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Abstract—In this paper, a channel state information (CSI)
feedback method is proposed based on deep transfer learning
(DTL). The proposed method addresses the problem of high
training cost of downlink CSI feedback network in frequency
division duplexing (FDD) massive multiple-input multiple-output
(MIMO) systems. In particular, we obtain the models of different
wireless channel environments at low training cost by fine-
tuning the pre-trained model with a relatively small number of
samples. In addition, the effects of different layers on training cost
and model performance are discussed. Furthermore, a model-
agnostic meta-learning (MAML)-based method is proposed to
solve the problem associated with large number of samples of
a wireless channel environment required to train a deep neural
network (DNN) as a pre-trained model. Our results show that
the performance of the DTL-based method is comparable with
that of the DNN trained with a large number of samples,
which demonstrates the effectiveness and superiority of the
proposed method. At the same time, although there is a certain
performance loss compared with the DTL-based method, the
MAML-based method shows good performance in terms of the
normalized mean square error (NMSE).

Index Terms—Deep transfer learning (DTL), downlink CSI,
limited feedback, FDD, massive MIMO, model-agnostic meta-
learning (MAML).

I. INTRODUCTION

In a frequency division duplexing (FDD) communication
system, the acquisition of downlink channel state information
(CSI) plays an important role in precoding, beamforming,
and power allocation at the base station (BS) [1]–[4]. To
reduce the feedback overhead of downlink CSI, algorithms
such as compressed sensing are considered by using the
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partial reciprocity of uplink and downlink channels and the
correlation of CSI in time and frequency domains [5]–[9].

In recent years, deep learning has attracted attention in
wireless communications [10]–[25]. Hence, deep learning-
based downlink CSI feedback methods have also been pro-
posed [26]–[31]. Compared with the traditional compressed
sensing algorithms, deep neural network (DNN) can achieve
good reconstruction performance of downlink CSI and reduce
feedback overhead. In [26], CsiNet is proposed for downlink
CSI feedback. To learn the correlation between time slots in
time-varying channels, the long short-term memory (LSTM)
network is added to CsiNet in [27]. In [28], downlink CSI is
compressed by using the correlation between the amplitudes
of uplink and downlink CSI. Instead of fully connected layer,
the pooling layer is used to reduce dimension in [29], which
greatly reduces the number of network parameters. The net-
works described above assume that the feedback is perfect,
that is, the BS can receive the feedback codeword without
error. To simulate a realistic wireless channel environment,
various noises and time delays are added to the feedback
in subsequent work [30], [31]. However, there is a prob-
lem of poor generalization when using DNN to implement
downlink CSI feedback. Existing works on deep learning-
based downlink CSI feedback methods all focus on a given
wireless channel environment [26]–[31], and when facing a
new wireless channel environment, the performance of DNN
declines sharply due to the model generalization problem,
hence it is necessary to train a DNN from scratch with the CSI
data of the new wireless channel environment. Nevertheless, in
FDD massive multiple-input multiple-output (MIMO) systems
with high dimension downlink CSI, this exercise requires high
volume of data, which will result in high training cost.

Transfer learning is a machine learning technique, which
aims to improve the performance of target tasks using the
knowledge extracted from one or more source tasks. Research
on transfer learning traces back to 1995 under various names:
knowledge transfer, learning to learn, multi-task learning, life-
long learning, etc [32]. According to the relationship between
the source domain and the target domain, the transfer learning
methods can be categorized into instance-transfer, feature-
representation-transfer, and parameter-transfer, etc [32]. Nowa-
days, with the development of deep learning, how to effec-
tively transfer knowledge by DNN has become an important
research direction. Accordingly, the deep transfer learning
(DTL) combined with deep learning and transfer learning
is proposed [33]. Generally, training a DNN requires large
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number of samples, while for similar tasks, the DTL only
uses a small number of samples to fine-tune the pre-trained
model, then we can obtain a model with excellent performance
in new tasks. The DTL has achieved great success in many
fields such as computer vision (CV) and natural language
processing (NLP) domains [32], [34], [35]. In the field of
wireless communications, the DTL is applied in spectrum
prediction and fault diagnosis [36], [37]. In [38], the DTL is
applied to FDD massive MIMO systems for downlink CSI
prediction. In fact, downlink CSI prediction and downlink
CSI feedback are two different schemes. Both schemes ensure
that the BS has access to full downlink CSI. In downlink
CSI prediction scheme, the BS exploits the uplink CSI to
directly predict the downlink CSI without feedback overhead.
However, in downlink CSI feedback scheme, the BS recovers
the downlink CSI from the compressed codeword sent by the
user equipment (UE) with low feedback overhead.

In this paper, we employ the DTL based on a fully con-
volutional network architecture to cope with the high train-
ing cost of CSI feedback network. Specifically, we propose
a DTL-based algorithm for the downlink CSI feedback in
FDD massive MIMO systems, and discuss a tradeoff between
training cost and model performance. Moreover, to reduce the
requirement of a large training samples to pre-train a DNN,
we propose a model-agnostic meta-learning (MAML) [39]
based algorithm, which only requires relatively small number
of samples to learn a model initialization. In the experimental
evaluation, the performance of the model that trained with
large number of samples and that of the model that fine-
tuned with a relatively small number of samples is compared
to demonstrate the effectiveness and superiority of DTL. At
the same time, on the premise that a certain performance loss
compared with the DTL algorithm, the MAML algorithm also
shows good performance in terms of the NMSE. Our major
contributions are summarized as follows.

