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Abstract—Accurate downlink channel state information (CSI)
is required to be fed back to the base station (BS) in frequency
division duplexing (FDD) massive multiple-input multiple-output
(MIMO) systems in order to achieve maximum antenna diversity
and multiplexing. However, downlink CSI feedback overhead
scales with the number of transceiver antennas, a major hurdle
for practical deployment of FDD massive MIMO systems.
To solve this problem, we propose a compressive sampled
CSI feedback method based on deep learning (SampleDL).
In SampleDL, the massive MIMO channel matrix is sampled
uniformly in time/frequency dimension before being fed into
neural networks (NNs), which will reduce the computational
resource/time at user equipment (UE) as well as enhance the
CSI recovery accuracy at the BS. Both theoretical analysis and
normalized mean square errors (NMSE) results confirm the
advantages of the proposed method in terms of time complexity
and recovery accuracy. Besides, a suitable CSI feedback period
is explored by link level simulations, which aims to further
reduce the overhead of CSI feedback without degrading the
communication quality.

Index Terms—Channel state information, feedback, deep
learning, frequency division duplexing, massive MIMO.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the key technologies to support the high spectrum efficiency in
the fifth generation (5G) and beyond wireless communication
systems [1]–[3]. The significant gains of massive MIMO
technology rely on beamforming that requires accurate
downlink channel state information (CSI) at the transmitters
[4], [5]. In frequency division duplex (FDD) massive MIMO
systems, receivers need to estimate the downlink CSI from

This work was supported in part by the JSPS KAKENHI under Grant
JP19H02142, Major Project of the Ministry of Industry and Information
Technology of China under Grant TC190A3WZ-2, National Natural Science
Foundation of China under Grant 61901228, the Summit of the Six Top
Talents Program of Jiangsu under Grant XYDXX-010, the Program for High-
Level Entrepreneurial and Innovative Team under Grant CZ002SC19001,
the project of the Key Laboratory of Universal Wireless Communications
(BUPT) of Ministry of Education of China under Grant KFKT-2020106.
(Corresponding authors: Guan Gui; Hikmet Sari)

J. Wang and G. Gui, and H. Sari are with the College of Telecom-
munications and Information Engineering, Nanjing University of Posts and
Telecommunications, Nanjing 210003, China. (e-mail: {2018010223, guiguan,
hikmet}@njupt.edu.cn).

T. Ohtsuki is with the Department of Information and Computer Science,
Keio University, Yokohama 223-8521, Japan (e-mail: ohtsuki@ics.keio.ac.jp).

B. Adebisi is with the Department of Engineering, Faculty of Sci-
ence and Engineering, Manchester Metropolitan University, UK (Email:
b.adebisi@mmu.ac.uk).

H. Gacanin is with the Faculty of Electrical Engineering and Infor-
mation Technology, RWTH Aachen University, Aachen, Germany (Email:
harisg@ice.rwth-aachen.de).

the reference signals first and then feed them back to the
transmitters, as channel reciprocity does not exist exactly
between different frequency bands [6]. However, the CSI
feedback overhead is restricted due to the limited uplink
resources assigned to CSI feedback. In addition, the size of
downlink CSI scales with the number of the antennas, which
causes the CSI feedback overhead of FDD massive MIMO
systems extremely high. This is a major hurdle for the practical
deployment of FDD massive MIMO systems. Hence, it is
crucial to provide accurate downlink CSI for transmitters with
limited CSI feedback overhead. To reduce the overhead of
CSI feedback, the core idea of the existing methods is that the
receivers convey the downlink CSI to the transmitters using
limited bits, also refers as limited feedback [6].

Traditional limited feedback methods are mainly based on
codebook and compressive sensing (CS). In codebook-based
methods [7]–[11], the feedback information is the binary
index of the codeword chosen in the pre-defined codebook.
In massive MIMO systems, however, the codebook size will
increase exponentially with large number of antennas, which
make codebook based look-up approach for CSI feedback
infeasible. The CS-based methods [12]–[14], by utilizing the
spatial and temporal correlations of channel, transform the
correlated CSI into an uncorrelated sparse vector for feedback.
However, these traditional methods need complicated iterative
process and cause too long CSI feedback delays to satisfy the
low latency requirements. Hence, new advanced methods are
required to solve the technical challenge.

In recent years, inspired by the powerful ability of deep
learning (DL), many DL-based method have been successfully
developed in wireless communications [15]–[20]. To break
through the performance of the conventional limited feedback
methods, C.-K. Wen et al. [21] first proposed a DL-based
limited CSI feedback method and pointed out that DL has
potential to discover the inherent structure of CSI and thereby
it is a good solution for limited CSI feedback. C.-K. Wen et al.
[21] designed an autoencoder network (called CsiNet) by using
convolution and fully connected layers for CSI compression
and recovery. That paper [21] showed that the CsiNet recovers
CSI with improved accuracy at the same compression ratios
and performs multifold times faster than that of some CS-
based approaches including an iterative thresholding algorithm
[22] and the denoising-based approximate message passing
algorithm [23]. Based on the CsiNet, a series of DL-
based CSI feedback methods were proposed by considering
more practical conditions [24]–[27]. Considering the temporal
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correlation in time-varying channels, [24] extended CsiNet
with three long short term memory (LSTM) layers to explore
the temporal correlation between the current feedback and
the previous CSI for further enhancing the reconstruction
quality. Similarly, to utilize the temporal correlation in the
time-varying channels, [26] introduced a convolutional LSTM
(ConvLSTM) layer to CsiNet and achieved better accuracy
performance than [24]. [25] explored the channel reciprocity
between the uplink CSI and the downlink CSI to improve
the CSI recovery quality. Considering the practical noisy
feedback link, [27] proposed a specific noise extraction unit
for codeword denoising. Problems including quantization,
multiple compression ratios, and security in CSI feedback are
first pointed out in [28], [29]. Different from the above related
works considering CSI feedback as a stand-alone module,
[30] proposed an innovative end-to-end precoding scheme
for FDD downlink systems. In [30], the received pilots are
mapped into feedback bits and the BS maps the feedback bits
into precoding matrix directly. The joint design of channel
feedback and precoding achieves outstanding performance and
deserves further exploration. The aforementioned existing DL-
based CSI feedback methods can work well in multiple-input
single-output (MISO) systems. To the best of our knowledge,
no paper has reported the same for massive MIMO systems.
The main challenge is that the size of massive MIMO channel
is large and the computational complexity of CSI compression
increases significantly.

