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A B S T R A C T 

We present a random forest (RF) framework for predicting circumgalactic medium (CGM) physical conditions from quasar 
absorption line observables, trained on a sample of Voigt profile-fit synthetic absorbers from the SIMBA cosmological simulation. 
Traditionally, extracting physical conditions from CGM absorber observations involves simplifying assumptions such as uniform 

single-phase clouds, but by using a cosmological simulation we bypass such assumptions to better capture the complex 

relationship between CGM observables and underlying gas conditions. We train RF models on synthetic spectra for H I and 

selected metal lines around galaxies across a range of star formation rates, stellar masses, and impact parameters, to predict 
absorber o v erdensities, temperatures, and metallicities. The models reproduce the true values from SIMBA well, with normalized 

transverse standard deviations of 0.50–0.54 dex in overdensity, 0.32–0.54 dex in temperature, and 0.49–0.53 dex in metallicity 

predicted from metal lines (not H I ), across all ions. Examining the feature importance, the RF indicates that the o v erdensity 

is most informed by the absorber column density, the temperature is driven by the line width, and the metallicity is most 
sensitive to the specific star formation rate. Alternatively examining feature importance by removing one observable at a time, 
the o v erdensity and metallicity appear to be more driven by the impact parameter. We introduce a normalizing flow approach in 

order to ensure the scatter in the true physical conditions is accurately spanned by the network. The trained models are available 
online. 

K ey words: galaxies: e volution – galaxies: general – galaxies: haloes – quasars: absorption lines. 
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 I N T RO D U C T I O N  

ver recent years, there has been much effort to characterize the 
GM via quasar absorption line studies (see re vie ws by Putman,
eek & Joung 2012 ; Tumlinson, Peeples & Werk 2017 ; P ́eroux &
owk 2020 ). Many of the studies probe the strong transitions that

xist in the rest ultraviolet (UV) regime and which trace cool or
arm gas. Such studies are moti v ated by the wish to understand the
aryon cycle of gas flows in the CGM: accretion on to galaxies from
he IGM and satellite galaxies; expulsion of gas via stellar winds 
nd active galactic nuclei feedback; recycling of previously ejected 
aterial back on to galaxies. 
The physical conditions of the CGM are studied by retrieving 

inematics, spatial distributions, metallicities, densities, and tem- 
eratures from the absorption features (e.g. Stocke et al. 2013 ; 
ehner et al. 2014 ; 2018 , 2019 ; Savage et al. 2014 ; Werk et al.
014 ; Wotta et al. 2016 ; 2019 ; Keeney et al. 2017 ; Prochaska et al.
017 ; Qu et al. 2022 ). To extract physical conditions, absorption
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ystems are commonly fitted with Voigt profiles to model each 
bsorption component and obtain column densities, linewidths, and 
edshift-space positions. By running ionization models (typically 
sing CLOUDY , Ferland et al. 2017 ) and varying the input physical
arameters, a Bayesian search can be performed across parameter 
pace for the physical conditions of each absorber component using 
he ensemble of absorption properties as constraints. In such models 
he clouds are often modelled as plane–parallel slabs of gas with
n ionizing flux incident on one face, making the (simplifying) 
ssumption that each cloud is spatially isolated with single-valued 
roperties (e.g. Churchill, Vogt & Charlton 2003 ; Tripp et al. 2008 ;
erk et al. 2014 ; Fumagalli, O’Meara & Prochaska 2016 ; Keeney

t al. 2017 ; Prochaska et al. 2017 ). 
The analysis and interpretation of CGM observations poses many 

hallenges owing to the complex nature of the halo environment. The
hapes of absorption profiles are sensitive to the underlying phase 
tructure and likely contain contributions from different phases, for 
xample due to the motion of gas within the halo and the clumpy gas
tructure. Even within individual absorber systems the metallicity of 
he absorbing gas can vary and multiple gas phases may be present
Lehner et al. 2019 ; Zahedy et al. 2019 ; Chen et al. 2020 ; Sankar et al.
is is an Open Access article distributed under the terms of the Creative 
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020 ; Haislmaier et al. 2021 ; Sameer et al. 2021 ). Detailed analysis of
bsorption systems can give relative abundances of different ions that
onstrain the physical conditions, but this requires high-resolution
pectroscopy. Studies that use this technique have moved away from
he assumption of a single cloud, by modelling the high and low
xcitation ions separately (Zahedy et al. 2019 ; 2021 ; Haislmaier et al.
021 ; Qu et al. 2022 ), or by modelling the absorption components as
rising from multiple clouds (Cooper et al. 2021 ; Sameer et al. 2021 ;
ielsen et al. 2022 ). Interpreting the observational picture is further

omplicated due to the sensitivity of density and metallicity estimates
o the shape of the UVB (Oppenheimer & Schaye 2013 ; Acharya &
haire 2022 ; Gibson et al. 2022 ). Furthermore, particular ions are
ot necessarily produced by the same structures and processes at
ifferent redshifts due to the evolving UVB (Haardt & Madau 2012 ;
aucher-Gigu ̀ere 2020 ). 
Galaxy formation simulations provide a valuable theoretical per-

pective on these problems as they offer complete particle data and
hysical properties for the gas that makes up the CGM, making
t possible to directly interpret observations. A range of UV metal
ines have been used to probe the cool and warm ionized CGM
n simulations, testing specific stellar wind implementations (Ford
t al. 2013 , 2014 , 2016 ; Hummels et al. 2013 ), the NIHAO simulation
uite (Gutcke et al. 2017 ), EAGLE (Oppenheimer et al. 2016 , 2018 ),
llustrisTNG (Nelson et al. 2020 ; DeFelippis et al. 2021 ), FIRE-2 (Li
t al. 2021 ), and SIMBA (Appleby et al. 2021 , 2023 ). 

