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An Adaptive Vehicle Clustering Algorithm Based on
Power Minimization in Vehicular Ad-hoc Networks
Haitao Zhao, Member, IEEE, Jiawen Tang, Bamidele Adebisi, Senior Member, IEEE, Tomoaki Ohtsuki, Senior

Member, IEEE, Guan Gui, Senior Member, IEEE, and Hongbo Zhu

Abstract—In this paper, we propose an adaptive vehicle
clustering algorithm based on fuzzy C-means algorithm, which
aims at minimizing power consumption of the vehicles.
Specifically, the proposed algorithm firstly dynamically allocates
the computing resources of each virtual machine in the vehicle,
according to the popularity of different virtualized network
functions. The optimal clustering number to minimize the total
energy consumption of vehicles is determined using the fuzzy
C-means algorithm and the clustering head is selected based
on vehicles moving direction, weighted mobility, and entropy.
Simulation results are provided to confirm that the proposed
algorithm can decrease the power consumption of vehicles while
satisfying the vehicle delay requirement.

Index Terms—Internet of vehicle, fuzzy C-means, edge
computing, power consumption, vehicle clustering.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) [1] are attracting
extensive attention from both academia and industry. The
vehicles in VANETs, using existing wireless communication
and sensor technologies, can offer various applications [2]–
[7], such as collision avoidance, surrounding information
collection, and traffic flow control, etc. On-board unit, trusted
authority, and roadside uint (RSU) are the main components
of the typical structure of VANETs. However, the typical
structure of VANETs faces two following challenges: i)
Latency issue: Real-time data collection and processing are
critical to many applications in VANETs. For example, an
autonomous vehicle needs to quickly collect and process
the image data collected by the camera to detect and avoid
obstacles or calculate the distances between autonomous
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vehicles through sensors. However, sending data to the cloud
for data processing cannot meet strict end-to-end low-latency
requirements in VANETs. ii) Privacy issue: In VANETs, the
drivers may not be willing to upload their private information
(e.g., their travel routes and their personal driving behavior)
to the cloud.

To meet these challenges, mobile edge computing (MEC)
technology has been introduced into VANETs, which shifts
computing resources from the cloud to the edge of the
network, as shown in Fig. 1. Thus, the transmission delay
is reduced and the private user data is prevented from sending
to the cloud [8]. Thanks to the fast development of hardware,
such as cental processing unit and graphic processing units,
the processing capability of the vehicles become more and
more powerful. Recently, many researchers take a further step
and do research on vehicle as a server (VaaS), in which
a vehicle can provide computing services for drivers and
passengers into itself, but also collaborate with other vehicles
[9]. However, VANETs still face some challenges, e.g., highly
dynamic topology and the requirements of various quality of
service (QoS). These challenges make it difficult to transmit
data in VANETs [10], [11]. To deal with these challenges,
clustering adjacent vehicles into groups shows a great potential
on performance improvement. Besides, processing massive
tasks inevitably results in huge power consumption. Compared
with the cloud-based VANETs, the power consumption is a
significant issue for the edge-based VANETs due to the limited
resource at the network edge [12]–[15].

Motivated by the aforementioned backgrounds, we propose
an adaptive vehicle clustering algorithm, having the goal of
minimizing the total power cost of vehicles in VANETs. The
algorithm firstly figures out the neighbor list of each vehicle
through angle-based neighbor detection. To efficiently cluster
the vehicles, compared with K-means hard clustering, fuzzy
C-means (FCM) provides more flexible clustering results, so
the fuzzy C-means algorithm is used, and the CH selection
is rendered by considering the driving path, entropy, and
weighted mobility value of vehiclesVehicle mobility value
(used to measure the relative stability of the vehicle and
its neighbors). We conduct the simulations to velidate the
proposed algorithm. The results of simulations reveal that the
proposed algorithm can decrease vehicle power consumption
while satisfying the requirement of vehicle delay. The main
contributions of this paper are summarized as below.
• We consider a VANET scenario where the vehicles

are clustered for efficient data interaction among
vehicles. Based on this scenario, we formulate a power
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minimization problem of the clustered vehicles.
• An adaptive and sustainable vehicle clustering algorithm

is proposed. To improve the stability of vehicle clusters,
we firstly figure out the neighbor list of each vehicle
through angle-based neighbor detection. To efficiently
cluster the vehicles, the fuzzy C-means (FCM) algorithm
is used, and the CH selection is rendered by considering
the driving path, entropy, and weighted mobility value of
vehicles.