• DTL-based downlink CSI feedback: We apply the DTL
to the downlink CSI feedback, and propose a DTL-based
algorithm to solve the problem of high training cost of
CSI feedback network. By fine-tuning the pre-trained
model using small number of samples of a wireless
channel environment, we can quickly obtain a model with
good performance at low data cost and time cost. To
the best of our knowledge, no paper has so far reported
DTL for downlink CSI feedback in FDD massive MIMO
systems.

• A MAML-based algorithm: In order to solve the
problem of large number of samples required for the
pre-trained model in a wireless channel environment, a
MAML-based algorithm, which employs samples from
multiple wireless channel environments to learn a model
initialization was developed. The numerical results show
good performance in terms of NMSE of the MAML-
based algorithm.

II. SYSTEM MODEL

In FDD systems, the process of downlink CSI feedback by
using DNN is shown in Fig. 1. At the UE side, when the UE

receives the pilot sent by the BS, it uses the pilot to work out
the downlink CSI. In this case, the downlink CSI is a high-
dimensional matrix, and it is then inputted into the encoder of
DNN

s = fen(H) (1)

which encodes the downlink CSI matrix H into a low dimen-
sional codeword s. Next, the codeword is sent to the BS to
complete the downlink CSI feedback. After the BS receives
the codeword from the UE, the codeword is then inputted into
the decoder of DNN

H = fde(s) (2)

which decodes the codeword s back to the original downlink
CSI matrix H , and then the BS uses the downlink CSI
to implement various measures to maintain high quality of
wireless communication.

Fig. 1. A process of downlink CSI feedback.

The fifth generation (5G) new radio (NR) supports the
spectrum ranging from sub-1 GHz to millimeter wave bands.
In 3GPP R15, there are two frequency ranges (FR): the
0.45 − 6 GHz is defined as FR1, commonly referred to as
sub-6 GHz, while the 24.25 − 52.6 GHz is defined as FR2,
commonly referred to as millimeter wave [40]. In the frame
structure of 5G NR, a frame has a duration of 10 ms, which
consists of 10 subframes, and each subframe consists of 2k ·14
(k = 0, 1, 2, 3, 4) orthogonal frequency division multiplexing
(OFDM) symbols. Correspondingly, the subcarrier spacing is
2k · 15 kHz.

We consider adopting an OFDM model in FDD massive
MIMO systems. The BS is equipped with Nb antennas, the UE
is equipped with Nu antennas, and the number of subcarriers
is Ns. Hence, a CSI sample containing one time slot is a
complex matrix with size of Nb ×Nu ×No ×Ns, where the
No represents the number of OFDM symbols of a time slot.

III. PROBLEM FORMULATION

In this section, we first give the definition of DTL. Next,
we address the DTL problem of downlink CSI feedback in
FDD massive MIMO systems and propose a corresponding
DTL model.

A. Definition of DTL

There are two basic concepts in transfer learning, i.e.,
domain and task. The domain is defined as D = {χ, P (X)},
which is composed of the feature space χ and the marginal
probability distribution P (X), where X = {x1, · · · , xn} ∈ χ.
The task is defined as T = {y, f(·)}, which is composed of
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the label space y and the target prediction function f(·), where
f(·) can be learned from training data. For a specific sample x,
f(x) can be written as the conditional probability distribution
P (y|x) from the probabilistic view. According to [32], transfer
learning can be defined as:

Definition 1 (Transfer learning): Given a source domain
DS and source task TS , a target domain DT and target task
TT , transfer learning aims to improve the learning of the target
prediction function fT (·) of TT by using the knowledge in DS

and TS , where DS 6= DT or TS 6= TT .
DNN has a strong transferability. Transfer learning can learn

feature expressions unrelated to the domain, thus it can be
combined with deep learning, and use the DNN to learn the
common feature expressions of all domains. Based on [33],
DTL can be defined as follows:

Definition 2 (Deep transfer learning): Given a transfer
learning task defined by 〈DS , TS , DT , TT 〉, it is a DTL task
when the target prediction function fT (·) of TT is a non-linear
function approximated by a deep neural network.

B. DTL Problem of CSI Feedback

FDD massive MIMO systems consider the spatial charac-
teristics of the wireless channel, hence it is necessary to apply
a new channel model to simulate the wireless environments in
existing network. 3GPP R15 TR38.901 defines a new channel
model named clustered delay line (CDL) for link evaluation,
where the frequency range of the CDL model is 100 GHz with
a maximum bandwidth of 2 GHz [41]. The CDL model is
often implemented by phase initialization along four different
polarizations and generating coefficients for each cluster [41].
The CDL model is divided into the CDL-A, CLD-B, CDL-
C, CDL-D and CDL-E according to the simulated network
environments. The first three are used to simulate non-line-of-
sight (NLOS) transmission channels, while the latter two are
used to simulate line-of-sight (LOS) transmission channels.
To achieve excellent CSI feedback in a certain channel, we
consider employing large number of samples of the channel
to train a DNN from scratch. However, training the DNN this
way for each channel which results in high training cost, both
in data and time. Inspired by the image processing domain, the
lower convolutional layers of DNN capture low-level image
features, which are invariant in different tasks, while the higher
convolution layers capture more complex details. Therefore,
we propose to adopt DTL to extract the channel-independent
correlations in the downlink CSI matrix to help train the DNNs
of other channels, thereby solving the problem of high training
cost.