Such simulations can be useful for examining the impact of
ifferent line analysis methods on the retrieved CGM gas conditions
e.g. Churchill et al. 2015 ; Liang, Kravtsov & Agertz 2018 ). In a
ecent analysis of a sample of synthetic absorption lines from a
osmological simulation, Marra et al. ( 2021 ) tested the accuracy of
he single cloud ionization modelling method of retrieving physical
as conditions. The authors find that while there is general agreement
etween intrinsic conditions and those derived from ionization
odelling, such methods capture the average properties of absorbing

as cells, consistent with observational tests by Sameer et al. ( 2021 )
omparing single-phase and multiphase modelling. Marra et al.
 2022 ) followed up by testing the assumption of single spatially
solated absorbing clouds in the CGM, showing that several distinct
bsorbing clouds may be present within a single absorption compo-
ent. The distinct clouds may arise from gas of different phases that
appen to be aligned kinematically. These results demonstrate that
he CGM is a complex environment, with non-linear relationships
etween the underlying CGM conditions and the resulting absorption
bservables. 
Machine learning (ML) algorithms have the capacity to learn

omplex, non-linear relationships and as such the y hav e been widely
pplied to astrophysical problems (see re vie w by Fluke & Jacobs
020 ). In this paper, we explore a novel approach for cosmological
imulations to aid in interpreting CGM absorption observations
sing ML models. We present a framework for random forest (RF)
apping between synthetic CGM absorption observables from the

IMBA simulation (Dav ́e et al. 2019 ) and the underlying absorber
onditions from particle data. Such a mapping has the potential to be
mployed as a useful tool in retrieving physical conditions from real,
ulticomponent absorption observations. This approach eliminates

he need for simplifying assumptions about the structure and state
f the gas, i.e. whether absorption arise from single or multiple gas
hases. Instead the RF mappings implicitly assume the veracity of
he SIMBA galaxy formation model and our choice of UVB (Faucher-
igu ̀ere 2020 ) to produce its predictions. 
The SIMBA simulations accurately reproduce a variety of obser-

ational galaxy properties. At low redshift, these include the star-
NRAS 525, 1167–1181 (2023) 
orming main sequence, black hole-galaxy co-evolution, radio galaxy
opulations, dust properties, cold gas properties, and the baryonic
ully–Fisher relation (Dav ́e et al. 2019 , 2020 ; Li, Narayanan &
av ́e 2019 ; Thomas et al. 2019 ; Appleby et al. 2020 ; Glowacki,
lson & Dav ́e 2020 ; Lo v ell et al. 2021 ; Thomas et al. 2021 ). On larger
ass scales, SIMBA reproduces X-ray scaling relations for massive

aloes (Robson & Dav ́e 2020 ) and low redshift Ly α absorption
tatistics of the IGM (Christiansen et al. 2020 ). In previous work,
e have shown that SIMBA also broadly reproduces the observed

bsorption properties of H I (Sorini, Dav ́e & Angl ́es-Alc ́azar 2020 )
nd selected metal lines in the CGM (Appleby et al. 2021 ), and that
uch absorption arises from physically reasonable gaseous conditions
Appleby et al. 2023 ); therefore SIMBA is a reasonable choice of
imulation with which to explore the capabilities of ML methods to
earn relationships in the CGM. 

None the less, there is no guarantee SIMBA yields fully accurate
nd representative circumgalactic media. Indeed, CGM zoom sim-
lations suggest that SIMBA ’s resolution may be too poor to capture
ner details of multiphase gas, particularly for stronger absorbers
e.g. Suresh et al. 2019 ; van de Voort et al. 2019 , though see Nelson
t al. 2020 ). This drawback could be explored via comparing the
esults of this framework applied to other simulations. We leave this
spect for future work, and here focus on presenting the general
ramework and its results when applied to the SIMBA model. 

In this paper, we train RF ML networks on the low-redshift SIMBA

GM absorber sample presented in Appleby et al. ( 2023 ) to produce
redictions for the underlying gas conditions in the CGM. This
aper is organized as follows. In Section 2 , we present the SIMBA

imulations. In Section 3 , we describe the galaxy selection, spectrum
eneration, and fitting processes. In Section 4 , we describe the RF
odel and training process. In Section 5 , we examine the accuracy

f the RF models. In Section 6 , we examine the feature importance
f the RF models. In Section 7 , we present the RF predictions in
hase space. Finally in Section 8 we conclude and summarize. 

 SI MULATI ONS  

IMBA (Dav ́e et al. 2019 ) is a suite of state-of-the-art cosmological
imulations that is the successor to the MUFASA simulations (Dav ́e,
hompson & Hopkins 2016 ), with the major additions being the

nclusion of two-mode black hole growth and three-mode black
ole feedback, along with an on-the-fly dust evolution model. The
ain simulation, and the one employed in this work, contains 1024 3 

as cells and the same number of dark matter particles within a
100 h −1 Mpc) 3 volume. This yields a particle mass resolution of
.8 × 10 7 M � per gas cell, and 9.6 × 10 7 M � per dark matter particle,
ith a spatial resolution of ≈1 h −1 kpc in the densest regions. Since

IMBA has been e xtensiv ely described in many previous works, and
ince the primary goal on this work is to present and explore our
achine learning framework that is not crucially dependent on which

imulation it is applied to, for brevity we do not present all of SIMBA ’s
nput physics, but rather refer readers to Dav ́e et al. ( 2019 ), Thomas
t al. ( 2019 ), and Li et al. ( 2019 ) for full details. 

 ABSORBER  SAMPLE  

n this work, we use the sample of z = 0 absorbers from our
nvestigation into the physical conditions of absorbing halo gas
n Appleby et al. ( 2023 ). Here, we summarize the procedure for
enerating the absorber sample. We select a sample of central
alaxies within the fiducial SIMBA volume that evenly sample a
ange of global galaxy properties. Central galaxies are defined as
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he one with the highest stellar mass among those in the halo; in
ractice, they are mostly within � 0 . 1 r 200 from the halo centre. The
alaxies fall into three categories based on their star formation rates:
tar forming, green valley, and quenched. We define star-forming 
alaxies as with log(sSFR/Gyr −1 ) > −1.8 + 0.3 z for consistency
ith previous work with the SIMBA simulation (e.g. Thomas et al. 
019 ), define green valley galaxies as within 1 dex below the star-
orming galaxy threshold, and define quenched galaxies as those 
aving zero star formation. We further define six M � bins of width
.25 dex, with a minimum of M � > 10 10 M � to ensure well-resolved
ystems. In Appleby et al. ( 2023 ), we selected 12 galaxies from each
f the 18 M � – SFR bin. Here we select a further 12 galaxies in
ach to double the underlying galaxy sample (except in the highest 
ass star forming and green valley bins, which have only 23 and 8

alaxies, respectively) to increase the sample available for training a 
achine learning mapping. 
For each central galaxy, we generate synthetic line of sight (LOS)

bsorption spectra through the simulation volume at a range of r 200 -
ormalized impact parameters ( r ⊥ 

), probing both the inner and outer
GM ( r ⊥ 

/ r 200 = 0.25, 0.5, 0.75, 1.0, 1.25). In addition, for each r ⊥ 

,
e select 8 equally spaced LOS in a circle around the galaxy. Thus,

or each galaxy in our sample we generate 40 LOS spectra for each of
he following ions, selected to probe a range of excitation energies: 
 I 1215 Å, Mg II 2796 Å, C II 1334 Å, Si III 1206 Å, C IV 1548 Å,

nd O VI 1031 Å. This results in a total sample of 16 600 lines of
ight. 