• The proposed algorithm can dynamically adjust the
computing resources of the virtual machine in the
intelligent vehicle according to the popularity of the task
request flow reaching the on-board edge server, instead
of the average allocation of CPU, so as to minimize the
overall power loss of the vehicle server.

The rest of this paper is organized as follows. In Section
II, we survey the current works of power minimization
and vehicle clustering. We introduce the system model and
formulate the issue under consideration in Section III. We
present the proposed algorithm in detail in Section IV. In
Section II, we evaluate the efficiency of the proposed algorithm
and finally sum up this paper in Section VI.

II. RELATED WORK

There have been many literatures on the optimization
algorithms with the goal of reducing power consumption while
meeting the requirements of transmission delay. In [16], the
authors investigated a delay-guaranteed and energy-efficient
load distribution problem in the Internet of Things(IoT) edge
cloud storage framework. A delay load distribution algorithm
based on the Lyapunov drift-plus-penalty theory was proposed
to achieve the optimal power consumption as well as the delay
guarantee. To implement resource aware recommendation,
authors in [17] developed an edge based communication
mechanism. In [18], an optimization problem was created to
jointly minimize packet congestion and energy consumption
in a balanced way and the optimal results were obtained by
the proposed improved heuristic optimization algorithm for
krill population minimizing the total cost of MEC. In [19],
authors designed an energy-efficient offloading scheme by
combining the multi-access qualities of the 5G heterogeneous
networks, which optimized offloading and bandwidth resource
allocation at the same time to achieve the minimum energy
consumption under delay constraints. In [20], to achieve the
optimal result of power consumption, a branch and bound
method based on reconstruction linearization technique is
proposed, and a greedy heuristic algorithm based on Gini
coefficient is proposed, which degrades the mixed integer
nonlinear programming problem into a convex problem to
reduce computational complexity. In [21], a game-theoretic
distributed offloading approach was developed to jointly
optimize the offload, in which UE can collaborate with
each other for minimizing network overhead in terms of
energy consumption and latency. Furthermore, an approximate
offloading algorithm was developed to give a quick solution
to achieve the optimal power consumption.

Meanwhile, vehicle clustering has also been studied during
the past few years. In [22], authors designed a cluster

association strategy based on real-time speed for vehicles to
leave or join a cluster dynamically. Meanwhile, a collaborative
scheduling algorithm was also proposed to select the sender
vehicle and the corresponding data items for broadcast. In [23],
for maximizing the throughput and minimizing the latency in
VANET, dynamic clusters were formed through mathematical
optimization solutions. In [24], authors proposed a selection
algorithm for cluster head (CH) and a cluster switching
algorithm for VANETs to fulfill the prerequisites for services
sensitive to throughput and delay. In [25], to help VANET
build stable clustering, a center-based clustering algorithm
was proposed, which reduced the frequency of vehicle
state changes in highway scenes. In [26], authors proposed
a sociological pattern and route stability based clustering
algorithm by modeling the mobility and the movement mode
of vehicles through semi-Markov processes. In [27], an
improved K-Harmonic means algorithm was proposed, which
jointly considered the relative velocity and distance between
cluster members and CHs, as well as the available bandwidth
of candidate CHs. In [28], with the purpose of robust
transmission, a vehicle clustering optimization algorithm based
on Moth Flame clustering was proposed where a nature-
inspired Moth Flame algorithm was used to optimize the
formation of vehicle clusters. With regard to the application of
5G in vehicular communications, authors in [29] proposed a
network slicing architecture of a high-speed railway system
based on 5G. In [30], the authors proposed a clustering
model in the MEC environment. By considering the self-
similarity of the request flows, edge servers are clustered in
a cluster to work as a single node, so that traffic flows are
processed in the same cluster, which significantly reduces the
network processing delay and throughput. In [31], authors
modeled the power usage of the MEC server and defined the
optimum number of clusters to decrease the MEC server power
consumption.