Fig. 2 shows the DTL model for downlink CSI feedback
proposed in this paper. First of all, large number of samples
of CDL-A channel are used to train a DNN as the pre-trained
model, and then the pre-trained model is fine-tuned with small
number of samples of CDL-B, CDL-C, CDL-D, and CDL-
E channels, respectively. Thus, the downlink CSI feedback
model of different channels can be obtained at low training
cost.

Fig. 2. The DTL model for downlink CSI feedback.

IV. THE PROPOSED DTL ALGORITHM FOR CSI FEEDBACK

Based on the DTL model for downlink CSI feedback
introduced in Section II, we propose a DTL-based algorithm
for downlink CSI feedback in FDD massive MIMO systems.
In this section, we will specifically introduce the network
structure, algorithm and optimization process used in DTL.

A. Network Architecture
To compress and recover the downlink CSI, the fully

connected layers are used in the output of the encoder and
the input of the decoder in CsiNet [26]. Different from
the CsiNet which uses the fully connected layers, a fully
convolutional network is used to reduce the number of network
parameters in this paper, which adopts the network structure
of the CsiNet. At the same time, the depth of the encoder
network is increased. Moreover, the 3D convolution is used
to replace the 2D convolution for adapting the dataset used
in experiments. The fully convolutional network structure is
shown in Fig. 3, where the black numbers represent the
number of convolutional kernels. As can be seen from Fig.
3, the fully convolutional network is composed of input layer,
encoder, decoder and output layer. The encoder includes eight
convolutional layers, and the decoder includes one deconvolu-
tional layer and three residual blocks, among which the three
residual blocks have the same structure. They all consist of
three convolutional layers, with a total of nine convolutional
layers. It should be pointed out that Fig. 3 shows the network
structure when the compression ratio is 1/8. If we need to
alter the compression ratio of the network, we can increase the
convolutional layer and the deconvolutional layer in the output
of the encoder and the input of the decoder, respectively.
We achieve data compression and recovery by setting the
convolutional kernel strides of the last convolutional layer of
the encoder and the deconvolutional layer of the decoder, while
the convolutional kernel strides of the rest convolutional layers
are set as 1 to remain the dimension of data unchanged. An
original sample of downlink CSI is a complex matrix with
size of Nb ×Nu ×No ×Ns. To perform 3D convolution, the
sample is preprocessed by the reshape function transforming
into a complex matrix with size of Nb × (Nu × No) × Ns.
For the convolutional layers of the DNN, we use the leaky
rectified linear unit (LeakyRelu) as an activation function,
whose mathematical expression is defined as:

f(x) =

{
x, x ≥ 0
x/a, x < 0

(3)
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Fig. 3. Structure of the fully convolutional neural network.

where a is a fixed parameter in [1,+∞]. Mean square error
(MSE) is used as the loss function of the DNN, which is
defined as follows,

L(x, x̂) =
1

m

m∑
i=1

‖x− x̂‖22 (4)

where x and x̂ represent the input and output of the DNN,
respectively, m represents the number of samples in the
training set, and ‖·‖2 denotes the L2 norm.

B. The DTL Algorithm

Machine learning and deep learning are modeling, training
and testing in independent domains, while transfer learning
tries to transfer knowledge from the source domains to the
target domains, which makes the target domains achieve better
learning effects. In general, the dataset of the source domains
is abundant, while the dataset of the target domains is small.
In this paper, for the target domains, namely the new wireless
channel environments, we cannot always obtain large number
of samples, and even if we can, it will take huge data cost
and time cost to train a DNN from scratch. Since a model
with good performance can be obtained by fine-tuning the
pre-trained model using small number of samples on similar
tasks in transfer learning, we combine the deep learning and
transfer learning, and propose a DTL algorithm to solve above
problems. The specific algorithm flow is shown in Algorithm
1.

C. Transfer Strategy and Improvement

In DTL, in order to obtain the optimal model performance
of a target domain, all the samples of the target domain are
generally used to fine-tune the pre-trained model. However,
the requirement for real-time performance is very high in
communication systems. In FDD massive MIMO systems,
the wireless channel environment changes very quickly. It is
possible that by the time we obtain a model with optimum
performance, the UE is already in a new wireless channel
environment, and the model is not effective at this time. There-
fore, our goal is to obtain a model with good performance as

Algorithm 1: The proposed DTL algorithm for downlink
CSI feedback in FDD massive MIMO systems.

Input: Network parameters of the pre-trained model: θA,
network architecture, CDL-B, CDL-C, CDL-D
and CDL-E dataset, number of the gradient
descents for fine-tuning: epoch, optimizer: Adam,
learning rate: α, batch size: V

Output: Network parameters: {θB , θC , θD, θE}, NMSE
and test loss

Training stage;
for k = CDL-B, CDL-C, CDL-D, CDL-E do

Load the network parameters θA into network
architecture;
for i = 1, 2, · · · , epoch do

Update the network parameters using the training
set Dtr(k) and the Adam optimizer with learning
rate α

end
Save the network parameters θk;

end
Testing stage;
for k = CDL-B, CDL-C, CDL-D, CDL-E do

Load the network parameters θk into network
architecture;
Predict the downlink CSI, calculate the NMSE and
test loss using the testing set Dte(k)

end

soon as possible, instead of pursuing the optimum performance
of model, as long as the model performance can guarantee
the quality of wireless communication. Hence, we plan to
explore the effects of sample sizes used for fine-tuning on
model performance, and try to reduce the number of samples
used in DTL to reduce the training cost in training process. In
addition, the performance of the model obtained by fine-tuning
the whole network is generally better than that of the model
obtained by fine-tuning the part of network, but we consider
whether it is possible that only some layers of network are
fine-tuned, while the remaining layers of network are frozen.
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Thus, we also intend to study the effects of different layers on
the model performance, and further reduce the training cost
by controlling the number of network parameters that needed
to be fine-tuned on the premise that the model performance
meets the actual application requirements.