In this paper, we propose a compressive sampled CSI
feedback method based on deep learning (SampleDL) for
FDD massive MIMO systems. By exploiting the channel cor-
relations in time/frequency dimension, the method combines
sampling with neural networks (NNs) to compress the massive
MIMO channel in three dimensions (i.e., time, frequency, and
space). Specifically, the proposed method reduces the size of
the massive MIMO channel by sampling in time/frequency
dimension and then compress the sampled channel in space
dimension by NNs. This approach reduces the computational
resource/time at UE as well as enhances the CSI recovery
accuracy at BS. We evaluate the performance of the proposed
SampleDL method with the 5G new radio clustered delay
line MIMO link-level fading channel (nrCDLChannel) model
that follows 3GPP TR 38.901 specifications [31]. Our results
demonstrate that the proposed SampleDL method outperforms
the DL-based CSI compression method without sampling in
terms of computational complexity and recovery accuracy. We
also provide discussions on how often the receivers should
perform feedback with considerable communication quality
by link-level simulations in order to reduce the CSI feedback
overhead.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a single-cell FDD massive MIMO downlink
system where the base station (BS) with Nt antennas and the
user equipment (UE) with Nr antennas. The system adopts
orthogonal frequency division multiplexing (OFDM) over Nf

subcarriers. The received signal at n-th subcarrier is

yn = HnPnxn + wn (1)

where xn ∈ CNr is the vector of transmitted data, Pn ∈
CNt×Nr is the precoding matrix at BS, Hn ∈ CNr×Nt is the
channel matrix between Nt transmit antennas and Nr receive
antennas on the n-th subcarrier and wn ∈ CNr is the additive
white Gaussian noise (AWGN) vector. In the FDD massive
MIMO downlink system, the UE needs to convey the downlink
CSI to the BS for designing Pn or other technologies, which
is also known as CSI feedback. In this paper we consider
nrCDLChannel model that conforms to 3GPP TR 38.901
specifications [31]. The downlink CSI matrix H of one time
slot is a Nf -by-Ns-by-Nr-by-Nt complex array, where Ns

denotes the number of OFDM symbols. The total number of
feedback parameters is NfNsNrNt, which consume amounts
of limited uplink bandwidth when Nr or Nt is large. In
general, the downlink CSI feedback process at UE consists of
three steps including compression, quantization and entropy
encoding. The BS obtains the downlink CSI by implementing
inverse operations. In this paper, we assume that the feedback
link is error free and the entropy encoding/decoding process is
omitted when train the neural network same as in [21] because
it is lossless.

In detail, when the UE estimates the downlink CSI, the
dimensionality reduction of H is done first. Then the UE
quantizes the compressed downlink CSI with limited bits
for further reducing the feedback overhead and practical
transmitting. Let fC(·) and fQ(·) denote the compression
function and quantization function, respectively. The final
values of downlink CSI that the BS receives can be given
as

Hq
c = fQ(fC(H,Φ1)) (2)

where Φ1 denotes the parameters of the compression
function. When the BS receives Hq

c , the dequantization
and decompression will be used for recovering the original
downlink CSI. Let functions f−1

C (·) and f−1
Q (·) denote the

decompression and dequantization operations, respectively.
The recovered downlink CSI at BS is obtained as

Ĥ = f−1
C (f−1

Q (Hq
c),Φ2) (3)

where Φ2 denotes the parameters of the decompression
function. From (2) and (3), it can be observed that quantization
errors and compression loss dominate the feedback errors.
To avoid architectural change and parameter updating at
the BS/UE under different number of quantization bits, this
paper first focuses on the downlink CSI compression and
decompression without considering the quantization errors by
combining (2) and (3) using mean square errors (MSE) as

(Φ̂1, Φ̂2) = arg min
Φ1,Φ2

∥∥H− f−1
C ((fC(H,Φ1)),Φ2)

∥∥2

2
. (4)

After obtaining the well trained compression/decompression
model, quantization are considered when evaluating the
accuracy performance of the proposed method for downlink
CSI compression and recovery.

III. THE PROPOSED SAMPLEDL METHOD

By exploiting the channel correlations in time, frequency
and space dimensions, this paper proposes a CSI compression
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and decompression method by combining sampling with deep
learning, i.e., SampleDL method. The detailed procedure of
the proposed SampleDL method is shown in Fig. 1. In this
section, we present the proposed SampleDL method by three
parts including CSI compression at UE, CSI recovery at BS
and the structure of NNs used in SampleDL method.

