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Abstract— As the Internet of Things (IoT) continues to expand,
the demand for the use of energy-efficient circuits and battery-
less devices has grown rapidly. Battery-less operation, zero
maintenance and sustainability are the desired features of IoT
devices in fifth generation (5G) networks and green Industry
4.0 wireless systems. The integration of energy harvesting
systems, IoT devices and 5G networks has the potential im-
pact to digitalize and revolutionize various industries such
as Industry 4.0, agriculture, food, and healthcare, by enabling
real-time data collection and analysis, mitigating maintenance
costs, and improving efficiency. Energy harvesting plays a
crucial role in envisioning a low-carbon Net Zero future and
holds significant political importance. This survey aims at
providing a comprehensive review on various energy harvest-
ing techniques including radio frequency (RF), multi-source
hybrid and energy harvesting using additive manufacturing technologies. However, special emphasis is given to RF-
based energy harvesting methodologies tailored for battery-free wireless sensing, and powering autonomous low-power
electronic circuits and IoT devices. The key design challenges and applications of energy harvesting techniques, as well
as the future perspective of System on Chip (SoC) implementation, data digitization in Industry 4.0, next-generation IoT
devices, and 5G communications are discussed.

Index Terms— Battery-less Wireless Sensing, Energy Harvesting, Internet of Things (IoT), Low-power Electronic Circuits,
Next-generation Communications, Wireless Sensor Networks.

I. INTRODUCTION

INTERNET of things (IoT) is a research topic that has been
attracting the attention of research communities around the

world in recent years [1]. In the maturing of Industry 4.0 to
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Industry 5.0, due to the progression in the fifth generation
(5G) communication and development of wireless sensing
systems, the demand for miniaturized low-power electronic
devices, battery-less smart sensing systems, and maintenance-
free devices has increased dramatically [2]–[7]. The number
of IoT connected devices are growing in practically every
industry, and is even predicted to reach 29 billion worldwide
by 2030 [8], [9]. By increasing the number of sensors and
IoT devices, industries need to use more batteries that are
fabricated by chemical substances, which have a negative
impact on the environment. Moreover, the bulky size and cost
of maintenance services and replacement of these types of
batteries are other negative aspects associated with the current
state of the art in this area [10]–[12].

The ability to deploy wireless smart sensing devices at
scale will open up research activities tackling divers research
challenges (e.g., operation range, energy efficiency, long fre-
quency coverage, and different applications in industries) in all
these domains [13], [14]. Sensors, IoT devices, and the mon-
itoring of equipment and facilities are essential components
of Industry 4.0 that all require energy. However, powering
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IoT devices, sensor nodes, and electronic circuits continues
to pose a challenge, irrespective of maintenance costs. With
the progression in communication systems and Industry 4.0,
the number of sensor nodes and IoT devices has increased
significantly, and these are difficult to access and require
wiring [15]–[17].

Battery-less wireless technologies based on energy harvest-
ing are key solutions that have shown good potential for
powering sensor nodes and IoT devices. Energy harvesting is
a promising method for scavenging energy from the ambient
environment and converting it to direct power for providing
enough energy to power up low-power IoT devices and wire-
less sensor nodes [18], [19].

The revolution from 1G to 5G technology in the industrial
telecommunications presents an opportunity to leverage energy
harvesting technologies for more sustainable and efficient
wireless communication networks in a Smart Manufacturing
environment [20]. Energy harvesting has the potential to revo-
lutionize the convergence of 5G, Industry 4.0, and IoT, creating
a more sustainable and efficient industrial landscape. However,
the increased energy demands of Industry 4.0 sensing and
the proliferation of IoT devices require sustainable power
sources. This is where energy harvesting comes into play,
offering to opportunity to capture and utilize renewable energy
from various sources to power industrial equipment, wireless
sensors, and IoT devices [19]. Energy harvesting can provide
reliable and decentralized power solutions that reduce the
reliance on batteries or grid electricity, lowering operational
costs, carbon emissions, and environmental impacts.