Although the power minimization problem in VANETs has
been well studied, most existing works focus on reducing
the power of the edge servers, not the vehicles. Besides, the
existing works ignore the influence of the vehicle clustering
on the power consumption.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. VANET

Considering that the RSUs with limited radio coverage are
sparsely deployed and the vehicles with enhanced computing
capability, it can be considered to use the idle computing
resources to assist the MEC servers in the VANET, e.g.,
VaaS [32]. These vehicular servers are implemented via
network function virtualization technique, rather than a custom
hardware device. The realization of network services requires
the flows to be sequentially processed by a variety of network
functions in accordance with a predetermined logical sequence
called service function chain (SFC). Each flow is started by a
CH vehicle when creating the Virtualized Network Function
(VNF) service chain. CH vehicle determines the route in the
SFC link based on the required VNF field, and the VNF
information is provided by each flow in its data packet. If the
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Fig. 1. VANET architecture based on MEC.

cluster does not have the required VNF, it will migrate from
another nearest cluster and then the member vehicle creates a
VNF chain.

In the considered VANET, the VNFs connects the mobile
edge hosts and applications within the data plane through the
SFC [31], [33]. Each vehicle (server) cannot contain all kinds
of VNFs, that is, the computing power of each VM is different.
Therefore, the capacity of the vehicles can be elastically
expanded and reduced by dynamically adjusting VNFs. In the
considered system model, since the mobile edge application is
the injection destination of the inflow, it is assumed that the
mobile edge host is set up in each vehicle. Network Functions
Virtualization (NFV) service chain includes VNFS chain and
mobile edge application [32].

B. Power Consumption Model in VANET

As shown in Fig. 1, R smart vehicles are separate into L
non-overlapping clusters. In each cluster, one vehicle is chosen
as the CH and the remaining (R/L−1) vehicles are the cluster
members. It is assumed that each cluster has at least one CH
vehicle and one member vehicle, such that 1 ≤ L ≤ R/2.
The CH vehicle controls the inflow in the cluster and has
the information of VNF distribution. Each vehicle possesses
C virtual machines (VMs) and each VM corresponds to one

VNF unit to maintain the robustness. Each CH vehicle has
the most popular C VNFs and CVNFs is used to represent
the VNFs installed in CH vehicles. The member vehicles store
other VNFs, which are represented as MVNFs. Thus, the set
of VNFs N = {1, 2, · · · , N} can be separated into two sets,
i.e., the set of CVNFs N (CH) = {1, 2, · · · , C} and the set of
MVNFs N (Mem) = {C + 1, C + 2, · · · , N}. The number of
idle VMs is RC − (L − 1)C − N . If L ≥ (R + 1 − N/C),
the CVNFs will occupy (L− 1)C VMs and NU = max[N −
(R−L+ 1)C, 0] MVNFs with the = the least popularity are
uninstalled.

Assume that the popularity of VNFs observes the rule of
Zipf’s law [31]. Intuitively, a small number of VNFs are
accessed frequently. Among the VNFs installed in the VMs,
the popularity of the n-th commonly used VNF is given by

qn =
Ω

nα
, (1)

where Ω = 1/
∑N
n=11/nα ≈ 1/

∫ N
1

1/nαdn = 1−α
N1−α−1 and

α is the Zipf parameter to determine content request patterns.
During the average delay cycle T (L), it is assumed that F
flows come into the vehicles and a flow includes S service
requests. According to [34], using the fractional Brownian
motion (fBm) to model the request flow, based on which the
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Fig. 2. Vehicle clustering system model based on MEC.

time interval T (L) is given as:

T (L) = 2µN1−αL−1 − 2v(RC)
1−α

Lα−1 + 2vN1−α, (2)

where T (L) represents the average delay of each vehicle
(server) in processing task request flow, v, µ, and w denote
respectively as

v = hSβ/N1−α − 1 (3)

µ =
hSw−1F (O(VNF) − r̂

H )
2H

(H−2)

N1−α − 1 (4)

w = (−2σ2 ln ρf )1/(2H−2)/(1−H) (5)

and ρf represents the fBm model’s overflow probability, h
represents the average number of hops between the vehicles,
O(VNF) represents the average capacity of the VNF service
chain, r̂ is the average inflow rate, β indicates the deterministic
sum of processing delay, transmission, and propagation, σ
represents the mean standard deviation of the request flow,
and H represents the fBm model’s Hurst parameter.