A. CSI Matrix Compression at the UE

In order to conform to the processing structure of the NNs,
the dimensions of H are first reshaped into Nf × Ns × Np

without changing the inherent structure of the channel, where
Np = Nr × Nt denotes the number of transceiver antennas.
Theoretical wireless channel models [33] have shown that
the channel gain is highly correlated over coherence time
and between adjacent subcarriers of a wide frequency band.
Grouping of neighboring subcarriers is a method of CSI matrix
compression in 802.11n/ac standards [5], [34]. Inspired by the
prior knowledge of channel correlations in time and frequency
dimensions, the first step of SampleDL method is to compress
the CSI matrix from time/frequency dimension by sampling,
see Fig. 1. The detailed sample operations include sampling
Nfs elements per Nf subcarriers and sampling Nss elements
per Ns realizations, by which the UE compresses the full CSI
matrix to the sampled CSI H̃s ∈ CNfs×Nss×Np without any
computation. The sampling ratio in the first step is defined as
Rs = Rfs×Rss, where Rfs = Nfs/Nf and Rss = Nss/Ns.
One example of uniform sampling method is shown in Fig. 2.

 

Error free 

feedback

~
C-Net

D-Net

R-Net

Sampling

Compression

DecompressionRecovery

UE

BS
Interpolating

Fig. 1. The procedure of the SampleDL method where Nf = 8, Ns = 4,
Nr = 2, Nt = 2, Rfs = 1/2, Rss = 1/2, Rc = 1/2.

In the wireless multi-path channel model, channel gains
of a set of antennas have a hidden relationship [35], [36].
Considering the channel correlation in space dimension,
the second step of SampleDL method is to compress the
sampled CSI from space dimension. The detailed compression
operation is compressing Np elements in space dimension of
H̃s into Npc elements by a compression NN (C-Net), by
which the UE obtains the final compressed downlink CSI
H̃c ∈ CNfs×Nss×Npc , see Fig. 1. The space compression ratio
in the second step is defined as Rc = Npc/Np. After sampling
and compression, the final number of feedback parameters is
Nfs × Nss × Npc. The total compression ratio is defined as
RT = Rs ×Rc.

B. CSI Matrix Recovery at the BS

We assume that the UE feeds the compressed CSI H̃c back
to the BS through the error free feedback link. The assumption
is justifiable because the feedback link is usually protected
using error correction coding and hence has a very low error
probability [37]. When the BS receives the compressed CSI
H̃c, the first step is to recover H̃s by a decompression NN
(D-Net). The recovered sampled downlink CSI is denoted as
H̃e

s. The second step is to interpolate H̃e
s with 0 to restore

its dimensions to the original dimensions Nf ×Ns ×Np and
put the interpolated CSI to refine NN (R-Net) to recover the
real CSI H. The interpolated H̃e

s is denoted as H̃e
so which

can be regarded as a coarse CSI matrix. One example of the
sampling and interpolating process is shown in Fig. 2. The
R-Net recovers the missing information of H̃e

so by exploiting
the channel correlations in time and frequency dimensions,
and outputs the recovered downlink CSI Ĥ.

S
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Fig. 2. The uniform sampling and interpolating process where Nf = 8,
Ns = 4, Nr = 1, Nt = 1, Rfs = 1/2, Rss = 1/2.

C. The Network Structure of C-Net, D-Net and R-Net

DL can discover the inherent structure of data and thereby
provide solutions for our problems that aim to explore channel
correlations in time, frequency and space dimensions. Csi-
Net [21], the state-of-the-art DL solution for CSI feedback,
is not suitable for processing the massive MIMO channel
matrix in this paper. The reason is that the number of feedback
codewords of the downlink CSI H ∈ CNf×Ns×Nr×Nt is
129024 in this paper, which is too large to be compressed by
the fully connected layer that is used in Csi-Net. To resolve this
problem, we apply 3D convolution layer (Conv3D) to the C-
Net, D-Net and R-Net. The relationship between C-Net, D-Net
and R-Net are shown in Fig. 1. C-Net and D-Net are trained
together by end-to-end learning. The network structure of C-
Net and D-Net is shown in Fig. 3 where different types of
neural network layers are on different colors and some hyper
parameter settings of them are shown. The C-Net consists
of six Conv3D layers for feature extraction and one Conv3D
layer for compression. Different from feature extraction layers,
the strides of compression layer are (Rc, 1, 1). Different space
compression ratios can be achieved by adjusting the value of
Rc. However, the strides of all feature extraction layers are
(1, 1, 1) for just learning the features of H̃s without changing
the size of it. Through error free feedback, the output of the C-
Net H̃c arrives at the BS and is fed into the D-Net to recover



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, XXX 2020 4

the sampled downlink CSI H̃s. The first layer of the D-Net is
Conv3DTranspose layer for decompressing H̃c and obtaining
the coarse H̃s. Notably, the strides of Conv3DTranspose layer
are same as that of compression layer in the C-Net. Following
the decompression layer, there are three residual networks to
refine the coarse H̃s and finally output the estimated sampled
downlink CSI H̃e

s by exploiting the channel correlation in
space dimension. Each residual network consists of three
Conv3D layers. For all Conv3D layers in the C-Net and the
D-Net, the activation function is leaky rectified linear unit
(Leaky ReLU), the kernel size is 3× 3× 3 and the parameter
padding is set as “same” for keeping the size of the input
data unchanging. We train the C-Net and the D-Net by using
adaptive moment (Adam) algorithm. The loss function is the
MSE function which is defined as

F1 =
∥∥∥H̃s − H̃e

s

∥∥∥2

2
(5)

where ‖·‖2 denotes the Euclidean norm.
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Fig. 3. The network structure of the C-Net and the D-Net.
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Fig. 4. The network structure of the R-Net.