V. THE PROPOSED MAML ALGORITHM FOR CSI
FEEDBACK

In this section, we first give the definition of MAML and
introduce the computational process. Next, we display the
specific procedure of the proposed MAML algorithm.

A. Definition of MAML

Meta-learning is an exciting research direction in the field
of machine learning, as it solves the problem of learning how
to learn. The network structure, model initialization method,
parameter updating model and so on can be designed by meta-
learning algorithms. MAML is the simplest form of the meta-
learning. In MAML, the network structure and parameter up-
dating model are fixed, and it only learns a model initialization
that can quickly adapt to a new task with small number of
samples. Different from the DTL that requires large number
of samples to train a DNN for obtaining the pre-trained model,
the MAML needs multiple tasks to learn a model initialization
as the pre-trained model, where each task only provides small
number of samples. In addition, the MAML is independent of
specific model, and the only requirement is to use the gradient
descent algorithm to update the parameters. Therefore, the
MAML can be applied to multiple learning problems, such
as regression, classification and reinforcement learning. The
MAML is composed of meta-training stage and meta-testing
stage. In the meta-training stage, two datasets called support
set and query set are used for learning a model initialization,
while the training, validation and testing sets are used in the
meta-test stage for fine-tuning and evaluation.

We consider the parameters of a DNN are initialized as φ,
which become θ̂n after training on the support set of the nth
task, and then the loss on the query set of the nth task is
ln(θ̂

n). Thus, the loss function of the initialization parameters
φ can be written as:

L(φ) =

N∑
n=1

ln(θ̂
n) (5)

where N represents the number of tasks. Next, we think of
getting parameters φ∗, which satisfies the following formula:

φ∗ = argmin
φ

L(φ) (6)

The gradient descent algorithm is adopted, and then the
parameters φ can be updated as:

φ← φ− αOφL(φ) (7)

where α represents the learning rate. To compute the result
more quickly, there are two main computational adjustments
in MAML. First, it will take longer to conduct multiple steps
of gradient descent for updating parameters from φ to θ̂n

in each training task, thus only one step of gradient descent

is conducted in MAML. The reason the MAML adopts one
step of gradient descent is that if the model trained by one
step of gradient descent achieves good performance, then
the initialization parameters φ can basically be considered
as good parameters. The second adjustment of MAML is to
simplify the computation of OφL(φ). Because of a second
order differential in OφL(φ), and it is difficult to compute,
hence the second order differential is discarded in MAML,
which is called first-order approximation [39].

B. The MAML Algorithm

Large number of samples of CDL-A channel are used to pre-
train a model in DTL. However, in practice, it is difficult for us
to obtain enough samples of a wireless channel environment
to pre-train a model. On the contrary, it is relatively easy to
obtain a mixed large dataset, which is composed of samples
from multiple wireless channel environments, where each
wireless channel environment only provides small number of
samples. Thus, we propose a MAML algorithm for downlink
CSI feedback in FDD massive MIMO systems. The specific
algorithm procedure is shown in Algorithm 2. Moreover, in
order to prevent gradient explosion, the gradient clipping is
used in the meta-training stage, which is defined as:

grad← grads · clipnorm
max(globalnorm, clipnorm)

(8)

where the grads and globalnorm represent the gradients and
the L2 norm of the gradients, respectively, while the clipnorm
represent the ratio of clipping.

VI. EXPERIMENTAL RESULTS

In this section, we first introduce the generation of dataset
and the setting of experimental parameters. Then we show
the comparison of model performance. Finally, we discuss the
effects of different layers on model performance and training
cost.

A. Dataset Generation and Parameters Setting

In the experiment, we consider a FDD massive MIMO
scenario. To generate the corresponding downlink CSI dataset,
we refer to the NR CDL channel model defined in TR38.901 of
3GPP R15, and use the NR CDL channel model of 5G toolbox
in MATLAB software to generate the required downlink CSI
dataset, namely, CDL-A, CDL-B, CDL-C, CDL-D and CDL-
E dataset. For each channel, four speeds are used in the UE,
which are 4.8 km/h, 24 km/h, 40 km/h and 60 km/h, respec-
tively. The uplink and downlink frequencies of the channel
are set to 2 GHz and 2.1 GHz, respectively. The number of
subcarriers is set as 72 with a spacing of 15 KHz. The uniform
plane array (UPA) is used at the BS with 32 antennas, while
the UE is equipped with 2 antennas. The number of OFDM
symbols is set as 14. Therefore, a downlink CSI sample is a
complex matrix with size of 32 × 2 × 14 × 72. The training,
validation, and testing sets of the CDL-A channel contain
50, 000, 5, 000, and 5, 000 samples, respectively, while those
of the other channels used for DTL contain 4, 000, 1, 000,
5, 000 samples, respectively. The reason we set the sample
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Algorithm 2: The proposed MAML algorithm for down-
link CSI feedback in FDD massive MIMO systems.
Input: Network architecture, task set: {CDL-A, CDL-B,

CDL-C, CDL-D and CDL-E}, iteration times of
the meta-training: iterations, number of the
gradient descents for fine-tuning: epoch, inner
learning rate: α, meta learning rate: β, adam
learning rate: η, batch size: V

