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Abstract

Across the globe, governments are developing policies and strategies to reduce carbon emissions
to address climate change. Monitoring the impact of governments’ carbon reduction policies can
significantly enhance our ability to combat climate change and meet emissions reduction targets. One
promising area in this regard is the role of artificial intelligence (AI) in carbon reduction policy and
strategy monitoring. While researchers have explored applications of AI on data from various sources,
including sensors, satellites, and social media, to identify areas for carbon emissions reduction, AI
applications in tracking the effect of governments’ carbon reduction plans have been limited. This
study presents an AI framework based on long short-term memory (LSTM) and statistical process
control (SPC) for the monitoring of variations in carbon emissions, using UK annual CO2 emission
(per capita) data, covering a period between 1750 and 2021. This paper used LSTM to develop
a surrogate model for the UK’s carbon emissions characteristics and behaviours. As observed in
our experiments, LSTM has better predictive abilities than ARIMA, Exponential Smoothing and
feedforward artificial neural networks (ANN) in predicting CO2 emissions on a yearly prediction
horizon. Using the deviation of the recorded emission data from the surrogate process, the variations
and trends in these behaviours are then analysed using SPC, specifically Shewhart individual/moving
range control charts. The result shows several assignable variations between the mid-1990s and 2021,
which correlate with some notable UK government commitments to lower carbon emissions within
this period. The framework presented in this paper can help identify periods of significant deviations
from a country’s normal CO2 emissions, which can potentially result from the government’s carbon
reduction policies or activities that can alter the amount of CO2 emissions.

Keywords: carbon emissions, LSTM, statistical process control, artificial intelligence, climate change,
energy policy, deep learning, ARIMA, exponential smoothing, ANN

1 Introduction

Climate change is one of the most pressing global environmental issues, with carbon emissions contribut-
ing significantly. Due to the urgency of this issue, governments across the world have developed and
implemented various policies and plans to reduce carbon emissions. Examples of these efforts include the
Paris Agreement (Dimitrov, 2016), the United States Environmental Protection Agency’s Clean Power
Plan (U.S. Environmental Protection Agency, 2016) and the UK’s Sixth Carbon Budget (Committee on
Climate Change, nd). Crucial aspects of these policies include incentivising renewable energy sources,
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promoting energy efficiency, and implementing carbon pricing mechanisms. Even though these carbon
reduction policies can help to reduce future carbon emissions, monitoring their impact is essential but
daunting.

Carbon emissions are the product of diverse operations, including manufacturing, transportation, and
agriculture. As such, monitoring all of these emissions requires a vast amount of data aggregated from
multiple sources. In addition to the difficulty in obtaining these data due to a lack of transparency in
the industrial reportage of emissions data (Deane et al., 2017), the monitoring process is complex and
requires advanced computations. Technologies such as deep learning (LeCun et al., 2015) and statistical
process control (SPC) (Oakland and Oakland, 2018) have evolved as effective computational techniques
for data analysis and process monitoring, with applications in several sectors, including manufacturing,
healthcare, and finance. This study explores the applications of these technologies in environmental
monitoring, considering the impact of governments’ carbon reduction initiatives, using UK annual CO2
emission (per capita) data from 1750 to 2021 (Ritchie et al., 2020).

Recurrent Neural Networks (RNNs) are the most popular deep learning architecture for time series
analysis because they can model sequential data, using the output of past time steps as inputs to the
current time step (Medsker and Jain, 2001). The feedback connections in RNN and its variants make
them suitable for processing audio, videos, and texts, with applications in machine translation (Wu et al.,
2016), handwriting recognition (Graves et al., 2008), speech recognition (Zia and Zahid, 2019), robot
control (Mayer et al., 2006), and time series analysis (Karim et al., 2017, Siami-Namini et al., 2018a).
Standard RNNs struggle with modelling long-term dependencies due to their susceptibility to the vanish-
ing gradient problem. To solve the vanishing gradient issue in RNN, Long Short-Term Memory (LSTM)
has been introduced (Hochreiter and Schmidhuber, 1997). LSTMs learn long-dependencies by incorporat-
ing a memory cell that selectively retains or forgets information from previous time steps. In contrast to
traditional time series models, like autoregressive integrated moving average (ARIMA) model Shumway
et al. (2017), which often require strong pre-existing assumptions about the underlying data distribu-
tion and relationships between variables, deep learning techniques such as LSTMs can learn sequential
representations without the need for such suppositions, making them effective in modelling complex,
non-linear relationships (Siami-Namini et al., 2019, Siami-Namini et al., 2018b). Moreover, unlike tradi-
tional time series models, which often use seasonal dummies to capture the effect of seasonality, including
annual seasonality, ANN, such as LSTM models, do not typically use dummies for seasonal effects, as
they can capture seasonal patterns implicitly (Heshmatol Vaezin et al., 2022, Zhang and Qi, 2005).