C. Power Consumption Model

The power consumption of CH vehicles and member
vehicles constitutes the total power consumption of the system,
i.e.,

Pv(L) = LP
(
l(CH)

)
+ (R− L)P

(
l(Mem)

)
, (6)

where l(CH) and l(Mem) are the average CPU loads of a
CH vehicle and a member vehicle per second, respectively.
According to the dynamic voltage frequency system model of
CPU load [35], the power consumption P (u) for processing
depends on the CPU load u, i.e.,

P (u) = pi +
Pb − Pi

2

(
1 + u3 − exp

(
−u

3

a

))
. (7)

where Pb and Pi are the power consumption of a vehicle when
the CPU is fully utilized and idle, and a is level of utilization
of power consumption model. Thus, the average CPU load
of the vehicles needs to be estimated before calculating the
power consumption. According to [31], we can measure the
average CPU load of a vehicle using the average number of
requests sent to a vehicle during one average delay cycle.

1) Average CPU load of CH vehicles: Given that the
average number of requests to each CVNF n of the CH vehicle
during T (L) is rnCH = FS

L qn, the probability of the n-th
CVNF is busy per second is computed:

pn
(CH) =

rn
(CH)tn
T (L)

=
Fηnqn
L

, (8)

where tn = ηnT (L)
S represents the processing time when one

request reaches the n-th CVNF and ηn represents the part of
time used to handle a request in CVNF n. Therefore, the CPU
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load of each CVNF per second is ln(CH) = p
(CH)
n l̂

(CH)
n , where

l̂
(CH)
n is the CPU load generated when CVNF n is working.

Without losing versatility, we assume that the CPU runs at full
power, that is, l̂(CH)

n = 1. Hence, the CPU load generated by
the CH vehicle is expressed as:

l(CH) =

C∑
n=1

ln
(CH). (9)

2) Average CPU load of member vehicles: In addition to
the operation of the MVNFs, the replacement process of the
MVNFs also causes the CPU load. Specifically, when the
required VNF is not available, the MVNF with the lowest
popularity in the cluster will be replaced with the one required
by the flow. This dynamic replacement process will occupy
the CPU resources of the member vehicles, and additional
power consumption generates. Thus, the average CPU load
of member vehicles is measured across different processes,
including average CPU load of replacing MVNFs l(Rep),
and average CPU load of operating the MVNFs l(Ope), i.e.,
l(Mem)=l(Ope) + l(Rep).

Define Q(U) =
∑
n∈N(U) qn as the total popularity of

the N (U) uninstalled MVNFs [31]. The average number of
requests to MVNFs of the member vehicles during T (L) is
R(U) = FSQ(U). Therefore, the average CPU load required
for the replacement of the MVNFs is given by:

l(Rep) =
ϕFSQ(U) l̂(Req)

R− L
, (10)

where ϕ represents the proportion of MVNF replacement time
during T (L), l̂(Req) is the CPU load produced when replacing
an MVNF by member vehicles. The sum of the popularity of
all the MVNFs that have been already installed in member
vehicles is 1 − Q(CH) − Q(U) with Q(CH) =

∑C
n=1 qn, then

the total popularity of each member vehicle is:

P (Mem) =
1−Q(CH) −Q(U)

R− L
. (11)

Given the processing time tnic = ηnicT (L)/S, where nic is
the MVNF i in cluster c. Let pnic be the popularity of MVNF
nic, then the probability of the MVNF nic busy per second is
expressed by:

p(MVNF)
nic =

FSpnic
T (L)

· tnic = Fηnicpnic , (12)

where i ∈ {1, 2, · · · , R− L} and c ∈ {1, 2, · · · , C}.
Define l̂(Mem)

n as the load of the CPU that a request to join
MVNF produces. Similar to l̂

(CH)
n , l̂(Mem)

n is also assumed
to be 1. The average CPU load of the single MVNF per
second is lnic = p

(MVNF)
nic l̂

(Mem)
n = Fpnicηnic . Finally, the

average CPU load of the MVNFs initially installed in member
vehicles in the c-th cluster could be calculated by l

(Ope)
n =∑

c∈{1,2,··· ,C} lnic =
∑
c∈{1,2,··· ,C} Fηnicpnic because of the

non-interfering among the MVNFs running in the member
vehicles. Therefore, when a member vehicle is operating, its
average CPU load per second is:

l(Ope) =
∑

i∈{1,2,··· ,R−L}

l
(Ope)
i =

∑
c∈{1,2,··· ,C}

FηnicP
(Mem).