The spectra are generated along the z-axis of the simulation using
he PYGAD analysis package (R ̈ottgers et al. 2020 ); the procedure
s as follows. Gas elements whose smoothing lengths intersect with 
he LOS are identified and their ionization fractions obtained, using 
ook up tables that are generated with version 17.01 of the CLOUDY

loud simulation code (Ferland et al. 2017 ) using Cloudy Cooling 
 ools. 1 W e assume a spatially uniform Faucher-Gigu ̀ere ( 2020 )
hotoionizing UV background spectrum, since it was shown in 
hristiansen et al. ( 2020 ) to provide the best match to low-redshift Ly
absorption. Self-shielding for H I is applied during the simulation 

un, but for generating the metal lines we employ the Rahmati et al.
 2013 ) prescription to attenuate the ionizing background strength 
ased on the local density. 
Ion densities for each gas element are obtained by multiplying 

he gas densities by each species’ ionization fractions. The mass 
ractions of each element are individually tracked within SIMBA , 
ased on yields from Type II and Ia supernovae and stellar evolution.
etals are carried out into the CGM primarily by stellar feedback 

rocesses, since winds are mass and metal-loaded (Appleby et al. 
021 ). The ion densities are smoothed along the LOS into pixels of
idth 2.5 km s −1 , using the same spline kernel used in the GIZMO

imulation code and the gas elements’ individual smoothing lengths 
nd metal masses (for metal lines). Optical depths are then computed 
rom the column densities at a pixel scale, using the oscillator 
trength for each species. We exclude wind particles since those 
as elements are hydrodynamically decoupled from the surrounding 
as, which represent a very small fraction of the CGM mass (Appleby
t al. 2021 ). PYGAD also computes column density-weighted physical 
ensity, temperature, metallicity, and peculiar velocity in the same 
anner within the LOS pixels. 
We identify regions of absorption within a ±600 km s −1 window 

entred on the galaxy by computing the detection significance ratio of
ach pixel, defined as the Gaussian-smoothed flux equi v alent width 
 ht tps://github.com/britt onsmit h/cloudy cooling tools 2
EW) divided by the Gaussian-smoothed noise EW. Regions are 
dentified as contiguous intervals where the flux drops below the 
evel of the continuum with an o v erall significance ratio of > 4 σ ,
nsuring that the edges of the regions begin at the continuum and
erging nearby regions within 2 pixels of one another. 
We fit a superposition of Voigt profiles to each absorption region in

rder to extract the absorption line observables: the column density 
 , the Doppler b parameter, the wavelength (or velocity) location
long the LOS, and the EW. For the fitting, absorption lines are
dded to the model fit one at a time, with initial guesses for the line
arameters that depend on whether or not the absorption is saturated.
or non-saturated absorption, the line is placed at the position of

owest flux, and the initial N and b is based on the depth and velocity
idth of the local flux minimum. For saturated absorption, the line is
laced in the middle of the saturated trough, and the initial N and b
re chosen from a coarse grid in order to minimize the reduced chi-
quare ( χ2 

r ), computed assuming a signal-to-noise per pixel of 30.
his procedure broadly follows that in AutoVP (Dav ́e et al. 1997 ).
he best-fitting Voigt parameters that minimize χ2 

r are then found 
sing the scipy.optimize subpackage. 2 Loose prior bounds on 
 and b are set based on typical H I and metal line column densities
nd thermal line widths from 10 4 − 10 7 K. 

If the fit has χ2 
r < 2 . 5 then the model is accepted; otherwise we

dentify the next strongest area of absorption by subtracting the model
rom the data and place a line at the residual minimum. We repeat
he process until an acceptable model is found, up to a maximum of
0 absorption lines per region. Each line must improve the χ2 

r of the
odel by at least 5 per cent; the process is halted if 2 consecutive

dditional lines do not impro v e the χ2 
r by at least this margin. If after

0 lines an acceptable model is not found then we adopt the model
ith the number of lines that performed best. We again check that

ach line impro v es the χ2 
r of the model by iterativ ely recomputing the

2 
r with each line remo v ed; if the χ2 

r acceptance threshold is reached,
r the χ2 

r increases by less than 5 per cent then the line is remo v ed
rom the solution. In this way we attempt to obtain a satisfactory fit
ith the fewest number of absorption lines. 
PYGAD not only produces optical depths at each pixel, but 

lso outputs the optical depth-weighted density, temperature, and 
etallicity (in the rele v ant element, or the total metallicity in the

ase of H), as described in Appleby et al. ( 2023 ). This enables us
o assign physical properties to absorption features. In our case, 
e assign to each absorber the physical properties associated with 

he pixel closest to its Voigt profile fitted line centre. We prefer
his to a weighting or interpolation scheme, because if there are
ignificant variations in the physical properties between pixels then 
nterpolation can yield values that are less physically meaningful 
Ford et al. 2014 ). None the less, this is an inherently approximate
rocedure, which is only exact in the unphysical situation that each
oigt profile represents a distinct uniform cloud of absorbing gas. 
e further note that sub-resolution phenomena such as small-scale 

urbulence is not accounted for, which could additionally blur the 
elationship between the absorber temperature and the Voigt profile 
ine width. 

The galaxy selection, spectrum generation, and LOS fitting 
ipeline results in our sample of absorbers. We find that adopting the
ame strict χ2 

r limit for all ions results in an incomplete sample. As
uch we compute the EW directly for each LOS and adopt an upper χ2 

r 

hreshold for each ion such that we reco v er 90 per cent of the total EW
cross all LOS for each species. The sample size and χ2 upper limits
MNRAS 525, 1167–1181 (2023) 

r 

 https://docs.scip y.org/doc/scip y/r efer ence/optimize.html 

https://github.com/brittonsmith/cloudy_cooling_tools
https://docs.scipy.org/doc/scipy/reference/optimize.html
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M

Table 1. Absorber sample properties for the RF models: the number of ab- 
sorbers below the χ2 

r limit for each species; the column density completeness 
limit; the χ2 

r below which we reco v er 90 per cent of the total EW; the median 
χ2 

r of all absorbers; the excitation energy of the species. 

Species n log( N min /cm 

−2 ) χ2 , 90 
r Median χ2 

r E (eV) 

H I 17 750 12.7 3.5 0.7 13.60 
Mg II 5306 11.5 39.8 1.0 15.04 
C II 11 062 12.8 15.8 1.3 24.38 
Si III 14 119 11.7 35.5 1.9 33.49 
C IV 17 463 12.8 6.3 1.2 64.49 
O VI 17 463 13.2 4.0 1.2 138.12 
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 χ2 
r, 90 ) for each ion are given in Table 1 . In practice the typical χ2 

r for a
iv en re gion is much lower than these upper limits; the median χ2 

r of
bsorption lines in our sample is also shown in Table 1 . We also adopt
he column density completeness limits from Appleby et al. ( 2023 ),
hich are computed by fitting the power-law portion of the column
ensity distribution function (CDDF) for each ion and identifying
here the CDDF falls below 50 per cent of the expectation at low

olumn densities. The completeness limits are given in Table 1 . We
ote that routines to do the spectrum generation, absorption region
dentification, and Voigt profile fitting are all contained with the
ublicly available PYGAD package (R ̈ottgers et al. 2020 ). 