After training the C-Net and the D-Net, the BS interpolates
the output of D-Net H̃e

s with 0 to restore its dimensions to the
original dimensions Nf × Ns × Np and use the interpolated
CSI to train R-Net for recovering the original downlink CSI
H. The network structure of the R-Net is shown in Fig. 4.
The R-Net only consists of seven Conv3D layers and one
Batch Normalization layer for low complexity. Conv3D layers
are used to learn the channel correlations in time/frequency
dimension. Batch Normalization layer is used to prevent R-
Net overfitting. The activation functions of the first six Conv3D
layers are Leaky ReLU and the activation function of the last
Conv3D layer is a linear function. The optimizer of R-Net is
also Adam and the loss function via MSE is defined as

F2 =
∥∥∥H− Ĥ

∥∥∥2

2
(6)

where Ĥ is the output of the R-Net. In the proposed
SampleDL method, the well trained C-Net, D-Net and R-
Net under a specific compression ratio can work well with
different quantization bits (which will be demonstrated by
the experimental results in the next section). However, the
C-Net, D-Net and R-Net need to be retrained for different
compression ratios

{
R1

T , R
2
T , · · · , RN

T

}
, where N is the

number of different compression ratios. The detailed procedure
of the SampleDL method is given in Algorithm 1.

Algorithm 1: The proposed SampleDL method.
Input: training data: Dtrain, testing data: Dtest,

quantization bits: B, different total compression
ratios:

{
R1

T , R
2
T , · · · , RN

T

}
, maximum epoches:

Emax.
1 [Off-line training stage]:
2 for r = R1

T , R
2
T , · · · , RN

T do
3 Randomly initialize the parameters of C-Net, D-Net,

R-Net as Φ0
C−Net, Φ0

D−Net, and Φ0
R−Net,

respectively;
4 for i = 1, 2, · · · , Emax do
5 for H in Dtrain do
6 Sample H and then obtain the H̃s;
7 Update Φi

C−Net, Φi
D−Net via end-to-end

training with H̃s;
8 end
9 end

Output: Φr−final
C−Net , Φr−final

D−Net .
10 for i = 1, 2, · · · , Emax do
11 for H in Dtrain do
12 Update Φi

R−Net via training with H̃e
so and H;

13 end
14 end

Output: Φr−final
R−Net .

15 end
16 [Online testing stage]:
17 for r = R1

T , R
2
T , · · · , RN

T do
18 for H in Dtest do
19 H

Sample→ H̃s;
20 H̃s

C-Net→ H̃c;
21 Quantize H̃c with B bits and then obtain H̃q

c ;
22 H̃q

c
D-Net→ H̃e

s ;

23 H̃e
s

Interpolate→ H̃e
so;

24 H̃e
so

R-Net→ Ĥ;
25 end

Output: Ĥ when total compression ratio is r.
26 end

IV. EXPERIMENTAL RESULTS

This section describes the simulation parameter settings
including 5G new radio (NR) link, channel model, training
strategy, comparing methods and hyper parameter settings of
NNs. Then we analyze the time complexity and accuracy
performance of the proposed SampleDL method.
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A. Parameter Settings

We evaluate the performance of the proposed SampleDL
method on the nrCDLChannel model that conforms to 3GPP
TR 38.901 [31]. The training data and testing data are
generated by utilizing a link-level simulation for the 5G
NR Release 15 of MATLAB, which simulates the physical
downlink shared channel (PDSCH) throughputs of a 5G NR
link [32]. The parameters of the nrCDLChannel model are
set as Table I. By setting 80,000 different seeds, the link-level
simulation generates 80,000 channel data. The velocities of UE
of the 80,000 channel data are chosen uniformly and randomly
in {4.8, 24, 40, 60} km/h.

TABLE I
THE PARAMETER SETTINGS OF NRCDLCHANNEL.

Parameters Values
Delay profile “CDL-A”

Delay spread (s) 1.29× 10−7

Carrier frequency (Hz) 2.1× 109

Velocity of UE (km/h) {4.8, 24, 40, 60}
The size of transmit antenna array Nt = 32

The size of receive antenna array Nr = 2

The number of subcarriers Nf = 72

The number of OFDM symbols Ns = 14

Subcarrier spacing (Hz) Fs = 1.5× 104

seeds [1, 80000]

In the SampleDL method, the C-Net and the D-Net are
trained together by end-to-end learning. After the C-Net and
the D-Net has been well trained, the output of the D-Net is
interpolated with 0 to restore their original dimensions and
then constitute the data for training the R-Net. To verify the
superiority of the proposed SampleDL method, we present two
comparing methods. One comparing method is Non-sample
method of which the whole procedure is shown in Fig. 5.
The only difference between the Non-sample method and
the SampleDL method is that the sampling and interpolating
steps are removed in the Non-sample method, i.e. the original
downlink CSI H is the input of the C-Net and the output
of the D-Net is the input of the R-Net. The Non-sample
method can accomplish different total compression ratios RT

by adjusting the strides (Rc, R
s
c, R

f
c ) of compression layer in

the C-Net. Rc denotes the space compression ratio same as
in SampleDL method. Rs

c and Rf
c denote the compression

ratio in time dimension and frequency dimension, respectively.
The strides of decompression layer in the D-Net are set
as same as the strides of compression layer in C-Net to
recover the compressed CSI matrix to its original size. Another
comparing method is channel reconstruction network (CRNet)
in [38]. In order to apply the CRNet to the problem this paper
want to solve, we replace the fully connected (FC) and 2D
convolution layers in CRNet with Conv3D layer but keep
its core design of decoder, i.e. two CRBlocks. The network
structure of the CRNet in this paper is shown in Fig. 6, where
{2, 4, 7, 8, 16, 32} denotes the number of filters of each layer
and d × h × w denotes the kernel size of each layer. The
design of the compression layer and the decompression layer