In this study, we first compared the performances of LSTM, ARIMA, Exponential Smoothing
(Ostertagová and Ostertag, 2011) and feedforward ANN (Sazli, 2006) in predicting CO2 emissions on a
yearly prediction horizon. Due to its superior performance compared to other models, LSTM was selected
for developing a surrogate model of the UK’s carbon emissions characteristics and behaviours based on
the experiment’s outcomes. Using SPC, specifically the Shewhart individual-moving range (I-MR) con-
trol chart, we evaluate the variations and trends in these behaviours using the deviations of the recorded
emission data from the surrogate process. SPC is a statistical technique that can provide insight into
the variability within a process. With SPC techniques, it is possible to spot and interpret anomalies or
unusual changes in the emissions data. The combination of deep learning and SPC, which has success-
fully been used in analysing SCADA data associated with wind turbines (Udo and Muhammad, 2021),
can provide an effective tool for monitoring the impact of the efforts by the UK government to reduce
carbon emissions.

The contributions of this paper can be summarised as follows:
• Available research publications in this area demonstrate that this paper is the first to apply a hybrid
technology, consisting of LSTM and SPC, to carbon emissions monitoring, using LSTM to model the
baseline behaviours of UK carbon emissions (per capita) and SPC to detect assignable variations.

• This paper is also the first to discuss the control chart obtained from applying computational and
statistical process techniques to CO2 emission data in line with known UK government carbon
reduction commitments.

These contributions are vital to monitoring the effectiveness of the government’s carbon reduction poli-
cies, which are crucial in combating climate change. By continuously evaluating the outcomes, we can
identify effective strategies and pinpoint areas that need improvement to ensure that the policies align
with the government’s climate objectives towards a sustainable and low-carbon future.
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2 Review of Related Literature

Several researchers have successfully applied artificial intelligence and machine learning to forecast carbon
emissions, supporting the development of effective environmental policies for reducing carbon emissions.
Acheampong and Boatang used ANN in training models for forecasting the intensity of carbon emissions
in Australia, Brazil, China, India, and the United States with minimal error (Acheampong and Boateng,
2019). Their study selected nine crucial parameters contributing to carbon emissions intensity as input
variables, including economic growth, energy consumption, R&D, financial development, foreign direct
investment, trade openness, industrialisation, and urbanisation. The ANN models were validated and
can be used by international organisations and environmental policymakers to forecast and make climate
change policy decisions.

Agbulut proposed a framework relying on three machine learning algorithms - deep learning, sup-
port vector machine(SVM), and ANN - to forecast energy consumption and CO2 emissions relating
to Turkey’s transportation sector(Ağbulut, 2022). The study used gross domestic product per capita,
population, vehicle kilometres, and year as inputs. It concluded that policymakers need future energy
investments to establish regulations, policies, norms, restrictions, legislations, and initiatives to mitigate
energy consumption and emissions from the transportation sector.

Dozic and Urosevic (2019) examined an ANN model of the EU’s energy system, which predicts CO2
emissions until 2050, considering the current Energy Policy of the EU (Dozic and Urosevic, 2019). The
study concluded that the model is highly effective in predicting the behaviour of CO2 emissions. It
can facilitate timely corrections to energy and economic strategies by adjusting relevant indicators to
meet the ambitious CO2 emission reduction targets set by the Energy Roadmap 2050 document of the
European Commission. Their research analysed several ANN structures to identify the most effective
model for large energy systems.

Huang (2021) contributed to China’s national policy plan for achieving a carbon peak in the mid-
to-long term, focusing on the Yangtze River Economic Belt basin (Huang et al., 2021). The author’s
goal was to comprehensively promote energy conservation and reduce emissions using a hybrid model of
LSTM and support vector regression (SVR) to manage and forecast carbon emissions. The model in their
research uses information indicators such as industry investment, labour efficiency output, and carbon
emission intensity to predict carbon emissions accurately. Other researchers have employed schemes based
on SPC to monitor and recommend reducing carbon emissions.