 R A N D O M  FOREST  M E T H O D S  

.1 Random forest regression 

F regression (Breiman 2001 ) is a supervised, decision tree-based,
nsemble method of machine learning. The term ‘ensemble method’
efers to the process of combining predictions from several machine
earning runs (in this case, individual decision trees) in order to more
ccurately predict the output. Decision trees work in a top–down
anner, in which the best split for the data is found by minimizing
 cost function. They have the advantage of being easy to interpret
nd have low bias in their predictions for the training data. Ho we ver,
ndividual decision trees are prone to o v erfitting to the training data,
ence their predictions for new data have high variance. 

The RF algorithm counteracts this effect by constructing many
ecision trees, each trained on a subset of the data. Random forests
ay be used for both classification and regression problems; in this
ork we use RF in its regression mode to deal with our continuous

arget predictors. The training data subsets are randomly chosen with
eplacement, and their outputs averaged for an o v erall prediction in
 process known as bootstrap aggregation (‘bagging’, see Breiman
996 ). In this way, RF models retain the low bias of a decision
ree, while also minimizing the variance on predictions for new
ata. Training a single decision tree is considerably faster, ho we ver
uch models are less reliable, particularly when trained on non-
inear data (such as the absorber data used here). In this work,
e use the Scikit-Learn (Pedregosa et al. 2011 ) module’s RF

mplementation, RandomForestRegressor . 
RF models are widely used in a range of astronomical applications,

nd have been remarkably successful given the relative simplicity of
he approach. The advantage of RF models o v er other methods (e.g.
eural Network based algorithms) is in the interpretability of the
utput models, as they indicate the relative importance of the input
ariables in reaching a prediction. In galaxy formation, RFs (and
elated tree-based methods) have been widely used for regression
roblems using both simulation and observational data, for example
n predicting the properties of large-scale structure (Lucie-Smith et al.
NRAS 525, 1167–1181 (2023) 
018 ; Li et al. 2022 ; Lo v ell et al. 2022 ) and the properties of galaxies
nd haloes (Ucci et al. 2017 ; Nadler et al. 2018 ; Rafieferantsoa,
ndrianomena & Dav ́e 2018 ; Cohn & Battaglia 2020 ; Moews et al.
021 ; Mucesh et al. 2021 ; Delgado et al. 2022 ; McGibbon &
hochfar 2022 ). 

.2 Input features and target predictors 

or each of the ions in our selection, we train a RF model on the data
et of simulated CGM absorbers to predict their underlying physical
as conditions. We do this separately for each of the 6 ions we
onsider, such that the usefulness of this pipeline is not contingent
n having line information simultaneously for all 6 ions. We exclude
bsorbers where the quality of the Voigt profile fit is low (i.e. the fit
as a χ2 

r abo v e the acceptable threshold for that ion) and the column
ensity is below the completeness limit. 
For each ion, we use the same set of input features and target

redictors. The input features are chosen from among the properties
f the CGM absorbers and their central galaxies. Included features
hich describe the absorbers themselves are: the column density

 N ), the EW, the linewidth ( b ), the velocity separation from the host
alaxy (d v), and the impact parameter, expressed as a fraction of
alo virial radius ( f r 200 = r ⊥ 

/ r 200 ). In principle, the EW information
s fully contained within N and b , but we provide it separately since
ometimes combinations of parameters can be easier for the ML to
tilize, and also so we can compare between N and EW to see which
easure of o v erall absorption is more important. 
Properties of the central galaxy that are included as input features

re the stellar mass ( M � ), the specific star formation rate (sSFR), and
he fraction of kinetic energy contained in rotation ( κ rot , Sales et al.
012 ), which Kraljic, Dav ́e & Pichon ( 2020 ) found is a reasonable
roxy for visual morphology. 
From these 8 input features, we predict 3 target gas predictors: the

 v erdensity ( δ = ρ/ ̄ρm 

), temperature ( T ), and metallicity ( Z ). Each
f these is a column density-weighted average at the nearest LOS
ixel to the absorber, computed at the time of spectral generation and
inned along the LOS (see Section 3 ). 

.3 Training 

ach of the features is transformed into log space; Jo & Kim ( 2019 )
howed that transforming quantities into log space impro v es the
ccuracy of machine learning predictions for astronomy problems,
wing to the wide range of physical scales present in astronomical
ata. Exceptions to this are d v, f r 200 , and κ rot ; d v and κ rot have nearly
niform intrinsic distributions, while f r 200 consists of 5 specific values
ue to our choices of LOS. In addition, we standardize the input and
utput data by subtracting the mean of the distribution and scaling
he variance to unity in each case. We deal with zeros in our data set
y setting them to a small non-zero value; in practice this can only
e the case for sSFR, whereby we assign sSFR = 10 −14 M � yr −1 .
or each ion, we divide the absorber data set into 80 per cent training
ata used to build the RF model, and 20 per cent test data used to
 v aluate the performance of the model. Where multiple absorbers
rise from the same LOS these can be separated into the training and
est data sets; this mitigates o v erfitting in the model due to galaxy or
OS properties. 
We train the RF model separately for each target feature, as we

nd that this impro v es the accurac y of the prediction. We separately
une the hyperparameters of each RF model to optimize the model
ccuracy, using Scikit-Learn ’s GridSearchCV method to
erform an e xhaustiv e grid search o v er hyperparameter space. The
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yperparameters are the number of trees, the minimum number of 
ata points required in order to split the data, and the minimum
umber of data points in each resulting split. For each set of
yperparameters, a k -fold cross-validation is performed with k = 

, in which the training data is split into k ‘folds’, and k RF models
re iteratively constructed using k − 1 folds of the data; the o v erall
core for each set of hyperparameters is the average of each of the k
F models. The coefficient of determination R 

2 is used internally at 
his hyperparameter tuning stage to e v aluate the performance of each
odel, given n data points and true and predicted quantities X true and
 predicted : 

 

2 = 1 − RSS 

TSS 

, (1) 

here RSS is the residual sum of squares: 

SS = 

n ∑ 

i= 1 

( X 

i 
true − X 

i 
predicted ) 

2 (2) 

nd TSS is the total sum of squares: 

SS = 

n ∑ 

i= 1 

( X 

i 
true − 〈 X true 〉 ) 2 . (3) 

he mean squared error, MSE = RSS/ n , is the cost function used to
etermine the best decision tree splits. An MSE of zero represents a
erfectly accurate prediction. 