in CRNet is the same as in the Non-sample method, which can
accomplish different total compression ratios RT by adjusting
the strides (Rc, R

s
c, R

f
c ).
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Fig. 5. The whole procedure of non-sample method, where Nf = 8, Ns = 4,
Nr = 2, Nt = 2 and the strides size in compression/decompression layer is
(2, 2, 2).
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The hyper parameter settings of NNs and training strategy
in Non-sample method are the same as those in the proposed
SampleDL method. The hyper parameter settings of NNs in
SampleDL/Non-sample method are listed in Table II. In detail,
if the validation loss does not decrease during 10 epochs, the
learning rate drops to 0.5 times of the original learning rate
in R-Net when the total compression ratio RT is 1/84 and the
learning rate drops to 0.8 times of the original learning rate
in any other training process. Besides, if the validation loss



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, XXX 2020 6

does not decrease during 25 epochs, the training process will
be stopped. In Table II(a), the training data and the validating
data are the first 40,000 data in the total 80,000 channel data,
which also are the training data and the validating data for
CRNet. In Table II(b), the training data and the validating data
are the data from 40,001 to 70,000 in the total 80,000 channel
data. The last 10,000 data in the total 80,000 channel data are
used to test the performance of the three well trained methods,
i.e., the proposed SampleDL method, the Non-sample method
and CRNet. The hyper parameter settings for CRNet are
different for different RT . The initial learning rate is 0.0005
and the learning rate drops to 0.1 times of the original learning
rate if the validation loss does not decrease during 5 epochs
when RT = 1/84. The initial learning rate is 0.0005 and
the learning rate drops to 0.5 times of the original learning
rate if the validation loss does not decrease during 5 epochs
when RT = 1/168. The initial learning rate is 0.001 and the
learning rate drops to 0.5 times of the original learning rate
if the validation loss does not decrease during 5 epochs when
RT = 1/336 and RT = 1/672. Besides, the training process
will be stopped if the validation loss does not decrease during
11 epochs for any RT .

We explore the performance of the Non-sample method,
CRNet and the proposed SampleDL method in different total
compression ratios RT . The parameter settings responding
to the different RT are listed in Table III. In detail, a
uniform sampling method, see Fig. 2, is used in the proposed
SampleDL method.

TABLE II
THE HYPER PARAMETER SETTINGS OF NNS IN SAMPLEDL/NON-SAMPLE

METHOD.

(a) C-Net and D-Net.

Parameters Values
Kernel size (3, 3, 3)

Initial learning rate 0.001

Batch size 64

The number of training data 30000

The number of validating data 10000

(b) R-Net.

Parameters Values
Kernel size (7, 7, 7)

Initial learning rate 0.001

Batch size 64

The number of training data 25000

The number of validating data 5000

B. Time Complexity Analysis

The time complexity of the NNs or algorithms is
one of important factors affecting the quality of wireless
communications. The time complexity of NNs is dependent
on the number of floating point operations (FLOPs). For one
Conv3D layer, the number of FLOPs is

FLOPs = 2×Ci×K1×K2×K3×Do×Ho×Wo×Co (7)

TABLE III
THE PARAMETER SETTINGS CORRESPONDING TO DIFFERENT RT .

(a) The proposed SampleDL method.

RT 1/84 1/168 1/336 1/672

Rfs 1/13 1/13 1/13 1/13

Rss 1/4 1/4 1/4 1/4

Rc 1/2 1/4 1/8 1/16

(b) The Non-sample method and the CRNet.

RT 1/84 1/168 1/336 1/672

Strides size in
CL and DCL (2, 7, 6) (4, 7, 6) (8, 7, 6) (16, 7, 6)

where Ci is the number of input tensor channels, Co is number
of output tensor channels, (K1,K2,K3) is the kernel size, and
Do, Ho, Wo are the depth, height, width of the output tensor
respectively. The total number of FLOPs of the SampleDL
method, CRNet and the Non-sample method are shown in
Table IV.

The FLOPs of the Non-sample method and the SampleDL
method all consist of the FLOPs of the C-Net, the D-Net and
the R-Net. As the total compress ratio increases, the size of the
output tensor of the C-Net and that of the input tensor of the
U-Net will become smaller, so the FLOPs will decrease. In the
SampleDL method, the input of the C-Net and the output of the
D-Net are sampled data of which the size is 1/42 of the original
downlink CSI data. This will reduce computation resource at
UE and BS. Results in Table IV show that the FLOPs of the
SampleDL method is 6.2848788× 109 less than that of Non-
sample method, which will reduce the time complexity of the
whole CSI feedback process. The total number of FLOPs of
CRNet is 8.11562×107 less than that of Non-sample method,
which is also large because of the high dimensions of the
channel matrix.

TABLE IV
THE TOTAL NUMBER OF FLOPS OF THE SAMPLEDL METHOD, CRNET

AND THE NON-SAMPLE METHOD.

RT Non-sample method CRNet SampleDL method

1/84 2.14851132× 1010 2.14039570× 1010 1.52002344× 1010

1/168 2.14850302× 1010 2.14038740× 1010 1.52001514× 1010

1/336 2.14849887× 1010 2.14038325× 1010 1.52001099× 1010

1/672 2.14849680× 1010 2.14038117× 1010 1.52000892× 1010

C. Recovery Accuracy Analysis

To analyze the recovery accuracy of the proposed
SampleDL method, normalized MSE (NMSE) is used as the
evaluation metric, which is defined as

NMSE = E
{∥∥∥H− Ĥ

∥∥∥2

2
/ ‖H‖22

}
(8)

where H is the original downlink CSI and Ĥ is the recovered
downlink CSI at the BS. The NMSE performance of the
SampleDL method, CRNet and Non-sample method is shown
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in Table V and the best NMSE performance results under the
same compression ratio are presented in bold font.