Shamsuzzaman et al. (2021) developed a technique for monitoring carbon emissions from the indus-
trial sector using SPC (Shamsuzzaman et al., 2021). The authors introduced an economic-statistical
design for the combined Shewhart X̄ and exponentially weighted moving average (EWMA) scheme,
which can help to monitor carbon emissions for prompt action to control excessive emissions. The pro-
posed Statistical Process Monitoring (SPM) scheme parameters have been optimised to minimise the
total cost, including carbon emissions and operational costs. Actual data from different industrial facili-
ties have been used to demonstrate the application of the proposed SPM scheme and its effectiveness in
reducing costs associated with excessive carbon emissions from industries.

Although the above papers demonstrate excellent applications of AI or SPC in carbon emission
monitoring or control, their results suffer limitations associated with these techniques. For example, while
ANNs can learn complex non-linear patterns and relationships in time series data, unlike SPC, they
cannot effectively monitor and control a process to ensure it operates within specified limits. ANNs are
better suited for predictive modelling and forecasting, while SPC is better for monitoring and control.
This paper proposes a hybrid technique consisting of LSTM and SPC. LSTM can be used to model
carbon emission characteristics from historical carbon emission data. At the same time, SPC can identify
whether this process entails a natural or a caused variation.

3 Methodology

3.1 Data Description

The data used for this research is the UK annual CO2 emission (per capita) data, covering between 1750
to 2021 (Ritchie et al., 2020). Figure 2a presents the raw data. The records are based on production or
territorial emissions from burning fossil fuels or cement production within the UK’s borders and do not
include emissions from traded goods. Moreover, the numbers are specific to CO2 emissions, not total
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greenhouse gas emissions. Table 1 presents the descriptive statistics of the dataset. As can be seen, the
data is continuous, negatively skewed, and platykurtic.

Table 1: Descriptive statistics

Statistic Value
Count 227.000000
Mean 7.471925
Standard Deviation 3.213397
Minimum 1.006713
Kurtosis -1.139382
Skewness -0.626540
Median 8.912930
Maximum 11.818837

3.2 The workflow

Figure 1 presents the workflow involving the techniques developed for this research.

Fig. 1: Research workflow

3.2.1 Data pre-processing

This phase involves outlier removal, filtering, and normalisation. This paper applies isolation forest (Liu
et al., 2008) for outlier detection and removal. Isolation forest can detect outliers by scoring how easy it
is to isolate a single data point from the rest of the data points using a binary search tree. The higher the
number of splits required to isolate a data point, the less likely the data point is identified as an outlier.

Filtering, specifically moving averages, follows the outlier removal process to further remove noise
from the data and to replace missing values with the mean of their five nearest neighbours. This step is
relevant in filtering out false signals, which can obscure the underlying trend in the data and consequently
affect the computation of the control limits. The data undergoes z-score normalisation, scaling it down
to the interval [0,1] to ensure that the models have consistent scale and distribution, contributing to the
efficiency of the learning algorithm.

3.2.2 Model development

The initial phase of the study involves evaluating the predictive accuracy of four distinct models on the
UK annual CO2 emissions: LSTM, ARIMA, Exponential Smoothing, and Feedforward ANN. The accu-
racy of the surrogate model is essential for minimising the potential interference of the model inaccuracy
with the CO2 emissions monitoring process. The dataset is partitioned into 80% training and 20% test-
ing subsets for the analysis. The training data encompasses annual carbon emissions per capita between
1803 and 1976, while the test data spans from 1977 to 2021.
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Among these models, LSTM, ANN, and ARIMA leverage data from the previous three years to
predict CO2 emissions for each year, whereas Exponential Smoothing relies on immediate past values
for prediction. As a first step towards developing a framework for accurately identifying variations in
CO2 emissions within the United Kingdom, the goal of the model development process is to effectively
represent the typical pattern in the UK’s annual carbon emission data. By utilising SPC, this model can
then be used to detect out-of-control situations.

To achieve this aim, the predicted value is subsequently compared with the actual value for the cor-
responding timestamp, allowing for monitoring changes in CO2 emissions. For example, when predicting
the CO2 emissions for 1977, the actual emissions data from 1974 to 1976 is used as input. The dispar-
ity between the predicted and actual values is calculated and can be leveraged to monitor fluctuations
in CO2 emissions, and this process continues throughout. This approach aligns with the research goal,
which is not long-term forecasting of UK CO2 emissions but tracking assignable variations within the
emission data.