 PREDICTIVE  A  C C U R A  C Y  

ere, we assess the performance of each of the RF models. Fig.
 shows the test data RF predictions for the H I absorber physical
onditions ( δ, T , and Z ) against the true values. The colour scale
f the hexagonal bins indicates the number of data points in each
in. The black diagonal dashed line represents the 1:1 case of a
erfectly predicting model. In each panel, the 1D histograms for the 
rue and predicted values lie along the top and right, respectively. 
he accuracy of the model is summarized in each panel with three
uantities: (1) σ⊥ ,norm 

, the scatter perpendicular to the perfect 1:1 
elation, normalized to the scatter in the true values; (2) the Pearson
orrelation coefficient ρr , given by 

r = 

cov ( X true , X predicted ) 

σX true σX predicted 
, (4) 

here σ Xi is the standard deviation of X i ; and (3) MSE norm 

, the
ean squared error normalized to the scatter in the true values. High

orrelation is preferred, but does not necessarily indicate an accurate 
rediction as the outputs could have a systematic offset. We normalize 
⊥ 

and MSE in order to compare results between H I and the metals
ines, since H I lines trace a wider range of physical conditions. 

Beginning with the predictions for H I absorbers, density, and 
emperature are well-predicted by the ML model. True values are 
ighly correlated with the predictions, and the model predictions 
ave low scatter and error. Density and temperature are physically 
orrelated with one another and have Gaussian distributions. Of 
he two, temperature ( σ⊥ ,norm 

= 0.33 dex, MSE norm 

= 0.13) is
redicted more accurately than o v erdensity ( σ⊥ ,norm 

= 0.38 dex, 
SE norm 

= 0.22). The RF models for H I density and temperature
erform particularly well considering the models’ relative simplicity 
compared with e.g. a NN-based model). Aside from transforming the 
eatures into log space and using the k -fold hyperparameter cross-
alidation, the model has not been e xtensiv ely tuned by hand. As
uch, these results represent a basic model which demonstrate the 
apability of RF models to predict gas conditions, which could be
mpro v ed upon with further tuning. We have also explored alternative

L approaches such as NNs and CNNs, and found that such models
o not offer a substantial impro v ement in terms of predictive accuracy 
nd take considerably longer to run. This has lead us to fa v our the
F model for its simplicity, speed, and the degree of interpretability

n the form of feature ‘importances’ (see Section 6 ). 
The predictions for H I metallicities are less accurate ( σ⊥ ,norm 

=
.42 dex, MSE norm 

= 0.42). In general, points with log Z / Z � < −1 are
 v erpredicted, while points with log Z / Z � > −1 are underpredicted.
his points to the general tendency of our ML models to output
 narrower predicted distribution than in the input data set (this
ehaviour is also seen to a lesser extent in the density and temperature
redictions). This means that the tails of the original distributions 
re not well captured in the ML model, perhaps as a result of
parse training data at the extremes. Perhaps the poor prediction 
s unsurprising since H I absorption is not Z -dependent, unlike metal
ines which by necessity arise from metal-enriched gas. Therefore it 
as not obvious that any relationship between H I absorption and
etallicity could have been learned from the data. The learned 
apping in the metallicity RF model likely arises from the provided

alaxy properties and H I absorption strength; we will explore the
nput feature importance later (Section 6 ). 

The metal line absorber physical conditions are also reasonably 
ell predicted. Figs 2 and 3 show the performance of the RF
odels for predicting C II and C IV absorber conditions, using the

ame plot structure as abo v e. The performance for Mg II , Si III , and
 VI absorbers are shown in Appendix A . The RF models perform

imilarly well among all the metal lines, with the same tendency
o predict a more concentrated distribution of values than in the
riginal data. In general, for each metal line the predictions are less
ell correlated with the truth values than for H I ; metal line absorber

, T , and Z have median correlation coefficients of ρr = 0.68, 0.71,
.68, respectively, compared with ρr = 0.85, 0.88, 0.81 for H I . In
ddition, the scatter is higher in general for the metal line RF models,
ith median σ⊥ ,norm 

= 0.52, 0.44, 0.52 for δ, T , and Z , compared with
⊥ ,norm 

= 0.38, 0.33, 0.42 for H I . Ho we ver, the errors in the metal line
redictions are comparable with those for H I : median MSE norm 

=
.24, 0.13, 0.18 for metal lines, compared with MSE norm 

= 0.22,
.13, 0.42 for H I . Overall the RF models give reasonable predictions
or the physical conditions, and again were not e xtensiv ely tuned to
chieve this. 

An interesting feature of the original absorber data set is bimodal
etallicity distributions at log Z /Z � ∼ −0.25 and 0.25, which have

ot been reported in earlier SIMBA CGM work. The bimodality 
s apparent in every metal line apart from Mg II , and is broadly
eproduced by the RF models. Populations of absorbers in the cool
GM of low redshift Lyman Limit Systems (LLSs) have also been
bserv ed to hav e bimodal metallicity distributions, with both metal-
oor and metal-rich absorbers (albeit shifted to lower metallicities, 
ehner et al. 2013 , 2018 , 2019 ; Wotta et al. 2016 , 2019 ; Berg
t al. 2023 ), suggesting multiple origins for the cool CGM gas,
lthough the metallicities of the observed metal-poor absorbers are 
uch lower than that seen in SIMBA . In future work we will inves-

igate the origin of the bimodal absorber metallicity distribution in 
IMBA . 

 FEATURE  I M P O RTA N C E  

n this section, we seek insights into the physical origin of the ML-
robed correlations by assessing which input features are most useful 
n predicting the physical conditions. 
MNRAS 525, 1167–1181 (2023) 



1172 S. Appleby et al. 

M

Figure 1. Hexagonal joint histogram of the predicted H I physical conditions from the RF mapping and the true H I physical conditions, including only data 
in the test set. The number of data points in each bin is shown using colourbars. From left to right, the panels show o v erdensity, temperature, and metallicity. 
The diagonal line represents the case where the RF model makes a perfect prediction. The accuracy of the predictions in each panel is summarized by the inset 
displaying the normalized transverse scatter σ⊥ ,norm 

, the correlation coefficient ρr , and the normalized mean square error, MSE norm 

. The 1D histograms of the 
true and predicted values are shown on the top and side of each panel, respectively. 

Figure 2. As in Fig. 1 , showing the predictions and true values for C II absorbers. 