TABLE V
THE NMSE (dB) PERFORMANCE OF THE SAMPLEDL METHOD AND THE

NON-SAMPLE METHOD.

RT
NMSE (dB)

Non-sample method
NMSE (dB)

CRNet
NMSE (dB)

SampleDL method
1/84 −22.42 −22.63 −31.28
1/168 −18.95 −20.25 −30.13
1/336 −14.05 −18.22 −29.09
1/672 −11.05 −11.79 −18.38

The NMSE performance of CRNet is better than the
Non-sample method, which demonstrates the advantage of
the CRBlock module in the CRNet. However, Table. V
shows that the SampleDL method outperforms CRNet and
the Non-sample method at all the compression ratios.
Especially, the NMSE performance of Non-sample method
decreases significantly when RT is 1/336. However, the NMSE
performance of the SampleDL method still maintains high
level when RT is 1/336, which is better than that of Non-
sample method with about 15.04 dB gains. Furthermore, the
NMSE performance of the SampleDL method when RT is
1/672 is comparable with that of the Non-sample method when
its RT is 1/168, which means that the SampleDL method can
achieve the same downlink CSI feedback accuracy at four
times lower cost than Non-sample method.

To apply the proposed SampleDL method to actual
communication scenarios, quantization is introduced to the
proposed downlink CSI feedback process, i.e. the compressed
codewords are quantized by binary number before being
transmitted to the BS. We only test the SampleDL method
and the Non-sample method in the following parts due to
space limitations. We use uniform quantization method in
the SampleDL method and the Non-sample method, and the
NMSE performance under different quantization bits in terms
of different compression ratios is shown in Fig. 7 and Fig. 8.
Fig. 7 shows that when the number of quantization bits is 8
the NMSE performance of the SampleDL method under 1/336
compression ratio degrades less than 2 dB compared with the
performance without quantization, and the NMSE performance
under the other three compression ratios degrades less than
1 dB compared with the performance without quantization.
Simulation results in Fig. 8 also show that when the number
of quantization bits is 8 the NMSE performance of Non-
sample method under 1/84 and 1/672 compression ratios
degrades less than 1 dB compared with the performance
without quantization. The above results demonstrate that
the well trained downlink CSI feedback methods without
considering quantization in training stage is applicable in
practical communication scenarios.

However, when the number of quantization bits is 4 the
NMSE performance of the SampleDL method under all
compression ratios degrades more than 10 dB compared
with the performance without quantization. Fortunately,
the downlink CSI recovery accuracy of the SampleDL
method under 1/168 compression ratio when the number of

quantization bits is 6 is better than the performance under
1/84 compression ratio when the number of quantization bits
is 4, and the downlink CSI feedback overhead of the first
scheme is less than the overhead of the second scheme. The
simulation results of the Non-sample method in Fig. 8 show
the same phenomenon. The phenomenon demonstrates that
the downlink CSI recovery accuracy of the nrCDLChannel
model is more sensitive to the number of quantization bits
than to the compression ratio. It can give a guide to practical
communication that increasing the compression ratio is a better
way to reduce downlink CSI feedback overhead than reducing
the number of quantization bits.

Total compression ratio
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Fig. 7. The NMSE performance of SampleDL method under different
quantization bits in terms of different compression ratios.
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Fig. 8. The NMSE performance of Non-ample method under different
quantization bits in terms of different compression ratios.

A generalizable NN architecture is important in practical
applications. To evaluate the generalizability of SampleDL
method for velocity of UE, the NMSE performance in terms of
different moving speeds and different compression ratios are
shown in Fig. 9. From Fig. 9 we can see that the fluctuation
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of NMSE value is less than 1dB for all RT when the velocity
of UE is less than 60 km/h. This demonstrates that using
the dataset generated under various moving speeds enable the
generalizability of the SampleDL method for velocity of UE.
When the velocity of UE is greater than 60 km/h, such as 80
km/h and 100 km/h, the NMSE performance of the SampleDL
method is still considerable. Fig. 9 shows that expanding
the range of velocity for generating dataset can improve the
generalizability of NNs over a larger speed range.
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Fig. 9. The NMSE performance of SampleDL method under different
velocities of UE in terms of different compression ratios.

D. Underlying Principles for the Success of SampleDL
Method

The gains of the SampleDL method may come from two
aspects. The first one is when the same NNs are used to
process the data here, the NNs can achieve better performance
for the data with small size than the data with large size. The
second one is that the sampling process in time and frequency
dimensions, which can be viewed as introducing the prior
knowledge of channel correlations in the two dimensions to
the SampleDL method, achieves better recovery performance
than the feature learning when using Conv3D layer in the
time and frequency dimensions. To explore how the data size
contributes to the gains of the SampleDL method, the C-Net
and D-Net are trained with sampled data and original data,
respectively in term of the same data processing, where the
C-Net just compresses the data in space dimension and the D-
Net recovers the compressed data to the size as the input size.
With the different space compression ratios Rc, the NMSE
performance of the two data sizes is shown in Table VI. It
can be observed that when the C-Net just compresses the
data in space dimension, the achieved performance of the
data with small size is better than the data with large size.
The experimental results evaluate that dimension reduction of
CSI matrix by sampling contributes to the gains of SampleDL
method. However, when the compression ratio is too large,
such as 1/16 in this experiment, the advantage of data
with small size decreases. It is reasonable that when the

compression ratio is too high, too much data information is
lost to accurately recover both data with small size and data
with large size.