Hyperparameters for the LSTM, ARIMA, Exponential Smoothing, and ANN were selected using
Bayesian Optimisation (Frazier, 2018) available in hyperopt library (Bergstra et al., 2013). Table 2
presents the hyperparameters for models.

Table 2: Hyperparameters

Model Hyperparameter Value
LSTM 1 units 128
Activation 1 relu
LSTM 2 units 64
Activation 2 relu
Dropout 0.2

LSTM Optimizer Adam
Learning rate 0.00001
Loss function mean squared error
Epochs 250000
Batch size 8
Validation split 0.2
Autoregressive order (p) 3

ARIMA Differencing order (d) 4
Moving Average order (q) 9

Exponential Damping factor 0.875
Smoothing

Learning rate 0.2071
ANN Number of hidden neurons 4

Momentum term 0.0797
Maximum iteration 830
Activation relu

3.2.3 Monitoring the carbon emissions process

The actual monitoring of the carbon emissions process follows the successful model development. Using
the data from 1977 to 2021, set aside for model testing and process monitoring, the surrogate model
predicts each year’s carbon emission per capita. The absolute deviation of the measured emission from
the predicted emission for the year k is calculated as follows:

δk = |predictedk −measuredk|
Although SPC approaches have been developed for non-normal data, researchers have demonstrated

that serious errors can occur in results from non-normal data (Andrássyová et al., 2012, Chou et al., 1998,
Xiao et al., 2020). To avoid poor results due to non-normal data, the Shapiro-Wilk test of normality is
first used to identify if the deviations are normally distributed or not (Shapiro and Wilk, 1965). The null
hypothesis of the Shapiro-Wilk test is that the sample comes from a normally distributed population.
The test statistic is calculated as follows:

W =
(
∑n

i=1 aiδ(i))
2∑n

i=1(δi − δ̄)2
(1)
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where n is the sample size, δ(i) is the i− th order statistic (i.e., the ith smallest value in the sample),
x̄ is the sample mean, and ai are constants that depend on n and the chosen level of significance. The
constants are chosen so that the expected value of W is approximately equal to 1 for normal data. The
Shapiro-Wilk test compares the value of W to critical values obtained from a Shapiro-Wilk critical values
table. If the calculated value of W is less than the critical value, then the null hypothesis is not rejected,
and the sample is considered consistent with normality; otherwise, the null hypothesis is rejected, and
the sample is considered to be non-normal.

To avoid challenges posed by non-normal data, the deviations undergo Box-Cox transformation (Box
and Cox, 1964) before the SPC process if they are non-normally distributed. The Box-Cox equation is
given by

y(λ) =

{
yλ−1

λ if λ ̸= 0

ln(y) if λ = 0
(2)

y(λ) is the transformed variable; y represents the original variable; and λ is the transformation param-
eter. The value of λ can be any real number but is often bounded within a range of values depending
on the context and the nature of the data. For example, λ must be positive if y is strictly positive. λ is
selected to maximize the log-likelihood function to find the best transformation for the data.

Next, SPC can help to investigate regions along a time series to determine if natural or special
variations drive them. Natural variations are inherent to a process and are caused by random factors,
while special variations are non-random and driven by specific factors, such as a government’s carbon
reduction policy, as in the case of this research. To investigate the deviations between the recorded carbon
emissions and the value predicted using the surrogate model and to identify the nature of the cause of
the deviation for each specific period, we have employed SPC. Specifically, the Shewart control chart (the
individual/moving-range (I-MR) chart) has been used to evaluate the deviations over time. I-MR chart
combines the moving range (MR) and the Individual control charts in determining the out-of-control
situations within a process. Each chart is based on two control limits, the Upper Control Limit (UCL)
and Lower Control Limit (LCL), to assess the variations within the data. The control limits establish
the chart’s sensitivity to variations within the data points. MR of the deviation distribution, {δi}mi=1, is
estimated as the absolute difference between the i− th deviation and its predecessor, the (i− 1)th.