Figure 3. As in Fig. 1 , showing the predictions and true values for C IV absorbers. 
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.1 RF model importance 

n advantage of the RF method o v er other ML algorithms (such
s neural networks) is it allows some degree of interpretability in
he form of the ‘importance’ of each feature, which arise ‘for free’
rom the structure of the RF model. For an individual decision tree, a
NRAS 525, 1167–1181 (2023) 
eature’s importance is computed from the number of times it is used
o split the data and how close to the top of the tree the splits are. For
n RF model, the importances are the normalized av erage o v er all
ecision trees. Ho we ver, importance metrics are biased if the input
eatures are highly correlated with one another (Strobl et al. 2007 ,
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Figure 4. Importance values in predicting H I physical conditions for each remaining input feature, against the input feature remo v ed from the training data. 
From left to right, the target predictors are δ, T , and Z . 
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008 ) and so they should be treated with caution. Thus we prefer not
o use the importance directly reported by RF, but instead compute 
t more empirically. 

To do so, we determine each input feature’s importance by 
teratively building the RF model and removing each of the features 
n turn, using the same optimized hyperparameters as in the full
eature model. We then retrieve the importance of the remaining 
eatures for each model. This process determines whether a fea- 
ure is genuinely important, or merely defined as such through 
 fluke of feature combinations. When the most important fea- 
ures are remo v ed, identifying which features take its place as
he most important gives an indication of what the RF model is
earning. 

Fig. 4 shows the feature importance values for predicting H I 

bsorber conditions, against the feature remo v ed from the training 
ata. F or predicting o v erdensity, N is most important feature. When
olumn density is remo v ed, the most important feature is EW; N
nd EW are correlated with one another and both are correlated 
ith physical density. When predicting temperature, b is the most 

mportant feature since the linewidths of individual absorbers in the 
riginal spectrum are set in partly by thermal Doppler broadening 
with the additional effect of bulk gas motions). When predicting 
etallicity, the velocity separation is the most important feature. 

t is not intuitiv ely ob vious why this is the case; perhaps due to a
ependence on halo velocity dispersion, which is correlated with 
 � and thus the metallicity of the host galaxy that is predominantly

esponsible for enriching its CGM. 
Figs 5 and 6 likewise show the feature importance values for pre-

icting C II and C IV absorber properties. We hav e e xamined feature
mportance for all metals and found that these are representative 
ases. For the low ion C II , the feature importance rankings for δ
nd T are similar to that of H I . There is a slightly reduced relative
mportance of N in predicting δ in fa v our of b ( N and b are correlated
eatures due to their underlying dependence on δ and T ). For both
ons, the importance of b in predicting T is enhanced compared with
 I . In contrast to H I , the most important feature for predicting Z for
etal lines is sSFR; when sSFR is remo v ed, the RF model learns

rom M � and κ rot instead, indicating that the RF model predicts Z
rom the galaxy properties. The picture is similar for the high ion
 IV , except that in predicting δ the most important features are
 i  
nstead f r 200 and sSFR. f r 200 is perhaps less useful for C II since
ost of the low ion absorption arises from the inner CGM (Appleby

t al. 2023 ). Galaxies with high star formation have denser gas in
heir CGM, although this is also the case for H I and C II , so it
s unclear why sSFR specifically is an important feature for C IV

bsorbers. 

.2 Change in predicti v e accuracy 

rguably, the most meaningful measure of ‘importance’ to the model 
s in which features add the most useful information in terms of
redictiv e accurac y. We assess this by iterativ ely remo ving each of
he features in turn from the training data, and running the RF model
s before (with the hyperparameters optimized for the full feature 
ase). In contrast with Section 6.1 , we now compute the scatter
⊥ , norm 

for each new model; if the quality of the predictions are
ignificantly degraded in the absence of a particular feature, this 
ecessarily indicates that this feature encodes crucial information 
bout the physical conditions. 

Fig. 7 shows the change in σ⊥ , norm 

resulting from the removal 
f each input feature in predicting the physical conditions, where 
 positive change indicates an increase in scatter. Each of the
ix panels shows the models for a different ion; the rows within
ach panel show the models for each of δ, T , and Z . The upper
lots show H I (left), Mg II (middle), and C II (right) absorber
odels, while the lower plots show Si III (left), C IV (middle), and
 VI (right). 
In contrast to the feature importance values, the largest increase 

n scatter when predicting H I absorber o v erdensity comes from
emoving d v and f r 200 . The loss of accuracy from removing f r 200 

uggests that the RF model is learning the radial density profile; this
s also the case for the metal line δ predictions. It is less clear why
 v is necessary for an accurate prediction, since halo absorbers can
ppear at any velocity separation depending on their kinematics. For 
ll ions, removing b causes an increase in scatter in T predictions,
onfirming that the high feature importance of b reflects the genuine
hysical relationship with temperature. 
For H I , the metallicity predictions are degraded by removing

 v, f r 200 or any galaxy property; interestingly the model accuracy 
mpro v es when absorption-related features are remo v ed. In other
MNRAS 525, 1167–1181 (2023) 
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Figure 5. Feature importance values as in Fig. 4 , for C II absorbers. 

Figure 6. Feature importance values as in Fig. 4 , for C IV absorbers. 

Figure 7. The change in σ⊥ , norm 

of the RF models when removing each feature iteratively. Each of the panels shows results for a different ion; the three rows 
of each panel represent results for each of δ, T , and Z. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/1/1167/7241539 by guest on 25 January 2024
NRAS 525, 1167–1181 (2023) 



Machine learning and the CGM 1175 

Figure 8. Predicted temperature against predicted o v erdensity for each of the 6 ions we consider, coloured by o v erall phase space fractional error. The 1D truth 
(blue curve) and predicted (pink curve) distributions are shown along the top and right of each panel. The contours show the true distribution in phase space for 
the test data set. The limits of the plots differ for each ion. 
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ords, gas metallicity in the CGM of a given galaxy can be pre-
icted with reasonable accuracy from only LOS and radial absorber 
osition. The metal lines broadly show the same changes in scatter 
ith remo v ed features, although the changes to the model accurac y

re more marginal. 
In some cases, σ⊥ , norm 

actually reduces with a given input feature 
emo v ed. Ideally, this should never happen, as more information 
hould al w ays result in a better fit. Thus this indicates that perhaps
here is some slight o v erfitting by the ML algorithm, or else there is
ome stochasticity in fitting process. The fact that these reductions 
re generally quite small even when present, much smaller than the 
ypical increases, suggests that this is not a significant issue in the
ipeline. 

