

To a mixture of Compound 16 ($1 \mathrm{eq}, 0.258 \mathrm{~g}, 7.81 \times 10^{-4} \mathrm{~mol}$) in DMSO (30 mL), a solution of $\mathrm{H}_{2} \mathrm{NaO}_{4} \mathrm{P} . \mathrm{H}_{2} \mathrm{O}\left(4 \mathrm{eq}, 0.431 \mathrm{~g}, 3.12 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{ClNaO}_{2}\left(3.5 \mathrm{eq}, 0.247 \mathrm{~g}, 2.73 \times 10^{-3} \mathrm{~mol}\right)$ in water was slowly added dropwise. The reaction mixture is allowed to react overnight and then diluted with water (150 mL). The pH is adjusted to 8 with NaHCO_{3} saturated and left for 1 h , then acidified with 1 M HCl solution to pH 4 until precipitation is observed. The precipitated solid is filtered and recrystallized in hot ethanol to obtain the pure product as white crystals (RF value quoted in the product data).

Yield: 0.081 g, 29.8 \%. RF: 0 (20 \% ethyl acetate:80 \% hexane) M.P. $=160{ }^{\circ} \mathrm{C}$ $v_{\max } / \mathrm{cm}^{-1}$: 2974, 2850, 1738, 1668, 1607, 1570, 1505 1470, 1391, 1305, 1233, 1207, 1158, $1045,1016,870,825,758,687,663,607,531,467$.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 7.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4 \mathrm{~Hz}, \mathrm{Ar}), 6.99(1 \mathrm{H}$, d, J $2.1 \mathrm{~Hz}, \mathrm{Ar}$), $6.83(1 \mathrm{H}$, dd, J $8.4 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, \mathrm{Ar}), 6.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.5 \mathrm{~Hz}, \mathrm{Ar}), 6.68(1 \mathrm{H}$, dd, J 8.8 $\mathrm{Hz}, 2.8 \mathrm{~Hz}, \mathrm{Ar}), 4.09\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$. $\delta_{c} /$ ppm ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$): 166.79, 164.90, 162.47, 161.74, 158.53, 157.15, 154.31, 134.06, $131.66,113.72,109.98,107.76,105.69,99.00,64.37,56.01,55.74,14.49$.

(4-Nitrophenyl) 2-ethoxy-4-(2,4-methoxybenzoyl)oxybenzoate (18-2-1)

Under inert conditions, a mixture of Compound 17 (2 eq, $0.200 \mathrm{~g}, 4.59 \times 10^{-4} \mathrm{~mol}$) and $N, N^{\prime}-$ dicyclohexylcarbodiimide (DCC, $1.5 \mathrm{eq}, 0.0945 \mathrm{~g}, 4.58 \times 10^{-4} \mathrm{~mol}$) were dissolved in DCM (10 mL) on ice and allowed to react for 30 min . 4 -Nitrophenol ($1.1 \mathrm{eq}, 0.051 \mathrm{~g}, 3.67 \times 10^{-4} \mathrm{~mol}$) was dissolved in dry dichloromethane (2 mL), added to the solution and allowed to react overnight slowly warming up to room temperature. The reaction mixture is then quenched by filtration of the precipitated 1,3-dicyclohexyl urea and then purified by flash column chromatography with DCM (RF value quoted in the product data). The product was then purified by hot recrystallization in ethanol.

Yield: 0.036 g, 19.0 \%. RF: 0.10 (DCM)
$\mathrm{T}_{\mathrm{CrI}} 154{ }^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}_{\mathrm{F}}}\left(72^{\circ} \mathrm{C}\right)$.
$v_{\max } / \mathrm{cm}^{-1}$: 3086, 2971, 2930, 2840, 1743, 1698, 1593, 1516, 1427, 1342, 1287, 1233, 1199, 1163, 1117, 1022, 822, 764, 746, 674, 619, 519, 423.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 8.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.00$ (1 H, d, J $8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $8.5 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 4.17$ (2
 $\delta_{c} /$ ppm (100 MHz, DMSO-d $)$: 165.05, 162.52, 162.25, 161.89, 160.02, 156.07, 155.63, 145.08, $134.19,133.03,125.38,123.35,115.08,114.22,109.75,108.14,105.78,99.02,64.75,56.06$, 55.79, 14.46.
$\mathrm{MS}=[\mathrm{M}+\mathrm{H}]^{+}$Calculated mass for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{9}: 468.130$. Found: 468.131. Difference: 2.3 ppm .

(3-Fluoro-4-nitrophenyl) 2-ethoxy-4-(2,4-methoxybenzoyl)oxybenzoate (19-2-

 1)Under inert conditions, a mixture of Compound 17 (2 eq, $0.200 \mathrm{~g}, 4.59 \times 10^{-4} \mathrm{~mol}$) and $N, N^{\prime}-$ dicyclohexylcarbodiimide (DCC, $1.5 \mathrm{eq}, 0.0945 \mathrm{~g}, 4.58 \times 10^{-4} \mathrm{~mol}$) were dissolved in DCM (10 mL) on ice and allowed to react for 30 min . 3-Fluoro-4-nitrophenol ($1.25 \mathrm{eq}, 0.066 \mathrm{~g}, 4.17 \times 10^{-}$ ${ }^{4} \mathrm{~mol}$) was dissolved in dry dichloromethane (2 mL), added to the solution and allowed to react overnight slowly warming up to room temperature. The reaction mixture is then quenched by filtration of the precipitated 1,3-dicyclohexyl urea and then purified by flash column chromatography with DCM (RF value quoted in the product data). The product was then purified by hot recrystallization in ethanol.

Yield: 0.055 g, 24.7 \%. RF: 0.09 (DCM)
$\mathrm{T}_{\mathrm{CrI}} 153^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{N}_{\mathrm{F}}}\left(77^{\circ} \mathrm{C}\right)$.
$v_{\max } / \mathrm{cm}^{-1}$: 3060, 2973, 2932, 2843, 1762, 1743, 1607, 1524, 1356, 1269, 1215, 1126, 1010, 826, 761, 682, 556, 528, 465.
$\delta_{H} / p p m\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 8.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.00$ (1 H, d, J $8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.71 (1 H , dd, J $12.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.45-7.38$ (1 H, m, Ar-H), 7.15 (1 H, d, J $2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 6.98 (1 H , dd, J $8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}$), 6.73 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}$), 6.69 (1
 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$).
$\delta_{\mathrm{F}} / \mathrm{ppm}(376 \mathrm{MHz}, \mathrm{DMSO}):-115.36$ (s, Ar-F).
$\delta_{c} / p p m\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 165.02,162.15,161.86,160.22,156.24,155.65(\mathrm{~d}, \mathrm{~J} 10.6 \mathrm{~Hz})$,
153.98 (d, J 262.6 Hz), 134.59 (d, J 7.3 Hz), 134.16, 133.20, 127.53 (d, J 2.3 Hz), 119.19 (d, J
3.5 Hz), 114.51, 114.18, 112.73 (d, J 23.7 Hz), 109.68, 108.12, 105.73, 98.99, 64.72, 56.02, 55.76, 14.39.