The process of computing the control limits for MR is as follows:
• The difference between a data point δi and its predecessor δi−1 is given by:

MR = |δi − δi−1| (3)

• The centre line is computed as the arithmetic mean of the values obtained from step 1 above as
follows:

MR =

∑m−1
i=1 MRi

m− 1
(4)

• Calculate control limits
UCL = D4 ∗MR (5)

LCL = D3 ∗MR (6)

• Using these values, plot the control chart and provide interpretations.
For the individual chart, the control limits are computed as follows:

• Centre line

x =

∑m
i=1 δi
m

(7)

• Control limits

UCL = x+ 3
MR

d2
(8)

LCL = x− 3
MR

d2
(9)

Where d2, D3 and D4 are anti-biasing constants, with values as 1.128, 0 and 3.267, respectively, being
the recommended factors for sample size, n = 2 (Montgomery, 2020).
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4 Results and discussions

4.1 Data cleaning and transformation

Figures 2a and 2b demonstrate the improvements achieved in the data after passing it through the pre-
processing pipeline. The data points before 1800 were considered outliers and were deleted from the
dataset. As well as smoothing out and removing noise from the dataset, the moving average is also used
to replace missing values. The data is then normalised to the scale [0,1] to ensure that the models have
consistent scale and distribution.

(a) Raw data (b) Pre-processed data

Fig. 2: UK annual CO2 emission (per capita) data

4.2 Evaluation of the surrogate model

Figure 3 presents the performance of the models on the data. The first part of the figure showcases how
well the models perform on the training subset, while the second part depicts their ability to predict the
next CO2 emissions using values from the past three years. Metrics such as mean square error (MSE),
root mean square error (RMSE), mean absolute error (MAE), and R-squared are used to evaluate the
models and are summarised in Table 3. The results show that the LSTM outperforms the other models
while the ARIMA performs the worst. Due to its superior performance, the LSTM is selected as the
surrogate model for representing the UK carbon emissions during the process monitoring phase. The
accuracy of the surrogate model is paramount in reducing the potential interference of model inaccuracy
with the CO2 emissions monitoring process.

Table 3: Performance scores of the model

Metric LSTM ARIMA Exponential Smoothing ANN

MSE 0.00044 0.2643 0.0249 0.0737
RMSE 0.020 0.211 0.158 0.272
MAE 0.016 0.403 0.125 0.190
R2 0.997 0.971 0.997 0.993

4.3 Process monitoring using SPC

The absolute difference (or deviation) between the actual UK annual carbon emissions (per capita)
and the predicted emissions is first calculated across the time series for the monitoring process. The
Shapiro-Wilk normality test demonstrates that the data significantly deviates from a normal distribution
with p-value (= 7.997 × 10−13) < 0.05. Applying the Box-Cox transformation to the deviation data
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Fig. 3: Models’ performance

significantly produced a normally distributed output, with the significance value of the Shapiro-Wilk
test, p-value(= 0.596 > 0.05). Figure 4 demonstrates the data distributions before and after applying
the Box-Cox transformation.

(a) The deviation data before
Box-Cox transformation

(b) The deviation data after Box-
Cox transformation

Fig. 4: Box-Cox transformation of the deviation data

Figure 5 presents I-MR control charts obtained from the absolute difference between the model pre-
dictions and the recorded UK carbon emissions. Following Nelson’s rules for control chart interpretations
(Nelson, 1984, 1985), the data points presented in red have been identified as ”out-of-control” situations
(or assignable causes or special cause variations). Unlike the common cause variations (i.e., data points
in blue), which are the natural variations within a system, assignable causes are unexpected. They are
often due to external reasons. SPC aims to eliminate assignable variations in several processes, includ-
ing manufacturing, production, asset management, and service delivery, because they imply a deviation
from predictable or known behaviours. However, for a process that seeks to introduce a departure from
existing practice, assignable causes could be desirable because they can represent the effect of the actions
introduced to cause the change. An example of the situation above where assignable causes can portray
a positive change is the effect of a government’s carbon reduction plan on carbon emissions, which is the
thesis of this paper. Below are the descriptions of Nelson’s eight rules and their general practical insights:

• Rule 1: One point is over three standard deviations from the mean — an unusual event or a
measurement error.
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Fig. 5: I-MR Charts of the absolute deviation between the actual and predicted carbon emissions values

• Rule 2: Nine (or more) points in a row are on the same side of the mean — a slight shift from the
average.

• Rule 3: Six (or more) points in a row continually increase (or decrease) — a trend pattern.
• Rule 4: Fourteen (or more) points alternate in direction, increasing then decreasing — an over-
control pattern.

• Rule 5: Two (or more) out of three points in a row are more than two standard deviations from
the mean in the same direction — a significant shift from the average.

• Rule 6: Four (or more) out of five points in a row are more than one standard deviation from the
mean in the same direction — a slight shift from the average.