This paper aims to provide a comprehensive review of the
challenges, design methodologies, and applications of energy
harvesting circuits in the context of modern wireless sensing
communications, IoT, and Industry 4.0. In recent years, there
have been a number of review papers published in the area
of energy harvesting and wireless power transfer [1]–[7],
[19], [21]. For instance, in [1], a review of the concept of
energy harvesting for IoT applications is reported, focusing on
block diagrams and architecture of energy harvesting for IoT
and wireless sensor networks. Some comprehensive research
studies on wireless power transmission and energy harvesting,
specifically detailing the aspects of rectifier topology in micro-
scale CMOS technologies [2] and transmitting antennas and
beam steering [3], [4], [21], have also been reported. Chong et.
al. in [5] provides a comprehensive review of different energy
harvesting techniques for wearable devices for telemedicine
applications. The review paper [6] focuses on the concept of
piezoelectric energy harvesting towards self-powered IoT ap-
plications. Distinguishing our article from previously reported
reviews, here we cover the following:

• RF energy harvesting: This paper provides a compre-
hensive review of different circuit topologies along with
their challenges and solutions. For the first time, we
present an extensive literature study on various harmonic
controlling, termination, and recycling structures, as well
as microstrip filters and stubs used in RF energy har-
vesting aimed at improving efficiency and output signal.
Additionally, a review of low-power energy harvesting
circuits for powering DC-DC boost converters and low-

power electronic devices is given.
• Hybrid energy harvesting: This paper offers a compre-

hensive review of energy harvesting techniques based
on multiple sources such as RF, solar/light, piezo, and
thermal. This part aims to provide design methodologies
of recent hybrid energy harvesting circuits to overcome
the limitations and fluctuations associated with individual
sources, leading to enhanced efficiency and reliability.

• Additive manufacturing technologies: The use of cutting-
edge printing technologies, specifically 3D and inkjet
printing, for developing energy harvesting circuits is
reviewed. This part focuses on describing how additive
manufacturing technologies such as inkjet and 3D printers
have been employed in energy harvesters development
to enable the fabrication of complex and customized
structures targeted to enhance the performance and func-
tionality of energy harvesting circuits.

• Applications and future perspectives: The paper presents
a comprehensive research study on energy harvesting
applications in battery-less wireless sensing systems, as
well as integration with on-chip RF integrated circuits
(RFICs). We also provide a perspective on data digiti-
zation in Industry 4.0 and wireless sensing communi-
cation based on energy harvesting for creating battery-
less wireless sensing monitoring in Industry 4.0 and IoT
applications.

The rest of this paper is organized as follows. In Section
II, challenges and design solutions for energy harvesting
techniques are described (covering RF energy harvesting with
harmonics termination/recycling, hybrid topologies, and the
use of additive manufacturing technologies). A discussion
in energy harvesting applications for powering low-power
circuits, suggestions, and future works for use in Industry 4.0
and IoT applications are discussed in Section III. The future
perspective of energy harvesting and the conclusion of the
research study are discussed in Section IV and Section V,
respectively.

II. ENERGY HARVESTING

Energy harvesting, also known as energy scavenging refers
to the process of capturing and converting ambient or wasted
energy from the environment into usable electrical energy.
This technology leverages various sources of energy, such as
light, heat, vibration, electromagnetic (EM)/RF, and piezo to
generate electricity for powering electronic devices or to be
stored in batteries for later use. Energy harvesting has gained
significant attention due to its potential to provide sustainable
and autonomous power solutions for a wide range of applica-
tions, including wearables, IoT devices, remote sensors, and
smart grids.

A. RF Energy Harvesting
Fig. 1 depicts a block diagram of an energy harvesting

circuit. According to Fig. 1, an energy harvesting circuit con-
sists of a transmitter, antennas, a matching network, a rectifier
circuit, a lowpass filter (LPF), and a load. A receiver antenna
is used to harvest RF energy from the ambient and a matching
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Fig. 1. Block diagram of an energy harvesting system.

Fig. 2. Envelope detector and rectifier circuit with a tunable LPF
structure [26].

network is employed to transfer the maximum received power
from the antenna to the rectifier circuit. Rectifying-Antenna
(rectenna) circuits are the most important part of energy-
harvesting circuits that harvest radio frequency (RF) energy
and convert it to direct power [22]. The antenna has a vital
role in energy harvesting circuits and wireless power transfer
systems to transfer and receive data as well as EM/RF energy
[23], [24]. One of the main problems for energy harvesting
circuits is the amount of EM energy that is available in
the ambient environment. RF energy is one of the available
energies that are generated by communication towers, Inter-
net Wi-Fi/Bluetooth modems, and signal generators [25]. A
comprehensive review on antenna methodologies for energy
harvesting has been reported in [21].