(13)

From the above analysis, the power consumption calculation
of the system is mainly divided into two parts, including
the power consumption of CH vehicles l(CH) and the power
consumption of member vehicles l(Mem) = l(Ope) + l(Rep).
Therefore, the adaptive power consumption optimization mod-
el can be transformed into the following convex optimization
problem, that is, the considered power minimization problem
in this paper is formulated as follows:

min
L
LP

(
l(CH)

)
+ (R− L)P

(
l(Ope) + l(Rep)

)
s.t. 0 ≤ l(CH), l(Rep) + l(Ope) ≤ 1

T (L) ≤ T (Req), 1 ≤ L ≤ R
2

(14)

where T (Req) is the constraint of the average delay. The
constraint 1 ≤ L ≤ R/2 is introduced to ensure that there
is at least one CH vehicle and one member vehicle in each
cluster.

To minimize vehicles power consumption, the CPU load of
the CH and member vehicles, l(CH) and l(Mem), should be
optimized. According to the above, l(CH) =

∑C
n=1 ln

(CH) =∑c
n=1 Fηnqn/L, minimize the load of CH vehicle, that

is, solve min
∑C
n=1 ηnqn= min (η1q1 + η2q2 + · · ·+ ηCqC),

according to the Cauchy inequality theorem, we have

(q1η1 + q2η2 + · · ·+ qCηC)
(

1
η1

+ 1
η2

+ · · ·+ 1
ηC

)
≥
(√
q1 +

√
q2 + · · ·+√qC

)2 (15)

In this paper, we assume ηn = η, ∀n. Hence, the
minimization problem of the CPU load of the CH vehicles
is given as

min l(CH) =
Fη
(√
q1 +

√
q2 + · · ·+√qC

)2
LC

. (16)

Similarly, the minimization problem of the CPU load of the
member vehicles, produced by the operation of the deployed
MVNFs per second, is given as

min l(Ope) =
Fη
(√
q1 +

√
q2 + · · ·+√qC

)2
(R− L)C

. (17)

Therefore, the total power minimization problem is
reformulated as:

min
L
LP

(
min l(CH)

)
+ (R− L)P

(
min l(Ope) + ϕFSQ(U)

R−L

)
s.t. 0 ≤ l(CH), l(Rep) + l(Ope) ≤ 1

T (L) ≤ T (Req), 1 ≤ L ≤ R
2 .

(18)

IV. THE PROPOSED VEHICLE CLUSTERING ALGORITHMS

A. Selection of Optimal Clustering Value L Based on Energy
Consumption

K-means algorithm is efficient for the division of large data
sets, and the time complexity is nearly linear, but it is sensitive
to the initially selected mean vector, has a great impact on the
final clustering results, and is easy to fall into the local optimal
solution. Although the effect of fuzzy c-means algorithm is
better than k-means algorithm in practical application, because
it is a variant of K-means algorithm, it still needs to specify
the clustering value to cluster the samples in advance, which
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can not completely reduce the impact of the initial selection
point on the clustering results. Therefore, this paper proposes
a model based on the optimal energy efficiency to determine
the optimal clustering value L of vehicles, which replaces the
FCM algorithm to determine the clustering value by traversing
all the desirable values, which reduces the complexity of the
algorithm and the response time of vehicle clustering.

To determine the optimal cluster value L, it is necessary to
ensure that (14) is a convex, so as to effectively calculate
the optimal number of clusters and minimize the power
consumption of vehicles. Therefore, this optimization problem
needs to be solved in two cases. Under the condition of
meeting the convexity of the power consumption model,
the optimal number of clusters is determined by convex
optimization. When the model does not meet the convexity
condition, the optimal number of clusters L is found by
traversing the search algorithm. The selection process of the
optimal clustering value L is shown in Algorithm 1.

Algorithm 1 Selection of optimal clustering value L.
1: Phase 1: Define constraint set Λ
2: if Λ ⊂ ∅ then,
3: end if
4: Phase 2: Determine the optimal number of clusters L
5: if 1 ≤ N ≤ (1 +R/2)C then
6: Lconv = argL

[
∂Pv(L)
∂L

= 0
]

7: if Pv (bLconvc) > Pv (dLconve) then Ltemp ← dLconve
8: else Ltemp ← bLconvc
9: end if

10: if Ltemp ∈ Λ then Lopt ← Ltemp
11: else if Ltemp ≤ min Λ then Lopt ← min (Λ)
12: else Lopt ← max (Λ)
13: end if
14: else find Lopt in set Λ by exhaustive search algorithm
15: end if
16: return Lopt

B. Angle-based Neighbor Detection

Before vehicle clustering, we need to build a list of
neighbors for each vehicle, which is based on information
collected by using the Global Positioning System (GPS)
receiver. The collected information includes accurate speed,
exact time, and real-time 3D geographic location (longitude,
latitude, and altitude). When performing the vehicle clustering,
the vehicles traveling in the opposite directions cannot be
grouped into the same cluster because they will lose contact
with each other. Thus we group these vehicles according to
their moving direction.