• Rule 7: Fifteen points in a row are all within one standard deviation of the mean on either side of
the mean — stratification nature of the process.

• Rule 8: Eight points in a row exist, but none within one standard deviation of the mean, and the
points are in both directions from the mean — A mixture property of the process.

The numbers on the red data points in Figure 5 indicate the rules used to confirm the points as
out-of-control. In the individual (I) and the moving range (MR) charts, only rules 1,2,5 and 6 have
been violated. Combining I-chart and MR-chart provides a clear picture of the process behaviours using
these rules. I-charts can identify any common or assignable causes within a process by monitoring the
mean and shifts in the process. In contrast, MR charts monitor the process variations by tracking the
absolute difference between known and measured behaviours of the system. Out-of-control situations due
to the violation of rule 1 have been highlighted on the I-chart (in 1982,1983,1995,2006,2008, and 2017
- 2021) and the MR-chart (in 1984 and 2009). Violation of rule 1 can be interpreted as the occurrence
of an unusual event or an erroneous measurement of data. Deviations from the then-existing pattern
in the UK carbon emissions (per capita) have been recorded between 1997 - 2004 and 2012 - 2016 and
2000, as highlighted by the data points numbered 2, 5 and 6 in the I-chart, illustrating violations of the
corresponding rules. The control charts reveal that activities that impacted the UK’s carbon emissions
per capita intensified from the mid-1990s to 2021.

In line with the observations from the control charts, according to a technical report from the Euro-
pean Environment Agency, between 1990 and 2012, greenhouse gas emissions in the EU decreased, with
Germany and the United Kingdom accounting for 50% of the EU’s net decrease in emissions within this
period (Agency and Agency, 2015). The United Kingdom’s main contributor was the liberalisation of
energy markets and the subsequent switch from oil and coal to gas as a fuel for electricity production
(Agency and Agency, 2015).

Moreover, the intensification of the UK’s commitments towards carbon reduction from the 1990s
follows its choice of 1990 as a baseline year for carbon emissions reductions. This baseline commitment
choice was primarily due to the United Nations Framework Convention on Climate Change (UNFCCC),
established in 1992 but became effective in 1994 (Bodansky, 1993, Greene, 2000). The convention aimed
to stabilise greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous
anthropogenic interference with the climate system. The developed nations agreed to execute national
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strategies for tackling climate change to lower anthropogenic greenhouse gas emissions to levels observed
in a baseline year.

By setting the baseline year at 1990, the UK committed to reducing its emissions to levels below
that year’s emissions (Barrett et al., 2018, Kelly et al., 2014) through several schemes, including Paris
Agreement and the Kyoto Protocol, involving the first and second commitments, covering the periods
2008-2012 and 2013-2020 respectively. Since then, the UK has set several emissions reduction targets,
including achieving net zero emissions by 2050 (Pye et al., 2017). Using 1990 as a baseline year, the UK
can track its progress towards these targets and monitor its success in reducing its contribution to global
greenhouse gas emissions.

We suspect the natural variation recorded between 2009 and 2013 is part of the response to the
measures preceding this period, including the first Kyoto Protocol commitment, which could normalise
as part of the baseline. However, the Second Kyoto Protocol commitment and several other efforts
introduced a shift from the baseline in 2013, leading to caused variation, as seen on the control chart.

4.3.1 Correlating the UK government’s known carbon reduction/energy policies
and emissions-related events with the out-of-control periods

The control chart’s out-of-control periods (i.e., the shaded region) show correlations with the most
significant UK carbon reduction and energy efficiency commitments and plans and events relating to
carbon emissions over the years. To demonstrate that the approach in this paper can identify where
carbon-related policies and events within the UK may impact its usual carbon emission process, we
have identified carbon-related policies and events recorded within the shaded periods. Significant carbon
reduction policies and events in the UK that correlate with the shaded regions in the control chart have
been presented as follows:

1982 - 1984

a While no carbon reduction policy or legislation was directly established by the UK government
within this period, an earlier policy, such as the UK Energy Conservation Act 1981 (Legisla-
tion.gov.uk, 1981), could have affected the CO2 emissions within this period. The Act required
energy audits and efficiency measures for public sector buildings and large companies. Its goal was
to reduce energy consumption, improve energy efficiency, and promote sustainable development in
the UK. Data published by the UK National Infrastructure Commission shows that total inland
coal consumption in the UK decreased from 1981 to 1982 by 6.25% 1.

b A major event within this period, which could impact UK carbon emissions, was the UK miners’
strike (from March 84 to March 85) (Adeney and Lloyd, 2021), which led to the closure of many
coal mines in the UK. This closure could decrease carbon emissions around this period since coal
significantly contributes to carbon emissions. Mamurekli demonstrated that as well as the reduction
in the UK’s coal supply between 1984-1985, the UK’s coal consumption reduced from 34.6% of the
total energy consumption in 1978 to 25% in 1984-85 (Mamurekli, 2010).