Output: Pre-trained model, network parameters:
{θA, θB , θC , θD, θE}, NMSE and test loss

Meta-training stage;
Randomly initialize the network parameters as φ;
Generate corresponding support set and query set;
for i = 1, 2, · · · , iterations do

Randomly sample a task T from the task set;
Randomly select V samples from the support set of
the task T ;
Compute the gradient Oφl(φ) with the V samples;
Update the network parameters from φ to θ̂:
θ̂ = φ− αOφl(φ);
Randomly select V samples from the query set of the
task T ;
Compute the loss function l(θ̂) and the gradient
Oφl(θ̂) with the V samples;
Update the network parameters φ: φ = φ− βOφl(θ̂);

end
Save the network parameters φ;
Meta-testing stage;
for k = CDL-A, CDL-B, CDL-C, CDL-D, CDL-E do

Load the network parameters φ into the network
architecture;
for i = 1, 2, · · · , epoch do

Update the network parameters using the training
set Dtr(k) and the Adam optimizer with learning
rate η

end
Save the network parameters θk;
Predict the downlink CSI, calculate the NMSE and
test loss using the testing set Dte(k)

end

size of the test sets of different wireless channel environments
to the same is to demonstrate the effectiveness and superiority
of DTL. That is, on the premise that there is an order of
magnitude difference in the sample size of different training
sets, if the model obtained by DTL and the CDL-A model
have similar performance when evaluated on the testing set of
the same sample size, then the DTL can be proved effective.
Throughout all experiments, a relatively reasonable setting of
hyperparameters is adopted. The epoch and batch size are set
as 200 and 50, respectively. The learning rate is set as 0.001
in the training stage of the CDL-A model, and 0.0001 in the
DTL stage. While in the MAML algorithm, for each channel,
the total sample size of support set and query set is 4, 000
in meta-training stage. In meta-testing stage, the sample sizes
of the training, validation and testing sets are set to 3, 500,

1, 500 and 1, 000, respectively. The relevant parameters of
the MAML algorithm are listed in Table I. Default setting is
adopted for other unspecified parameters. All the experiments
are implemented on NVIDIA GeForce GTX 1080 Ti GPU.

TABLE I
PARAMETERS SETTING OF THE MAML ALGORITHM.

Parameters Values
Ratio of support set 0.7
Ratio of query set 0.3

Inner learning rate α 0.001
Meta learning rate β 0.001
Adam learning rate η 0.0001

Batch size of meta-training stage 20
Batch size of meta-testing stage 50

Number of iterations 20000

The normalized MSE (NMSE) is used to evaluate the model
performance, which is defined as follow:

NMSE = E

[∥∥∥H − Ĥ∥∥∥2
2
/ ‖H‖22

]
(9)

where H represents the original CSI matrix, and Ĥ represents
the recovered CSI matrix. To perform following experiments,
we give the definition of the compression ratio γ, which can
be written as follows:

γ =M/N (10)

where M represents the output size of the encoder, and N
represents the size of an original downlink CSI sample, i.e.,
N = Nb ×Nu ×No ×Ns.

B. Performance Comparison Under Different Wireless Chan-
nel Environments

We conduct experiments under four different compression
ratios. For each compression ratio γ, the NMSE performance
of five models corresponding to five different channels are
compared. The experimental results are shown in Table II,
where the performance of the CDL-A model is obtained by
training the DNN from scratch with 50, 000 samples, while
that of the other channel models is obtained using 4, 000
samples to fine-tune the CDL-A pre-trained model.

As can be seen from Table II, for γ = 1/8, the NMSE of
the CDL-A model is −28.449 dB, while the NMSE of the
CDL-B and CDL-C models are similar to that of the CDL-
A model, which are −26.934 dB, −29.066 dB, respectively.
The NMSE of the CDL-D and CDL-E models is even better
than that of the CDL-A model, which are −33.646 dB and
−33.532 dB, respectively. As for the reason, we consider it is
due to the CDL-A, CDL-B and CDL-C are NLOS channels,
while the CDL-D and CDL-E are both LOS channels, which
are not as complex as the NLOS channels. When the γ is
gradually reduced from 1/8 to 1/256, the NMSE of the CDL-
A model is also gradually decreased from −28.449 dB to
−12.887 dB. However, in different compression ratios, the
performance of the CDL-B and CDL-C models is only slightly
decreased compared with that of the CDL-A model, while the
performance of the CDL-D and CDL-E models is better than
that of the CDL-A model. In four different compression ratios,
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TABLE II
PERFORMANCE COMPARISONS OF DIFFERENT MODELS.

γ Channel model NMSE (dB) Test loss

1/8

CDL-A −28.449 5.72× 10−4

CDL-B −26.934 8.53× 10−4

CDL-C −29.066 6.14× 10−4

CDL-D −33.646 3.07× 10−4

CDL-E −33.532 3.12× 10−4

1/64

CDL-A −16.940 7.62× 10−3

CDL-B −13.565 1.79× 10−2

CDL-C −15.553 1.31× 10−2

CDL-D −23.487 3.14× 10−3

CDL-E −23.177 3.36× 10−3

1/128

CDL-A −16.109 8.82× 10−3

CDL-B −12.887 2.10× 10−2

CDL-C −14.784 1.56× 10−2

CDL-D −21.993 4.44× 10−3

CDL-E −22.077 4.34× 10−3

1/256

CDL-A −12.431 2.05× 10−2

CDL-B −8.454 5.84× 10−2

CDL-C −9.860 4.81× 10−2

CDL-D −19.381 8.05× 10−3

CDL-E −18.299 1.03× 10−2

the training time of the CDL-A model is about 50h, while
that of the other channel models is about 4h20min. Hence,
compared with the CDL-A model, the models of other channel
environments can be obtained with only about 1/10 of the
data and time cost of that of the CDL-A model. At the same
time, their performances are comparable to that of the CDL-A
model, which implies that the DTL can well solve the problem
of high training cost of CSI feedback network.