Rectifiers have a key role in the design of energy har-
vesting circuits to convert RF power to Direct Current (DC)
power. Microwave rectifying circuits are designed using high-
frequency diodes. During the rectification process, some un-
wanted high-order harmonics are generated which should be
controlled [26]. The RF-to-DC power conversion efficiency
(PCE) is diminished by these harmonics, so it is obvious that
designing rectifiers with controlling harmonic techniques are
vital. In recent years, several techniques have been used to
control harmonics effects and levels, such as LPF structures
[27]–[31], harmonic termination circuits in Class-F [32], [33],
Class-F−1 [34], Class-C [35] and Class-E [36], the same as
amplifier classification and harmonic recycling [37].

A reconfigurable LPF structure has been employed to con-
trol harmonic levels in an envelope detector/rectifier circuit in
[26]. Fig. 2 shows the proposed LPF structure in an envelope
detector circuit [26] to obtain a flat (DC) output and also get
acceptable harmonics suppression. The capability of harmonic
suppressing of the proposed LPF and the tunable LPF is inves-
tigated through harmonic balance analysis as shown in Fig. 3,
which covers six harmonics of the fundamental frequency.

Harmonic termination circuits can manipulate the current and
voltage waveforms of the rectifier diodes to diminish power
consumption in diodes and increase the PCE. In [32], two
microstrip transmission lines (TL1 = λ/8 and TL2 = λ/12) have
been used to control the second and third harmonics based on
Class-F conditions. Indeed, a TL3 = λ/4 is used to provide
an impedance matching between the antenna and rectifier
circuit at the fundamental frequency. Fig. 4 shows the proposed
Class-F rectifier for use in wireless power transfer and energy
harvesting circuits [32]. According to Fig. 5, a Class-C rectifier
is developed based on two transmission lines (TL1 = λ/12 and
TL2 = λ/4) in order to realize a zero impedance at second,
third, and fourth harmonics produced during rectifying [35].
The proposed circuit shows a maximum efficiency (PCE =
82.7%) at RF input power 25 dBm.

The most important harmonics are the second and third
harmonics which are controlled in the short circuit or open
circuit to change the voltage and current waveforms [32]–
[34]. Table I shows the effects of harmonic controlling circuits
on some parameters in energy harvesting circuits. Designing
energy harvesting circuits capable of efficiently converting low
levels of input power (-30 dBm < P IN < 0 dBm) is still a
challenge. According to Table I, however, the proposed recti-
fier circuits [31]–[36] show a PCE > 70%, the P IN > 12 dBm.
In practical energy harvesting circuits reaching these levels of
P IN is difficult.

In recent years, many techniques have been reported for de-
signing energy harvesting circuits and wireless power transfer
[37]–[42]. Fig. 6 depicts a novel two-port rectenna with an
asymmetrical coupler that has been proposed for wireless in-
formation and power transfer [37]. By using the asymmetrical
coupler, the received power can be distributed to the rectifying
circuit and communication device in a power division ratio of
1:k2, therefore splitting the power with an optimal division
ratio for charging and data transfer modes. The rectifying
circuit achieved a high PCE of 70.4% at the input power of

Fig. 3. Harmonic balance for the detector (a) without LPF, (b) with LPF,
(c) with tunable LPF (Bias:+8V) (d) with tunable LPF (Bias:0V) [26].
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Fig. 4. (a) Schematic of the microwave Class-F rectifier. (b) Fabricated
prototype [32].

Fig. 5. Topology for the Class-C rectifier [35].