1995 - 2009

a The liberalisation of the energy market in the UK began in the late 1990s (Stanford, 1998) and
paved the way for competition in the generation and supply of electricity. The subsequent ”dash
for gas” in the 1990s saw a significant increase in the use of natural gas for power generation
(Spooner, 1995). This refers to a transition among newly privatised electricity companies in the
UK towards generating electricity using natural gas. The ”dash for gas” caused a decrease in gas
prices, a substantial increase in gas-fired power generation capacity, significant improvements in the
average efficiency of gas-fired power plants, and a corresponding rise in total gas-fired electricity
generation from 4 TWh in 1990 to 140 TWh in 2003 (Graus et al., 2007). Richardson and Chanwai
confirm that the ”dash for gas” contributed to reducing the UK’s carbon emissions within this
period (Richardson and Chanwai, 2003).

b The UK government levies a fee on the energy used by industry, farms, and the governmental sector.
This fee is known as the Climate Change Levy (CCL) (Pearce, 2006). The programme was first

1https://nic.org.uk/app/uploads/Historical-Energy-Data-Final-Dataset.xlsx
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implemented in 2001 to promote energy efficiency and lower greenhouse gas pollution, with plans
to cut annual emissions significantly by 2010. Since then, it has incentivised businesses to reduce
energy consumption, increase the use of renewable energy, and generate government revenue, but it
has also increased costs for businesses. Data is needed to conclude how much this scheme contributed
to the variability in the UK’s carbon emissions at the outset before it became part of the baseline.

c In 2005, the European Union created the EU Emissions Trading System (EU ETS) as a cap-and-
trade programme to lower greenhouse gas emissions from industrial areas (Action, 2013). It limits
the overall quantity of emissions that industries can release and covers all EU members, including
the UK before it leaves the EU. Companies included in the programme are given permits to cover
their emissions. They can purchase or trade these allowances on the market to generate revenue,
providing an incentive to cut emissions. Similar to the situation with the CCL, data is needed to
conclude how much this scheme contributed to the variability in the UK’s carbon emissions at the
outset before it became part of the baseline.

d Energy Performance Certificates (EPCs) were introduced in the UK in 2007 (Watts et al., 2011), a
significant move towards increasing building energy efficiency and lowering carbon pollution. EPCs
offer details on a building’s energy efficiency and suggestions for development, assisting in spreading
knowledge about energy efficiency and encouraging homeowners and sellers to invest in energy-saving
technologies.

e Following the Climate Change Act of 2008, the UK government ratified the Kyoto Protocol and com-
mitted to reducing greenhouse gas pollution significantly by 2050 (Skiba et al., 2012). In response,
the UK has taken measures to support the use of renewable energy, improve the energy economy,
and promote low-carbon transit to meet this goal. For example, the UK has established legally
binding carbon budgets, passed the Climate Change Act, and committed to providing international
climate finance to support developing countries’ climate action. These were targeted at reducing
UK’s greenhouse gas emissions by 12.5% below 1990 levels by 2008-2012, a target it had exceeded
in 2014 (of Energy and Change, 2015).

f A carbon budget, or cap on the amount of greenhouse emissions the UK can release over five years,
was established by the Carbon Budgets Order 2009 (UK Government, 2023a) as a piece of UK law.
The UK government adopted policies and steps to decrease emissions and provide regular updates
on its progress towards achieving these goals.