Fig. 4. Loss of the training set during fine-tuning process.

Fig. 4 shows the loss curve of the training set that used
to fine-tune the pre-trained model. As shown in this figure,
the losses of the CDL-D and CDL-E models decrease rapidly,
and then begin to flatten when the epoch is about 25. While
the losses of the CDL-B and CDL-C models decrease slowly
compared with those of the CDL-B and CDL-C models, they
still converge quickly. When the epoch reaches 200, although
the losses of the CDL-B and CDL-C still have room to decline,
there are limited improvements for model performance. From
the four curves, it can be seen that the loss converges quickly

when performing DTL, which implies the DTL is effective,
i.e., the model with excellent performance can be obtained
in a very short time under a new channel environment. At
the same time, it can be seen that the losses of the LOS
channels decline faster and smaller than that of the NLOS
channels. Therefore, we can reduce the training time of the
LOS channels and increase the training time of the NLOS
channels when performing DTL. The CDL-B and CDL-C are
NLOS channels, and their models show similar performance
under different compression rates. The CDL-D and CDL-E are
LOS channels, and their models also show similar performance
under different compression rates. Therefore, the following
experiments only focus on the CDL-B and CDL-D channels.

Fig. 5. Loss of the CDL-E model during fine-tuning process.

In DTL, it may be wrongly assumed that a better perfor-
mance gain when transferring models between channels of the
same type. In other words, we transfer the models of the NLOS
channels to other NLOS channels, and transfer the models of
the LOS channels to other LOS channels. However, this is not
the case. The CDL-A channel is a NLOS channel, and the
CDL-D and CDL-E channels are LOS channels. The CDL-
A and CDL-D pre-trained models are trained from scratch
with 50, 000 samples. The performance of the CDL-E model
that fine-tuned with CDL-A pre-trained model is −33.532
dB, while that of the CDL-E model that fine-tuned with
CDL-D pre-trained model is −33.084 dB, which is slightly
decreased. Fig. 5 shows the loss of the CDL-E model during
fine-tuning process. The CDL-E(with CDL-A) means that the
CDL-E model is obtained by fine-tuning the CDL-A pre-
trained model, while the CDL-E(with CDL-D) means that
the CDL-E model is obtained by fine-tuning the CDL-D pre-
trained model. From Fig. 5, we can see that the initial loss
of the yellow curve is smaller than that of the blue curve and
converges faster. However, after 200 epochs, the loss of the
blue curve is smaller than that of the yellow curve, and there is
still room to decline. We consider the reason is that the CDL-A
is a NLOS channel while the CDL-D is a NLOS channel, and
there is an inclusion relationship between them, that is, the CSI
data of NLOS channels is more complex and contains more
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features than that of LOS channels. Therefore, compared with
the models of LOS channels, we should consider the models
of NLOS channels as the pre-trained models, in order to obtain
better model performance.

Fig. 6. Comparison of model performance.

Fig. 6 depicts the NMSE of models trained with different
sample sizes during training process, where the epoch is 0,
10, 50, 100, 200, respectively. As shown in Fig. 6, the CDL-
D-50000, CDL-D-20000, CDL-D-10000, and CDL-D-4000
represent that the DNN is trained from scratch with 50, 000,
20, 000, 10, 000 and 4, 000 samples, respectively, which does
not involve DTL, and it is used for comparison here. The
CDL-D-4000(T) represents that the DNN is fine-tuned with
4, 000 samples based on the CDL-A pre-trained model. The
texts in the figure represent the NMSE and training time of
model. As can be seen from Fig. 6, the NMSE of the four
models trained from scratch is 0 dB when the epoch is 0,
while the NMSE of the model fine-tuned with 4, 000 samples
is −27.272 dB, which implies that it is effective to use the
parameters of the pre-trained model to initialize the DNN. In
addition, when we train the model from scratch, as the number
of samples increases, the model performance on the testing set
is also improving. At the end of the training, the NMSE of
the CDL-D-50000 and the CDL-D-4000(T) is −34.378 dB
and −33.646 dB, respectively, which are very similar, but
with a huge difference of training time. It takes a training
time of 50h6min to train a DNN from scratch, while it only
takes 4h20min to perform fine-tuning, which indicates the
effectiveness and superiority of the DTL. For the curves of
the CDL-D-4000 and the CDL-D-10000, the reason we only
show the NMSE of the model when epoch is 190 is that we
set a modelcheckpoint of tensorflow during training process,
and when the epoch increases from 190 to 200, the loss of
model on the validation set is not decreased, hence the model
is not saved when epoch is 200.