Fig. 6. (a) Antenna and asymmetrical coupler. (b) Fabricated sample of
the rectifier circuit [37]

6 dBm [37].
A rectenna using a novel ultra-wideband (UWB) comple-

mentary matching stub for microwave power transmission and
energy harvesting applications is presented in [38]. In [41], a
novel duplexing rectenna with harmonic feedback capability
(second harmonic enhancing and filtering) for wireless power
transfer applications is proposed and it offers the potential
to track the receiver for effective localization and charging.
The fabricated prototype and block diagram of the harmonic
feedback rectifier is illustrated in Fig. 7. The proposed circuit

TABLE I
PERFORMANCE COMPARISON OF STATE-OF-THE-ART RECTIFIERS

Ref. Design Method Rectifier P IN (dBm) PCE (%)

[30] LPF Single series 12.6 42

[31] LPF Shunt diode 14 77

[32] Class F Shunt diode 31 81

[33] Class F Doubler 14.8 82

[34] Class F−1 Shunt diode 13 80.4

[35] Class C Shunt diode 25 82.5

[36] Class E Transistor 23 74

Fig. 7. Proposed block diagram of harmonic feedback rectifier [41].

Fig. 8. Effect of harmonic power and conversion efficiency with respect
to input power level [41].

demonstrates the RF to DC power rectification process and
channeling the second harmonic from the rectifier output by
enhancing and matching. Fig. 8 illustrates the relationship
between harmonic power, conversion efficiency, and input
power. It is evident that the second and third harmonic powers
increase with the input power, with the second harmonic
exhibiting higher power compared to the third harmonic.

In reference [42], a thin, flexible, low-cost, and low-
complexity RF energy harvesting surface was presented,
utilizing complex-conjugate electrically small dipoles. The
proposed array was integrated with a commercial DC-DC
converter and successfully demonstrated the ability to power
a Bluetooth low energy (BLE) module from an input power
density of 0.25 µW/cm2. Fig. 9 shows experimental setup for
the proposed energy harvesting system [42]. Table II shows a
comparison among rectenna performances in the state of the
art [37]–[42]. According to Table II, however, the efficiency
is high (PCE > 70%), the P IN > 0 dBm [37]–[41].

In recent years, several techniques for designing rectenna at
low levels of input power (-20 dBm < P IN < 0 dBm) have
been proposed [43]–[48]. A new architecture for the design
of compact single-port harmonic transponders is presented
in [43]. The proposed diplexing structure based on stubs
and transmission lines eliminates the need for a diplexer in
single-port harmonic transponders is shown in Fig. 10. To
make use of the harmonic generation and RF-DC rectification
capabilities of the diodes, some modifications to the circuit
(controlling harmonics by using TL1 to TL4) is needed. In or-
der to better demonstrate the potential of the proposed system
for low-power IoT applications, a harmonic transponder with
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TABLE II
PERFORMANCE COMPARISON OF STATE-OF-THE-ART ENERGY HARVESTINGS

Ref. Freq. P IN Rectifier Topology PCE Diode DC-DC Load
(GHz) (dBm) (%) Booster

[37] 2.4 6 Shunt diode Rectenna with asymmetrical coupler 70.4 HSMS2860 BQ25504 Resistor (1 kΩ)
[38] 0.9− 0.3 3 Shunt diode Rectenna with LPF (RC circuit) 73 HSMS2850 - Resistor (0.8–1.5 kΩ)
[39] 5.8 21.8 Shunt diode Rectenna with space matching 81 HSMS282C - Resistor (2.2 kΩ)
[41] 0.915 15 Doubler Rectenna with (2nd) harmonic control 71 HSMS2860B - Resistor (1 kΩ)
[42] 0.915 −5 Doubler Rectenna with array topology 72 SMS7630 BQ25504 Resistor (40 kΩ), BLE

Fig. 9. (a) Block diagram for measuring rectenna performance. (b) a
Photograph of the experimental/measurement setup [42].

Fig. 10. Schematic of the proposed single-port harmonic transponder
with modulation capability [43].

On-Off Keying (OOK) modulation has been designed [43]. A
timer (TPL5110) has been used to generate square wave signal
for modulation. A transistor acts as a switch that is derived by
the square wave signal of the timer.

Table III shows rectenna performances in the state-of-the-
art [44]–[51]. Recently, several rectenna techniques based on
array antenna/rectenna have been reported that are able to
power up a DC-DC boost converter [49]–[51]. An efficient
and sensitive compact rectenna for ultra-low power RF energy
harvesting applications is presented in [49].