To further evaluate the gains of dimensionality reduction of
data due to sampling, experiments in terms of different data
sizes and different sample methods were conducted. Similar
to Table VI NMSE was computed as the performance metric.
The experimental results are shown in Fig. 10. In Fig. 10,
Orig(14,72) denotes the original downlink CSI data with size
(64,14,72). First (7,36) denotes the sampled data with size
(64,7,36) that samples the first 7 OFDM symbols and the
first 36 subcarriers of the original downlink CSI data. Last
(7,36) denotes the sampled data with size (64, 7, 36) that
samples the last 7 OFDM symbols and the last 36 subcarriers
of the original downlink CSI data. First (4,6) denotes the
sampled data with size (64,4,6) that samples the first 4 OFDM
symbols and the first 6 subcarriers of the original downlink
CSI data. Mid (4, 6) denotes the sampled data with size
(64,4,6) that samples the middle 4 OFDM symbols and the
middle 6 subcarriers of the original downlink CSI data. Last
(4,6) denotes the sampled data with size (64,4,6) that samples
the last 4 OFDM symbols and the last 6 subcarriers of the
original downlink CSI data. Uni (4,6) denotes the sampled data
with size (64,4,6) with the uniform sample method as in Fig. 2.
Experimental results show that the NMSE performance of data
with different small sizes and different sampling methods are
all better than the original data with size (64,14,72), which
demonstrates the gains of dimensionality reduction of data
when using the same NNs to process the data.

TABLE VI
THE NMSE PERFORMANCE OF THE C-NET AND THE U-NET FOR

DIFFERENT DATA SIZES.

Rc NMSE (dB) / (64,14,72) NMSE (dB) / (64,4,6)

1/2 −30.25 −35.06 (15.90% ↑)
1/4 −28.93 −32.12 (11.03% ↑)
1/8 −23.46 −29.17 (24.34% ↑)
1/16 −10.60 −11.29 (6.51% ↑)

Besides, the performance of the same data size is different
under different sampling methods. Fig. 10 shows that First
(7,36) and Last (7,36) have different NMSE performance
at same compression ratios. And data with size (4,6) under
different sampling methods (First (4,6), Mid (4,6) and
Last (4,6)) has the same phenomenon. The above results
demonstrate that the gains of dimensionality reduction of data
is related to the inherent structure of the data to some extent.
From Fig. 10 we can also see that the performance of First
(7,36) is better than the performance of four kinds of data
with size (4,6) under the space compression ratio of 1/4. The
reason is that reducing the dimensionality of data can not
further improve the performance of the NN for some task
when the NN is big enough for the current data size, such
as (64,7,36). Similar to Table. VI, Fig. 10 also shows that
when the compression ratio is too large, such as 1/672, the
gains of dimensionality reduction of data decrease.

The results in Table V and Table VI show that the gains
of data with small size were lower than the total gains of
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Fig. 10. The NMSE performance of data with different sizes in terms of
different space compression ratios.

the SampleDL method, which demonstrates the gains of the
second aspect above mentioned in the SampleDL method. To
evaluate this gains, we conduct specific experiments where
the Non-sample method compress the CSI matrix just from
time/frequency dimension with 1/42 compression ratio, i.e. the
strides size in compression layer and decompression layer is
(1,7,6), and the SampleDL method directly interpolates the
sampled CSI with 0 and then feeds them into the R-Net to
recover the real CSI. The NMSE performance of the Non-
sample method and the SampleDL method under the above
conditions are -31.21 dB and -36.00 dB, respectively. It shows
that the recovery of sampling process outperforms the feature
learning of Conv3D layer in time/frequency dimension. In the
Non-sample method, to achieve the compression ratio 1/42
in time/frequency dimension, the strides of compression layer
in C-Net must be (1,7,6), which is limited compared with
sampling process which is flexible. The above results verify
the second reason why the SampleDL method outperforms the
Non-sample method.

E. Exploring the Suitable CSI Feedback Period by Link-level
Simulations

The longer the feedback period, the lower the feedback
overhead, but too long CSI feedback period may decrease the
communication quality significantly. To explore the suitable
CSI feedback period and its influence factors, the link-level
simulation experiments in terms of different CSI feedback
periods and communication conditions are conducted. In
detail, the link-level simulation implements the physical
downlink shared channel (PDSCH), downlink shared channel
(DL-SCH) and measures the PDSCH throughput of a 5G
NR link. Fig. 11 shows the link-level simulation pipeline,
in which the PDSCH demodulation reference signals (DM-
RS), PDSCH phase tracking reference signals (PT-RS) and
synchronization signal (SS) burst generation are omitted for

clarity. In the link-level simulation, the nrCDLChannel model
and perfect synchronization are adopted, and the downlink
CSI fed back to the BS is used for precoding. The evaluation
metric of communication quality in the link-level simulation
is throughput [32], which is defined as

Throughput =
Bt × 10−6

Fn × 10−2
Mbps, (9)

where Bt denotes the practical data bits the link-level
simulation transmits successfully, and Fn denotes the number
of 10 ms frames of the link-level simulation. The well trained
SampleDL and Non-sample networks based on the parameter
settings in the part A are applied in the link-level simulation
respectively, and the performance of the two methods are
compared. The parameter settings of channel model in the
link-level simulation are same as in Table I. The specific
parameter settings of the link-level simulation are shown in
Table VII. The length of the simulation in terms of the number
of 10 ms frames is 1,000. The signal-to-noise-ratio (SNR) is
defined per resource element (RE) at each UE antenna.