It is necessary to judge whether the vehicles are driving in
the same direction, which can be determined by calculating
the angle between the vehicle’s velocity vectors. As shown in
Fig. 2, (xr1 , yr1 ) and (xr2 , yr2 ) respectively represent vehicles
r1 and r2 locations at time t, whereas (x̂r1 , ŷr1) and (x̂r2 , ŷr2)
represent the locations at the time t + ∆t. According to the
cosine theorem, the angle θ between two specified velocity
vectors is computed as,

θ = arccos

(
∆xr1 ×∆xr2 + ∆yr1 ×∆yr2√

∆xr1
2 + ∆yr1

2 ×
√

∆xr2
2 + ∆yr2

2

)
,

(19)

where ∆xri = x̂ri − xri , ∆yri = ŷri − yri , i = 1, 2.
In most existing algorithms of vehicle clustering, the

vehicles are thought to be on different roads, even when their
angle directions are a little different. This assumption is not
applicable to real road scenarios. In this paper, we assume that
two vehicles with the included angle θ ≤ φ can be considered
to be moving in the same direction, where φ is the angle
threshold. Here, we set the threshold value φ = 18◦ [37].

Fig. 3. Calculation of vehicle movement angle.

C. Clustering Process of Vehicles

In a cluster-based VANET, a cluster has one CH and
multiple cluster members, and each vehicle can only be
allocated to one cluster to ensure that clusters do not intersect
each other [38]. In this paper, the FCM algorithm is used
for vehicle clustering, which is mainly based on speed,
distance, and movement direction. As a variant of K-means
algorithm, the FCM algorithm is different from the hard
partition of K-means, the membership degree of each sample
point in the sample set is obtained by optimizing the objective
function, and the fuzzy partition is carried out according to
the membership degree.

We define a fuzzy partition matrix U, in which the (r, l)-th
element url represents the membership of vehicle r to a cluster
l. The larger the value of url is, the higher the membership
degree. In addition, url satisfies the following constraints:

L∑
l=1

url = 1,

R∑
r=1

url > 0,

l = 1, 2, · · · , L,
r = 1, 2, · · · , R

(20)

Define M = {µ1, µ2, · · · , µL} as the mean vector
of the clusters, and the Euclidean distance dij =√

(xj − µi)(xj − µi)T is used to represent the paired distance
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between the vehicle dataset and the mean vector. The objective
function is:

J =

R∑
r=1

L∑
l=1

url
ed2rl, (21)

where e is the fuzzy parameter, generally e = 2. The Lagrange
multiplier method is used and the Lagrange dual function is
formulated as

L =

R∑
r=1

L∑
l=1

uerld
2
rl − λ

(
L∑
l=1

url − 1

)
(22)

Based on ∂L/∂λ = 0 and ∂L/∂url = 0, we have

url =
1

L∑
c=1

(
drl
dcl

) 2
e−1

, (23)

µr =

∑R
l=1 u

e
rlxl∑R

l=1 u
e
rl

. (24)

Divide the dataset X = {x1, x2, · · · , xR} containing the
attribute values of R vehicles into L clusters. Dataset X
includes three attributes: vehicle speed, vehicle distance, and
angle. The cluster division is characterized by matrix U. When
url = 0, it means that vehicle r does not belong to cluster
l; When url = 1, the representative vehicle r is included
into cluster l. The larger the value of url, the higher the
membership of vehicle r to cluster l. The steps of clustering
vehicles are shown in Algorithm 2.