 PHASE  SPAC E  

aving examined the predictive accuracy and inner workings of the 
F models on individual properties, we now ask whether the RF
odels can reproduce the 2D ( δ, T ) phase space structure of the

bsorbers. Although the RF models can separately predict δ and T , 
his does not guarantee that they reproduce the relationship between 
hese quantities – particularly since the models are trained separately 
or δ and T , so each RF model has no knowledge of the other target
uantities. 
Fig. 8 shows the predicted temperature against predicted o v erden- 

ity for the 6 species we consider. The distributions for the truth and
redicted data are shown along the top and right-hand side of each
anel. Note that the plot limits are different for each ion. The points
re colour coded by the fractional distance from the true value in δ

T phase space: 

phase = 

√ ( δtrue − δpredict 

δtrue 

)2 
+ 

(T true − T predict 

T true 

)2 
. (5) 

y this metric, a higher σ phase (orange in the colour map) represents a
arger distance from te truth value. The colour scale indicates that in
eneral the predicted points lie near their truth values in phase space;
he metal line absorbers in particular have a low displacement. The
ontours show the true distribution in phase space for the test data-
et. The upper plots show H I (left), Mg II (middle), and C II (right)
bsorbers, while the lower plots show Si III (left), C IV (middle),
nd O VI (right). The original structure in phase space between
 v erdensity and temperature is reproduced well by the RF models
or each of the ions we consider, a success of the ML approach which
since there was no specific tuning of the model to achieve this) arises
ecause temperature information is encoded in the o v erdensity data
nd vice versa. This is an important test of the RF models which
erifies that accurate predictions can be made for multiple physical 
roperties per observation. 
That said, although the RF models succeed in predicting the phase

pace structure, the predictions are in general too concentrated near 
he mean of the data. By comparing the predicted distribution with
he contours from the original data, it is clear that the predictions
MNRAS 525, 1167–1181 (2023) 
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Figure 9. Predicted temperature against predicted o v erdensity for each of the 6 ions we consider, mapped to the shape of the truth 1D distributions using a 
quantile transformer. Points are coloured by o v erall phase space fractional error. The 1D distributions for the truth data (blue curve) and transformed predictions 
(pink curve) are shown along the top and right of each panel. The contours show the true distribution in phase space for the test data set. 
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ught to be more spread in phase space. This appears to be a
eneric feature of the RF models, which is also apparent in the
D distributions of each feature – in general, the RF models produce
redicted distributions that are too concentrated towards the mean.
s mentioned in Section 5 , this likely arises from sparse training data

t the extremes. Thus, the predicted distributions do not capture the
mportant information described by the intrinsic scatter in the original
ata, which biases the usefulness of these models for observational
nalysis. Therefore some additional step beyond the basic ML model
s required in order to capture the full structure in phase space.
mploying an o v ersampling technique (such as Synthetic Minority
ver-Sampling Technique for Regression with Gaussian Noise) can
oost undersampled regions of phase space and as such mitigate
ssues that arise as a result of imbalanced training data sets (de Santi
t al. 2022 ). 

In order to extend the RF network to also properly capture the full
D phase space distribution, we develop a new approach based on a
ormalizing transform. By this, we mean that the predicted and truth
ata for each feature are mapped on to standard normal distributions,
nd then the predicted distribution is transformed back on to the
hape of the truth data distribution. 

To accomplish this we use the quantile transform non-parametric
ethod implemented in Scikit-Learn (Pedregosa et al. 2011 ),
uantileTransformer . The method first maps the cumulative
istribution of the data on to a standard Gaussian, and then computes
he transformed values using a quantile function. The function also
NRAS 525, 1167–1181 (2023) 
rovides the inverse mapping that transforms a distribution back
nto the original coordinates. The inverse mapping for the truth
ata distribution (computed from the training data set) is used to
econstruct the predicted distribution. In this way, we can reproduce
he larger variance in the truth data without assuming a shape for the
redicted data. 
Fig. 9 shows the predicted temperature against predicted o v er-

ensity, using the abo v e normalizing transform approach to map the
hape of the truth data. This can be seen in the 1D distributions
long the top and right-hand side, which in most cases closely
ollow the truth data distributions. Crucially, the transformed data
lso retains the phase space structure of the original predictions. In
ddition, transforming the predictions on to the shape of the truth data
esults in no loss of accuracy for the predictions; the MSE norm 

, ρ and
⊥ , norm 

for the transformed test data sets are very similar to those for
he original test data set predictions. As such, this is our preferred

ethod for reproducing the scatter in the truth CGM conditions
ata. 
We initially explored a simpler approach where we added scatter

irectly to the predicted data. The results in phase space for the
dditional scatter approach are shown in Appendix B (Fig. B1 ).
e found that this approach substantially washed out non-Gaussian

tructure in the predicted distribution, such as the anticorrelation
etween δ and T at δ > 10 3 . By instead using the normalizing
ransform method, we are preserving these structures in phase space
s much as possible. 
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Figure 10. Histograms showing the direct comparison between truth data (dark purple), the predictions (light purple), the transformed predictions (orange), 
and the predictions with added scatter (yellow) for H I o v erdensities and temperatures. 
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Fig. 10 directly compares the distributions for the truth data 
dark purple), the predictions from the RF models (light purple), the 
ransformed predictions (orange), and the predictions with additional 
catter (yellow) for the H I absorber o v erdensities and temperatures.
he predicted physical conditions from the RF models are clearly 

oo closely concentrated towards the mean. In contrast, applying the 
ormalizing transform approach results in a predicted data set which 
losely matches the truth data. When additional scatter is instead 
dded to the predictions, the resulting distribution also more closely 
atches the truth data, although not so precisely . Quantitatively , 
 two-sample Kolmogoro v–Smirno v test with respect to the truth
ata gi ves p -v alues of > 0.95 for the transformed o v erdensity and
emperature distrib utions, b ut ∼0.25 for the distrib utions with added
catter. 

There are pros and cons to including the normalizing transform 

pproach to ensure that the phase space scatter is well reproduced. If
ne wanted to compute distribution functions for physical quantities 
nferred from absorption line data, not including this post-processing 
tep would result in the distribution functions improperly capturing 
he tails, which may be important for some applications. Ho we ver, the 
dditional step necessarily degrades the σ⊥ , norm 

and MSE norm 

of the 
redictions, albeit only marginally. The correlation coefficient does 
ot change since we are only scaling the predictions. For example, 
n the case of H I o v erdensity, the σ⊥ , norm 

and MSE norm 

increase
rom 0.38 → 0.40 and 0.22 → 0.25, respectively, after applying the 
ormalizing transform. For H I temperature, the σ⊥ , norm 

and MSE norm 

ncrease from 0.33 → 0.34 and 0.13 → 0.14, respectively. Whether 
r not to employ the abo v e method thus depends on the application. 
To recap, the normalizing transform approach requires setting up 

n inverse normalizing transform from the training data. To apply 
his in practice, one then runs the ML pipeline on the input features,
roduces a predicted distribution, normalizes this distribution using 
he quantile transformer, and then applies the inverse transform from 

he training data. This then gives predicted values that includes the 
dditional scatter required to reproduce the spread in the input data. 
ndeed, the normalizing transform steps can be thought of as part 
f the ML pipeline itself in order to reproduce closest to the true
istribution as possible. 
H  
 C O N C L U S I O N S  

e have produced machine-learnt mappings between CGM ab- 
orption observables and the underlying gas conditions for H I and
elected metal lines using a Random Forest approach. RF models 
re preferred o v er other ML techniques for their relative simplicity
nd interpretability. These mappings represent a proof of concept for 
sing ML models as part of an analysis pipeline for observational
GM data, which crucially does not make simplifying assumptions 
bout the phase or composition of the absorbing gas. We identify a
eneral tendency of the RF models to output a narrower predicted
istribution than in the input data. We demonstrate two methods of
eproducing the scatter of the input data: first by adding random
aussian noise to the predictions, and second by transforming the 
redictions to the shape of the truth data. Our main results are as
ollows: 