In [42], [49]–[51], an ultra-low power DC-DC boost
BQ25504 [52] converter have been employed to manage
output power and providing sufficient level of DC voltage
for powering a low-power circuit and sensor nodes. Fig.
11 shows the BQ25504 boost converter and an electronic
switching circuit to power a back scatter sensor node. As can
be seen in Fig. 11, the proposed circuit consists of a rectenna
connected to the BQ25504 booster, a storage (C = 100 µF),
two transistors and a back scatter sensor. The voltages obtained
are illustrated in Fig. 12, first the boost converter goes through
a cold start duration time, denoted tC where the output voltage

TABLE III
COMPARISON OF STATE-OF-THE-ART RECTENNAS WITH LOW INPUT

POWER

Ref. Freq. P IN PCE Technology Load

(GHz) (dBm) (%)

[44] 0.9 −10 33 SMS76030/CMOS Booster+COUT (33µF)

[45] 2.45 −17.2 50 HSMS2852 Resistor (1.4 kΩ)

[46] 2.45 −20 15.4 SMS6630 Resistor (6.2 kΩ)

[47] 0.85 −20 15 SMS6630 Resistor (2.2 kΩ)

[48] 0.868 −20 17 HSMS285B Resistor (5 kΩ)

[49] 0.868 −19 22.5 SMS285B DC-DC booster

[50] 0.868 −15 42 HSMS2850 DC-DC booster+LED

[51] 0.868 −20 24.8 HSMS2850 DC-DC booster+sensor

Fig. 11. The proposed electronic circuit for powering a back scatter
sensor powered using a rectenna [51].

V BAT at the port of the capacitor increases from 0 V to a
V COLD (typically between 1.5 V and 1.8 V, based on the
designing). When V BAT = V COLD, the boost converter goes
to the charge mode. When V BAT = V MAX is reached, the
NMOS transistor is derived by a signal that comes from the
V BAT−OK. During this time, the NMOS = ”ON” and a loop-
way is provided for discharging the capacitor and deriving the
PMOS gate. After discharging, the boost converter goes back
to the charge mode. The PMOS transistor has been placed
between the sensor node and the V BAT pin. The inverted
V BAT−OK signal (through the open drain NMOS transistor)
is used to drive the gate of the PMOS. While V BAT is lower
than V MAX, PMOS = ”OFF” (zero current) and the boost
converter charges the capacitor. Next, when the V MAX is
reached, PMOS turns on and energy flows from the capacitor
to the back scatter sensor.

B. Hybrid Energy Harvesting
Hybrid energy harvesting is a promising approach that

combines multiple energy sources to power devices and sys-
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Fig. 12. Cold start duration time (tc) and charging time (tr) at the port
of the storage capacitor [50].

Fig. 13. Circuit diagram of the hybrid RF solar harvester and a photo of
the complete harvester prototype [53].

tems. By leveraging a combination of energy sources available
in the ambient environment, hybrid systems can overcome
the limitations and fluctuations associated with individual
sources used individually, leading to enhanced efficiency and
reliability. For example, a hybrid energy harvesting system can
combine solar and RF energy or incorporate vibration based
energy harvesting system. Additionally, excess energy can be
stored in a battery for use during periods when other energy
sources are unavailable.

Recently, several techniques and typologies have been re-
ported for hybrid (solar and RF) energy harvesting circuits
[53]–[62]. A hybrid (solar and electromagnetic) energy har-
vesting and communication system which operates at 2.4 GHz
and enabling the operation of a low power DC-DC booster
for a wireless sensor is presented in [53]. Fig. 13 shows
the proposed energy harvesting circuit. The proposed circuit
utilizes a voltage doubler rectifier circuit (D1 and D2) for the
RF part, which is necessary to accommodate a sufficiently
high voltage to facilitate the start-up of the DC-DC boost
converter circuit. To simplify the layout, the solar cell output
was connected using a series diode (D3) at the output of the RF
rectifier circuit. The final results show a significantly decrease
in the charging time of DC-DC booster by combining the DC
output of the solar and the RF harvesters.