Algorithm 2 The process of clustering based FCM.
Input: dataset X = {x1, x2, · · · , xR}, number of clusters L;
1: randomly select L samples from the dataset X as the initial mean vector
{µ1, µ2, · · · , µL};

2: Initialize the membership matrix with url ∈ (0, 1)
3: repeat
4: Cr = ∅ (1 ≤ r ≤ L)
5: for l = 1, 2, · · · , R do
6: calculate url of each data in dataset X for cluster Cr
7: calculate the Euclidean distance between xl and µr (1 ≤ r ≤ L)
8: calculate the value function (21) & determine xl belongs to
9: which cluster: λl = arg minr∈{1,2,··· ,L}J

10: cluster xl: Cλl = Cλl ∪ {xl}
11: end for
12: for r = 1, 2, · · · , L do
13: re-calculate the membership of xl to cluster Cr
14: calculate the new mean vector µ′

r
of each cluster

15: if µ′
r
6= µr then

16: update the mean vector µr to µ′
r

17: else
18: maintain the mean vector µr
19: end if
20: end for
21: until all the mean vectors are refreshed
Output: C = {C1, C2, · · ·CL}.

D. CH Election

1) Movement direction: After receiving the Hello message
and the message from its neighbor r′, vehicle r will determine
whether its neighbor is close or far away by calculating the
distance between the two messages.

~Prr′(t) = ~pr(t)− ~pr′(t). (25)

where ~pr(t) represents the position of vehicle r at time t. Note
that |~Prr′(t)| ≥ |~Prr′(t+ 1)| indicates that the vehicles r and
r′ get closer to each other; otherwise be farther.

2) Information entropy: According to [38], the measure-
ment value of vehicle stability can be obtained by calculating
the entropy. Variable α is the feature of the variable, and its
expression is as follows:

αr,r′ =
1

D

D∑
i=1

∣∣−→p r,r′ (ti)∣∣, (26)

where D represents the number of times the vehicle broadcasts
messages within the time interval ∆t, ti is the discrete
time point of vehicle broadcast message. The formula for
calculating the entropy of vehicle r is given by

Hr(t,∆t) = −
∑
l∈Fr Ql(t,∆t)log2Ql(t,∆t)

log2C(Fr)
, (27)

where Fr represents the collection of vehicle r and its
neighboring vehicles r′; C (Fr) is the number of vehicles to
the vehicle r; for the variable feature α of all vehicles, we
take its normalized value, namely

Ql (t,∆t) =
αr′,r∑
i∈Fr αr′,r

. (28)

3) Vehicle mobility values: According to [39], the mobility
value of vehicles can be defined to reflect the number
of vehicles traveling around a vehicle inside its scope of
transmission. At time t, define the mobility value of vehicle
ri:

Sri(t) =
Inri(t) +Outri(t)

Nri(t− 1)
, (29)

where Inri(t) and Outri(t) are used to represent the number
of vehicles entering and leaving the list of neighbors during
the time interval from t− 1 to t, respectively, and Nri (t− 1)
represents the number of vehicles that belong to the vehicle
ri’s neighbor list at the previous broadcast time t− 1.

4) Vehicle weighted mobility value: The vehicle ri’s
weighted mobility value at time t is

Sw
ri

(t) = w · Sri (t) + (1− w) · Swri (t− 1) . (30)

According to the weighted clustering algorithm [40], the
weighted sum of all vehicles in the cluster is calculated. The
vehicle with the minimum weighted sum is the cluster head.
Hence, the weighted sum of vehicles is calculated as:

Wr (t) = −w1 ·
∣∣∣−−→Pr,r′ ∣∣∣+w2 ·Swr,r′ (t)−w3 ·Hr (t,∆t) , (31)

where wi represents the weight factors, with
∑3
i=1 wi =

1, wi > 0.

V. SIMULATION RESULTS AND DISCUSSION

This paper uses MATLAB for simulation to compare the
power consumption under various cluster numbers to test the
output of the proposed algorithm. The performance is tested on
a random network composed of 100 vehicles, which are evenly
and randomly distributed on a standardized circular area with
F flows. Table I lists the parameter values of simulation.
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TABLE I
PARAMETER VALUES

Symbol Values Specification
S 30 the average number of requests in each flow
C 5 the number of VMs
a 0.3 level of utilization of power consumption model