(i) The RF models predict reasonable H I o v erdensities ( σ⊥ ,norm 

=
.38 dex, MSE norm 

= 0.22) and temperatures ( σ⊥ ,norm 

= 0.33 dex,
SE norm 

= 0.13). The predictions of o v erdensity and temperature
re highly correlated with their truth values. Metallicity is less well
redicted ( σ⊥ ,norm 

= 0.42 dex, MSE norm 

= 0.42); metallicity is not
irectly traced by H I , therefore the learned relationship likely arises
rom the correlation with density. 

(ii) The RF models also predict reasonable metal absorber condi- 
ions and perform to a similar accuracy among all metal lines, with
edian ρr = 0.68, 0.71, 0.68, median σ⊥ , norm 

= 0.52, 0.44, 0.52 and
edian MSE norm 

= 0.24, 0.13, 0.18 for the o v erdensity, temperature,
nd metallicity predictions, respectively. 

(iii) We report a bimodality in the absorber metallicity distri- 
utions for four of the five metal lines (C II , Si III , C IV , and
 VI ), suggesting multiple origins for the CGM gas in the Simba
odel. 
(iv) In terms of feature importances, the RF models learn H I

bsorber o v erdensity from column density and equi v alent width,
emperature from the Doppler parameter, and metallicity from the 
OS velocity separation. Low ion feature importances are similar to 
 I , except that metallicities are learned from sSFR and κ rot . High
MNRAS 525, 1167–1181 (2023) 
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on feature importances are similar to the low ions, except that the
 v erdensities are learned from radial distance and galaxy properties.
(v) In terms of predictive accuracy, the radial distance and LOS

eparation provide the most useful information for predicting H I

 v erdensity; the radial distance is also most useful for the metal line
 v erdensities. The Doppler parameter is again the most important
eature for predicting temperature for all lines. The LOS separation
rovides the most useful information for predicting H I metallicity;
he predictions for all lines are degraded by removing galaxy
roperties. 
(vi) The predictions for o v erdensity and temperature reproduce

he phase space structure seen in the original data for all six ions,
espite being trained for separately in the RF models. This verifies
hat accurate predictions can be made for multiple physical properties
er observation. 

(vii) By mapping the predicted data distributions on to the shape of
he input distributions using a quantile normalizing transformer, we
an reproduce the intrinsic scatter in the CGM phase space conditions
ith no loss of predictive accuracy or phase space structure. 

Although we have considered H I and the metal ions separately, fu-
ure work on this topic could explore RF models using combinations
f absorption lines to assess whether predictions may be impro v ed
y using information from multiple ion species. A shortcoming
f the ML models presented here is the that the predictions are
oo concentrated towards the mean of the distribution. Further
evelopment would be needed on the pipeline in order to reproduce
he scatter in the original data without losing information in phase
pace. 

The moti v ation of this project is to de velop a useful analysis tool
or the astronomical community to aid in interpreting absorption
bservations of the CGM, assuming the galaxy formation model of
he SIMBA simulations and the Faucher-Gigu ̀ere ( 2020 ) UVB. The
ext phase of this work is to test the method by applying the ML
appings to real observational data and comparing to results derived

rom ionization modelling. As such, the trained models produced for
his work are available online and we encourage others to test the RF
odels on their own observational data. 
A natural extension of this project will be to develop additional ML
appings using absorber data from other simulations such as EAGLE

nd IllustrisTNG to assess the impact of galaxy formation models
n the predicted conditions for the CGM. Training the RF models
n data from one simulation and testing on data from another would
rovide a robust test of the impact of galaxy formation model on our
esults. In addition, developing mappings using absorbers from the
AMELS project (Villaescusa-Navarro et al. 2021 ) would test the
ependence of our results on both astrophysical and cosmological
odels. 
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PPENDI X  A :  RESULTS  F O R  OTH E R  ME TA LS  

or completeness, here we present Fig. A1 , A2 , A3 (similar to Fig.
 , for Mg II , Si III , and O VI ). The general trends are already captured
y the plots in the main text for C II and C IV . Ho we ver, there are
ome interesting notable point. For instance, O VI shows significantly 
igher temperatures, as expected since it is a higher ionization line.
he metallicity bimodality is still slightly present for O VI , although at
 much lower significance than for the lower ions. Si III has the largest
catter in the reco v ered T , and also shows some bias such that high- T
bsorbers are underpredicted while low- T ones are o v erpredicted.
his may be because Si III seems to have absorbers spanning the
idest range in temperatures from among the metal ions considered. 

n terms of the RF performance, ho we ver, these ions tell a similar
tory, which is encouraging since it means the RF methodology is
idely applicable with similar efficacy across a range of commonly 
bserved low- z UV ions. 
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Figure A1. As in Fig. 1 , showing the predictions and true values for Mg II absorbers. 

Figure A2. As in Fig. 1 , showing the predictions and true values for Si III absorbers. 

Figure A3. As in Fig. 1 , showing the predictions and true values for O VI absorbers. 
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PPENDIX  B:  D I R E C T  GAUSSIAN  APPROACH  

O  A D D I N G  PHASE  SPAC E  SCATTER  

n Section 7 , we described our normalizing transform-based approach
o adding scatter to the RF predictions in order to match the 2D truth
istributions in phase space. A more straightforward approach is to
irectly add Gaussian scatter to the predicted δ and T distributions to
NRAS 525, 1167–1181 (2023) 
atch the truth without first applying a normalizing transformation.
o we ver, the results were less satisfactory. 
Fig. B1 shows the results, which can be compared to Fig. 9 . It

s clear that the simpler approach causes features within the true
hase space to be more washed out, and substantially degrades
he predictiv e accurac y. Thus we prefer the normalizing transform
pproach presented in Section 7 . 
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Figure B1. Predicted temperature against predicted o v erdensity for each of the 6 ions we consider, with added random Gaussian noise to reproduce the original 
1D distributions. Points are coloured by o v erall phase space fractional error. The 1D truth and predicted distributions are shown along the top and right of each 
panel. The contours show the true distribution in phase space for the test data set. The widths of the random noise Gaussians for δ and T are shown in the bottom 

right of each panel. Compared to the normalizing transform results shown in Fig. 9 , this approach washes out features in phase space substantially more. 
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