C. Performance Comparison in Different Sample Sizes
In previous experiments, 4, 000 samples are used to fine-

tune the pre-trained model. Next, we explore the effects on

model performance when different sample sizes are used to
fine-tune the pre-trained model. In addition, γ is fixed as 1/8
for the following experiments. Table III shows the NMSE and
training time, where the models are obtained by fine-tuning the
pre-trained model using different sample sizes. From Table III,
we can see that when the sample size reduces from 4, 000 to
200, the model performance gradually declines. The NMSE of
the CDL-B model declines from −26.934 dB to −23.267 dB,
and the NMSE of the CDL-D model declines from −33.646
dB to −31.392 dB. Nevertheless, with the reduction of the
sample size, the training cost is also gradually reduced. When
the model is fine-tuned with 200 samples, it only takes 1/20
data cost and about 1/8 time cost of those of the model fine-
tuned with 4, 000 samples, with only a drop of performance
about 3.5 dB in CDL-B channel, and about 2.5 dB in CDL-D
channel. These results indicate that only a small number of
samples are required to fine-tune the pre-trained model, and
we can obtain a model that has good adaptability to the new
wireless channel environment. From the above analysis, we
can find that the reduction of sample size can further reduce
the training cost by bearing a small loss of model performance.

TABLE III
COMPARISONS OF NMSE AND TRAINING TIME.

Sample size CDL-B CDL-D
NMSE (dB) Training time NMSE (dB) Training time

4,000 −26.934 4h20min −33.646 4h20min
3,000 −26.570 3h30min −33.512 3h50min
2,000 −26.070 2h18min −33.123 2h28min
1,000 −25.260 1h23min −32.538 1h23min
500 −24.423 1h −32.100 1h
200 −23.267 35min −31.392 35min

Fig. 7. Model performance of the fine-tuning process.

Fig. 7 displays the NMSE of the CDL-B model during fine-
tuning process, where the model is fine-tuned with 4, 000,
1, 000 and 200 samples, respectively. As can be seen from Fig.
7 that the NMSE of the model fine-tuned with 200 samples
and 200 epochs is similar to that of the model fine-tuned
with 4, 000 samples and 10 epochs. Therefore, we can make a
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tradeoff between data cost and time cost. For example, if we
set −23 dB as the baseline of the model performance, then
the model needs to be fine-tuned with more epochs when there
are few samples, while the model needs to be fine-tuned with
less epochs when there are enough samples. In addition, due
to the NMSE of the model fine-tuned with 1, 000 samples is
better than that of the model fine-tuned with 200 samples, and
whose training cost is less than that of the model fine-tuned
with 4, 000 samples, 1, 000 samples are adopted to conduct
the following experiments.

D. Effects of Different Layers on Model Performance

In previous experiments, the parameters of the pre-trained
model are used to initialize the parameters of the new model,
and then all the layers of the new model are fine-tuned
using samples of a new wireless channel environment. In
this section, in order to explore the effects of different layers
on model performance, only some layers of the model are
fine-tuned, while other layers are frozen. In Fig. 3, the red
numbers represent the corresponding layers. The number 10
represents the three residual blocks of the DNN; the number
8 and number 9 represent the output layer of the encoder
and the input layer of the decoder, respectively; the number
4 represents the convolutional layer with 32 convolutional
kernels; the number 1 ∼ 10 represents all the layers of DNN.

TABLE IV
MODEL PERFORMANCE UNDER DIFFERENT TRAINING STRATEGIES.

Layer NMSE (dB) No. parameters Training time
CDL-B CDL-D

1-10 −25.260 −32.538 50, 170 58mim
10 −22.340 −31.530 14, 334 41min

8,9,10 −22.630 −31.558 14, 554 42min
4 −16.686 −28.912 13, 856 41min

4,10 −24.324 −32.397 28, 190 53min

Table IV shows the comparison of the NMSE and training
cost when 1, 000 samples are used to fine-tune the different
layers of DNN. As can be seen from Table IV, when all the
layers are fine-tuned, the NMSE of the CDL-B and CDL-D
models is −25.260 dB and −32.539 dB, respectively, and the
number of parameters that need to be trained is 50, 170 with
a training time of 58min. When only the three residual blocks
are fine-tuned, the NMSE of the CDL-B and CDL-D models
is −22.340 dB and −31.530 dB, respectively, and there is
a drop of performance about 3 dB and 1 dB, respectively.
However, the number of parameters that need to be trained
is only about 1/3 of 50, 170, and the training time reduces
from 58min to 41min. When the 8th, 9th and 10th layers are
fine-tuned, it can be found that the model performance barely
improves compared to that of only fine-tuning the 10th layer,
which indicates that the gain of model performance is not very
much when the 8th and 9th layers are added for fine-tuning.
The number of parameters that need to be trained and the
training time are similar to those of fine-tuning the 10th layer
when only the 4th layer is fine-tuned, but the performance
difference of the two models is obvious. There is about a
performance loss of 6 dB in CDL-B channel, and 2.5 dB

in CDL-D channel, which shows that fine-tuning the latter
layers can obtain more performance gain than fine-tuning the
former layers. In addition, compared with only fine-tuning the
10th layer, when the 4th and 10th layers are fine-tuned, the
performance of the CDL-B and CDL-D models has a gain of
2 dB and 1 dB, respectively, but the number of parameters that
need to be trained and training time will be greatly increased.
Based on the above analysis, we consider only fine-tuning the
10th layer is a good scheme. In fact, the 10th layer is composed
of three residual blocks with the same structure. Therefore, we
next discuss the effects on model performance when different
number of residual blocks are fine-tuned.

TABLE V
EFFECTS OF DIFFERENT RESNET BLOCKS ON MODEL PERFORMANCE.