TABLE VII
THE SPECIFIC PARAMETER SETTINGS OF THE LINK-LEVEL SIMULATION.

Parameters Values
Number of 10ms frames 1000

Modulation scheme {64QAM, 256QAM}
Code rate 490/1024

SNR (dB) 5

Velocity of UE (km/h) {4.8, 15}
Downlink CSI feedback period (ms) {2, 5, 8, 10}
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Fig. 11. The implemented pipeline of the link-level simulation.

Fig. 12 shows the throughput performance of the link-level
simulation in terms of different CSI feedback periods (i.e.,
{5, 8, 10} ms) when the modulation scheme is 64QAM and
the velocity of UE is 4.8 km/h. The SampleDL and Non-
sample methods are applied in the simulation for feeding the
downlink CSI back to BS. The upper bound performance is
defined as the performance of the link level simulation when
the BS obtains the perfect downlink CSI with zero feedback
delay. From Fig. 12, it can be observed that the throughput
can achieve approximately 95.2% of the upper bound at first
three compression ratios by using the SampleDL method when
the CSI feedback period is 5 ms. When the compression
ratio is 1/672, the throughput still can achieve approximately
93.5% of the upper bound performance, which outperforms
3GPP Release 16 Type II codebook that achieves 89.34% of
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the upper bound throughput when the CSI feedback period
is 5 ms [39]. Compared with the SampleDL method, when
using the Non-sample method for downlink CSI feedback, the
throughput decreases slightly at the compression ratio 1/84
under 5 ms feedback period. Furthermore, the throughput
decreases approximately 5% when the compression ratios
are 1/168, 1/336 and 1/672 respectively. The above results
demonstrate that when using the SampleDL method to feed
downlink CSI back to BS, the CSI feedback period can be
set as 5 ms at the above communication conditions, which
reduce the feedback overhead by 5 times at cost of 5%
throughput of the upper bound performance. However, when
the CSI feedback period is made longer, such as 8 ms and
10 ms, the throughput decreases significantly under both of
the SampleDL and the Non-sample methods, which cannot
support the practical communications.

 

5 ms

8 ms

10 ms

Upper bound

SampleDL method

Non-sample method

Fig. 12. The throughput performance of the link-level simulation in terms of
different CSI feedback periods, different CSI feedback methods and different
CSI compression ratios, respectively, when the modulation scheme is 64QAM
and the velocity of UE is 4.8 km/h.

To explore the influence factors on the CSI feedback
periods, link-level experiments in terms of different velocities
of UE and different modulation schemes were conducted.
Fig. 13 shows the experimental results when the modulation
scheme is 64QAM and the velocity of UE is 15 km/h.
The experimental results demonstrate that the throughput
performance (just achieve approximately 32% of the upper
bound performance) decreases significantly under 5 ms CSI
feedback period when the velocity of UE is 15 km/h, which
can not support the practical communications. When the CSI
feedback period is made shorter, such as 2 ms, the throughput
of the link-level simulation at all the CSI compression ratios by
using the SampleDL method for downlink CSI feedback can
achieve approximately 98% of the upper bound performance.
The reason is that when the velocity of UE increases the CSI
changes faster, which cause the CSI before 5 ms is outdated
for current communications. Similar to Fig. 12, the throughput
of the link-level simulation using the Non-sample method for
downlink CSI feedback is lower than that of the link-level

 

 

 

Upper bound

SampleDL method

Non-Sample method

2 ms
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Fig. 13. The throughput performance of the link-level simulation in terms of
different CSI feedback periods, different CSI feedback methods and different
CSI compression ratios, respectively, when the modulation scheme is 64QAM
and the velocity of UE is 15 km/h.
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Fig. 14. The throughput performance of the link-level simulation in terms
of different CSI feedback periods, different CSI feedback methods and
different CSI compression ratios, respectively, when the modulation scheme
is 256QAM and the velocity of UE is 4.8 km/h.

simulation using the SampleDL method. The above results
show that when the velocity of UE increases, the CSI feedback
period will be shorter and shorter to keep high throughput of
the communications, which further increases the CSI feedback
overhead. Fig. 14 shows the experimental results when the
modulation scheme is 256QAM and the velocity of UE is
4.8 km/h, which demonstrates that when the communication
quality requirements increase (such as increasing modulation
order) the CSI feedback period will also be shorter and shorter
to keep high throughput of the communications. The reason
is that higher modulation order requires more accurate CSI,
which can be supported by more frequent CSI feedback.
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The above simulation results demonstrate that lengthening
the CSI feedback period properly can reduce the downlink
CSI feedback overhead and can be applied in practical
wireless communication. However, the velocity of UE and the
communication quality requirements will affect the setting of
the CSI feedback period. How to trade off the communication
quality and the CSI feedback period adaptively is left as our
future work.

V. CONCLUSION

This paper proposed a SampleDL method for downlink
CSI feedback in FDD massive MIMO systems. By combing
compressive sampling with NNs, the proposed method
outperforms the method without sampling, in terms of
recovery accuracy and time complexity. Besides, we explored
the suitable CSI feedback periods by link-level simulations
to further reduce the CSI feedback overhead and guarantee
the communication quality. The simulation results showed
that lengthening the CSI feedback period properly is
applicable in practical communications. However, too long
CSI feedback period would decrease the communication
quality significantly. In the future work, we will explore how
to trade off the communication quality and the CSI feedback
period adaptively to further reduce the CSI feedback overhead.
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