Pb 274 W the power consumption of a vehicle when
the CPU is fully utilized

Pi 62.6 W the power consumption of a vehicles when the
CPU is idle

ϕ 0.01 the proportion of time to replace MVNF during T (L)

l̂(Rep) 0.005 CPU load generated by member vehicles
when replacing an MVNF

α 0.8 parameter of Zipfs law
l(Cap) 10 Gbps the average capacity of the VNF service chain
β 30 ms the deterministic sum of propagation
r 1-3 Gbps the average inflow rate

h 64/45π
the average number of hops counts

between the vehicles
H 0.8 the Hurst parameter of the fBm model

η 0.0006 the portion of time dedicated to process
a request in the VNF

The power consumption of the power efficient clustering
scheme (PECS) [31] algorithm and the proposed algorithm
over different numbers of clusters is shown in Fig. 4. It is
visible from Fig. 4 that, as the number of clusters increases at
the outset, the power consumption of both the PECS algorithm
and the proposed algorithm decreases. This is because the
increase in the number of CH vehicles makes it easier to
process the requests with high popularity. However, when
the number of clusters increases to a threshold, the power
consumption of both the PECS and the proposed algorithms
increases. This observation suggests that the requests with
small popularity cannot be processed efficiently. Besides,
we find that the proposed algorithm achieves lower power
consumption than the PECS algorithm no matter what number
of clusters are chosen. It is also observed that the greater the
value of F is, the more power consumption can be reduced
by the proposed algorithm. This is because, in the PECS
algorithm, the VM allocates CPU resources in the way of
average allocation. When the conventional task request flows
reach the edge server, the low popularity VNF still occupies
the CPU resources of the VM, and the idle CPU resources
cannot be dynamically allocated to a large number of high
popularity task flows. The algorithm proposed in this paper is
based on the different popularity of VNF dynamically adaptive
allocate CPU resources of VM.

In Fig. 5, the number of VNFs N is set to 600. As the
number of clusters increases, the power consumption of both
the PECS and proposed algorithms first decreases and then
increases, which shows a similar trend to Fig. 4. However,
when the value of L increases to a threshold, the power
consumption of both the PECS and proposed algorithms
increases much more than that in Fig. 4 with N = 400. It
means that the number of types of the requests is bigger than
that of the VNFs contained in the vehicles. Hence, additional
power consumption is required for the VNF replacement.

In Figs. 6 and 7, we compare the clustered NFV service
chaining (cNSC) [30] algorithm, the PECS algorithm, and the

Fig. 4. Power consumption of PECS and the proposed algorithm with
different number of clusters when N = 400.

Fig. 5. Power consumption of PECS and the proposed algorithm with
different number of clusters when N = 600.

proposed algorithm in terms of the total power consumption
and average delay. As shown in Fig. 6, with the rise in
flows, no matter which algorithm is applied, the total power
consumption of the vehicles increases. We note that the
proposed algorithm’s average power consumption is smaller
than that of the cNSC and PECS algorithms. Importantly, the
larger the number of task request flows is, the more obvious the
performance gap between the proposed algorithm and the two
baseline algorithms. In addition, when F > 30, 000, the power
consumption of the vehicles increases rapidly, consistent with
the theoretical explanation that the CPU load is too high due
to the large number of task requests.

In Fig. 7, we can see that no matter if the number of flows
varies, the average delay T (L) of the PECS and proposed
algorithms can be kept at an appropriate amount, T (Req ).
When the number of flows is small, the average delay of the
PECS and proposed algorithms is higher than that of the cNSC
algorithm. The reason behind this observation is that the PECS
and proposed algorithms aim to find the optimal number of
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Fig. 6. Power consumption comparison with different number of flows when
N = 400.

Fig. 7. Average delay comparison with different number of flows when
N = 400.

clusters to minimize the power consumption. In other words,
the cost of reducing the overall power consumption through
PECS and proposed algorithms is the increase in the delay
of processing tasks, however the cost is within an acceptable
range, that is, the delay of task processing is controlled within
T (Req ).

VI. CONCLUSION

To decrease the power consumption and improve the
duration of vehicle clusters, we propose an adaptive vehicle
clustering algorithm based on power minimization in the
VANET. The proposed algorithm firstly allocates the comput-
ing resource according to the popularity of different VNFs.
The optimal clustering number is determined using the fuzzy
C-means algorithm and the clustering head is selected based
on vehicles moving direction, entropy, and weighted mobility.
To validate the performance of the proposed algorithm,
we conduct the simulations. The proposed algorithm can
decrease vehicles’ power consumption while satisfying the

requirement of vehicle delay. In future work, we try to
introduce the distributed learning methods, such as federated
learning approach, into the VANET to realize intelligent and
low-complexity vehicle clustering.
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