Nmuber NMSE (dB) No. parameters Training time
CDL-B CDL-D

3 −22.340 −31.530 14, 334 41mim
2 −20.587 −30.587 9, 556 35min
1 −18.397 −29.276 4, 778 29min

Table V shows the comparison of the NMSE and the training
cost when different number of residual blocks are fine-tuned.
It can be seen that when only the last residual block is
fine-tuned, the NMSE of the CDL-B and CDL-D models is
−18.379 dB and −29.276 dB, respectively. As the number
of residual blocks that need to be fine-tuned increases, the
model performance will increase linearly. In CDL-B and CDL-
D channels, when one more residual block is added for fine-
tuning, the model performance has a gain of about 2 dB and
1 dB, respectively, but the parameters that need to be fine-
tuned and the training time will also increase linearly. From
the above analysis, we can see that the three residual blocks
have a great effect on the model performance. Therefore, we
should first consider fine-tuning the three residual blocks when
performing DTL.

E. Model Performance of the MAML Algorithm

Fig. 8 shows the NMSE of different models, where the pre-
trained model is obtained by the MAML algorithm, and it is
fine-tuned with 1, 000, 2, 000 and 3, 000 times, respectively.
The ratio of support set is 0.7. As can be seen from Fig. 8,
compared with the pre-trained model, the model performance
gradually rises with the increase of the fine-tuning times.
However, there is little performance gain when the fine-tuning
times increases from 2, 000 to 3, 000, and when the fine-tuning
times is 3,000, the model performance under different channels
is not as good as well. Hence, the hyperparameters are adjusted
to further improve model performance.

The experimental results of different ratios of support set
are shown in summarized in Fig. 9. The pre-trained model
1 is obtained by setting the ratio of support set as 0.7
during the training process, while the pre-trained model 2 is
obtained by setting the ratio of support set as 0.5. The 3, 000
represents the model obtained by fine-tuning the pre-trained
model 1 with 3, 000 times. Similarly, the 1, 000 represents the
model obtained by fine-tuning the pre-trained model 2 with
1, 000 times. From Fig. 9, we can see that when the ratio
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Fig. 8. NMSE of model under different fine-tuning times.

of support set changes from 0.7 to 0.5, the performance of
pre-trained model is improved under different channels, and
the performance of the model fine-tuned with 1, 000 times
is better than that of the model fine-tuned with 3, 000 times.
However, there is still a certain performance loss compared
with the DTL algorithm. The DTL in Fig. 9 represents the
performance of the model that is pre-trained and fine-tuned
with DTL algorithm. Compared with the the DTL algorithm,
the best performance of the MAML algorithm has a drop
about 8 dB in CDL-A channel, 7 dB in CDL-B and CDL-
C channels and 5 dB in CDL-D and CDL-E channels. In
addition, take the CDL-D wireless channel environment as an
example, the performance of the CDL-D model trained from
scratch with 4, 000 samples is −22.403 dB, which is shown in
Fig. 6. However, the performance of the pre-trained 2 obtained
by using the MAML algorithm among which each wireless
channel environment provides 4, 000 samples is −25.905
dB, which is shown in Fig. 9. As for the reason that the
performance of the latter model is better than that of the former
model, we consider that in a small data set of a certain wireless
channel environment, some common features that existed in
each wireless channel environment can not be learned by
the DNN when the model is trained from scratch. However,
the data sets of different wireless channel environments are
used in the MAML algorithm, and then the DNN can learn
these common features. Hence, when there are only a few
samples in each wireless channel environment, compared to
using the samples in each wireless channel environment to
train their respective models, we can obtain a pre-trained
model that has better performance in each wireless channel
environment by using the samples from multiple wireless
channel environments and the MAML algorithm. Based on the
above analysis, if we can get samples of a wireless channel
environment as much as possible, it is better to adopt the
DTL algorithm to obtain a pre-trained model and perform fine-
tuning. On the contrary, we can adopt the MAML algorithm
with a certain performance loss when we can only obtain a
relatively small dataset, which is composed of samples from
multiple wireless channel environments, where each wireless
channel environment provides small number of samples.

Fig. 9. NMSE of model under different ratios of support set.

Table VI displays the training cost of the DTL and MAML
algorithms. In the process of training the pre-trained model,
the batch size of the DTL algorithm is set as 50 with GPU
memory usage 4433 M, and the batch size of the MAML
algorithm is set as 20 with GPU memory usage 8531 M. After
the DNN converges, the DTL algorithm takes a training time
of 50h12min, while the MAML algorithm takes a training time
of 15h42min. Therefore, compared with the DTL algorithm,
the MAML algorithm has a higher computational complexity
due to the high GPU memory usage, but it has lower time cost
due to the low training time.

TABLE VI
COMPARISON OF TRAINING COST BETWEEN THE DTL AND MAML

ALGORITHMS.

Algorithm Batch size GPU memory usage Training time
DTL 50 4433M 50h12min

MAML 20 8531M 15h42min

VII. CONCLUSION

In this paper, we proposed a DTL-based method to solve
the problem of high training cost associated with downlink
CSI feedback network in FDD massive MIMO systems. Then,
we discussed the effects of different layers, seeking a tradeoff
between training cost and model performance. Furthermore,
we proposed a MAML-based method to solve the problem
related to large number of samples of a wireless channel
environment that are required to train a DNN as pre-trained
model. Experimental results proved the effectiveness and su-
periority of these proposed methods in reducing training cost.
In addition, although the CDL channel model is used in the
experiment of DTL, we can still apply DTL for other channel
models to solve the problem of high training cost.
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