2013 - 2021

a To promote energy efficiency and lower greenhouse gas pollution, the UK passed the Energy Act
2013 into legislation (UK Government, 2023b). It consists of several measures, including the Carbon
Price Floor, Electricity Market Reform, Green Deal, Minimum Energy Efficiency Standards, and
Renewable Heat Incentives. These regulations seek to advance the use of low-carbon technologies,
foster the growth of green energy sources, and improve the energy economy of residential and
commercial buildings.

b The Carbon Reduction Commitment(CRC) Energy Efficiency Scheme was a mandatory UK gov-
ernment initiative introduced in 2010 to improve energy efficiency and reduce carbon emissions
(Committee on Climate Change, 2010, UK Department of Energy and Climate Change, 2010). How-
ever, the CRC Energy Efficiency Scheme was criticised for its complexity, which made compliance
challenging and expensive. The scheme was reformed in 2013 to simplify the process, focus on energy
efficiency and introduce a performance league table to encourage transparency and improvements.
It was later replaced by the Streamlined Energy and Carbon Reporting (SECR) framework in 2019
(UK Government, 2021b).

c The UK government launched the Clean Growth Strategy in 2017 to promote economic growth while
reducing greenhouse gas emissions and addressing climate change (Ward and Matikainen, 2018).
The strategy outlines various measures to achieve this, including improving energy efficiency in
homes and businesses, encouraging the use of low-emission vehicles and investing in infrastructure,
supporting the development of low-carbon industries, investing in research and development for new
low-carbon technologies, and incentivising businesses to reduce their carbon footprint.

d The UK government and the offshore wind industry launched the offshore wind sector deal in 2019
to significantly increase offshore wind power generation (BEIS, 2019). Its goal is to increase the UK’s
offshore wind capacity by 2030 and expand the number of jobs in the sector while contributing to
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efforts to combat climate change and reduce greenhouse gas emissions. The deal includes strategies
such as investment in new offshore wind farms, improvements to supply chains and infrastructure,
and support for innovation and research and development.

e The UK government committed in 2019 to achieve net zero carbon emissions by 2050, aiming to limit
global warming to 1.5C above pre-industrial levels and prevent the worst impacts of climate change
(UK Government, 2021a). This target is enshrined in law, making the UK the first major economy
in the world to commit to net zero carbon emissions by 2050. Strategies include increasing renewable
energy generation, phasing out petrol and diesel cars, improving energy efficiency in buildings, and
investing in new technologies.

f The COVID-19 pandemic significantly impacted worldwide carbon emissions (Mehlig et al., 2021).
With lockdowns and travel restrictions, energy demand was significantly decreased, particularly
from transportation and industry. As a result, carbon emissions in the UK fell to their lowest levels
in decades, with a 13% reduction compared to the previous year.

g The UK government introduced the Sixth Carbon Budget in December 2020, aiming to achieve the
country’s net-zero emissions objective by 2050 by lowering greenhouse gas emissions by 78% by 2035
compared to 1990 (UK Government, 2021c). The plan outlines sector-specific emissions reduction
goals and methods for achieving them, including growing renewable energy sources, enhancing the
energy economy, and utilising fewer fossil fuels for transportation. The UK government accepted the
Committee on Climate Change’s proposals and plans to propose legislation to formalise the goals.

5 Conclusions and Recommendations

This research demonstrates the application of a hybrid technology comprising deep learning and statistical
process control in monitoring the impact of the government’s carbon reduction policy on carbon emissions
within the UK economy. We first developed the surrogate model of the carbon emissions process of the
UK and computed the deviation of out-of-sample measured data from the model. I-MR was employed to
identify regions of special cause variations, which we demonstrated to correlate with significant carbon
reduction policies of the UK government and known events, such as COVID-19, that can impact UK
carbon emissions. However, there are still aspects of this work that warrant future research. For example,
it can be challenging to identify each policy’s or event’s contributions to an out-of-control region. Also, we
cannot demonstrate whether the responses on the control charts emanated from the long-term or short-
term effects of policies. Solving these problems will make it possible to investigate the impact of individual
policies and how long they take to reflect on the process. In our future related work, we aim to explore
explainable AI applications on this task, leveraging explicit dummies to understand better the influence
of policies of interest on carbon emissions data. This paper considers the government’s carbon reduction
policies and events such as COVID-19; however, several other events can impact carbon emissions. These
activities include economic development, technology, agriculture, imports, etc. Investigating the impact
of changes in the actions within these activities will be a valuable further contribution to knowledge.
Although our method cannot recommend future climate policies, when used in combination with a
qualitative approach it can be helpful in identifying the impact of existing policies and determining which
ones to reinforce for more effective CO2 emissions control.
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Ağbulut, Ü. (2022). Forecasting of transportation-related energy demand and co2 emissions in turkey
with different machine learning algorithms. Sustainable Production and Consumption, 29:141–157.

Agency, E. E. and Agency, E. E. (2015). Why did greenhouse gas emissions decrease in the eu between
1990 and 2012?
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