A flexible and wearable hybrid RF-solar energy harvesting
system is presented in [57]. The transparent rectenna and
the film solar cell can be completely overlapped to provide
increased hybrid output power. According to the system de-
scribed, shown in Fig. 14, the antenna, the rectifying circuit,
and the whole hybrid energy harvesting system have been
experimentally verified on the human body. The flexible trans-
parent antenna shown two impedance matching bandwidths

Fig. 14. The proposed flexible hybrid (solar + RF) energy harvesting
circuit and a photo of experimental setup on the human phantom [57].

of 3.5–3.578 GHz (n78-5G) and 4.79–5.09 GHz (n79-5G),
covering two fifth-generation (5G) communication frequency
bands.

The performance comparison between a hybrid solar-RF
energy harvesting circuit and seperate, stand-alone solar and
RF harvesting circuits, at different times over a day has
been presented in [58]. In [59], a multiband hybrid energy
harvesting system is presented which harvested 192.9 µW of
DC power simultaneously from RF bands and solar energy.
The PCE of the rectifier at P IN = -10 dBm is 52.1% and
42.1% for 1.8 GHz and 2.45 GHz respectively.

A hybrid (RF-solar) energy harvesting circuit using a trans-
parent multiport antenna for indoor applications is described
in [60]. The antenna design utilizes two layers of copper
micromesh, with one layer serving as the radiating element
and the other as the ground. The radiating element consists of
four patches, each excited by two orthogonal ports to enable
dual polarization. As a result, a total of eight antenna ports
are formed. The antenna’s ground is positioned on the top
surface of the glass support of the solar panel.Fig. 15 shows
the proposed combined rectifier and DC circuit developed for
the hybrid system [60]. A key consideration in the hybrid
design is to maximize the final combined power efficiency.
According to the Fig. 15, using a DC combining approach, the
DC outputs of the eight rectifiers are connected in series and
then shunted with the DC output of solar cell panel. The solar
cell panel consists of nine cells connected in series and the
circuit model for an individual cell consists of a current source,
a diode, a series resistance Rs, and a parallel resistance Rsh. A
review research study on hybrid (RF-solar) energy harvesting
and wireless power transfer was published in 2014 [62].

A hybrid (RF-solar-vibration) energy harvesting power man-
agement system with high efficiency is presented in [63].
The power management system can harvest energy from
three sources simultaneously, with available power levels of
25 nW to 100 µW, with one inductor. A hybrid RF-Solar-
Thermoelectric-Triboelectric-Vibration hybrid energy harvest-
ing based high efficiency wireless power receiver is presented
in [64].

C. Energy Harvesting Using Additive Manufacturing
Technology

To enhance the efficiency of energy harvesting circuits,
advanced printing technologies (3D and inkjet printing) can
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Fig. 15. The proposed DC combining circuit model of the hybrid RF-
solar energy harvester [60].

Fig. 16. Assembly of the plug-in rectenna modules for the scalable
wireless energy harvesting system [68].

be incorporated into their design. 3D printing enables the
creation of complex and customized geometries for energy
harvesting circuits [65]. For instance, multiple layers with
varying mechanical properties can be designed to optimize
energy conversion. Inkjet printing technology can be used to
deposit functional materials onto the surface of 3D structures
for precise placement of energy harvesting materials [66].
Indeed, Materials with specific properties, such as piezoelec-
tric or thermoelectric materials, can be printed onto flexible
substrate, creating wearable energy harvesting devices that
conform to the body’s shape [67].

A novel integrated miniaturized plug-in rectenna with a
3D structure is presented for orientation-insensitive dynamic
power harvesting capability for IoT sensor nodes [68]. A
number of rectenna cells have been plugged for various
geometrical arrangements for RF battery based on the require-
ments. According to the Fig. 16, three different assemblies
have been designed to achieve the following objectives: 1)
Dynamic power harvesting using a linear-stacking battery,
2) Orientation-insensitive dynamic power harvesting using a
cuboid-stacking battery. 3) Combined energy harvesting from
horizontal and vertical waves, combined with orientation-
insensitive operation using a combined-cuboid battery. In
recent years, 3D printed structures for developing rectenna
circuits have been reported in [69]–[72].

3D and inkjet printing technologies have been employed
to create rectenna circuits with high PCE and improved inte-
gration with low-power circuits and IoT devices [73]–[76]. A
combination of additive manufacturing techniques for realizing
complex 3D origami structures for RF energy harvesting

Fig. 17. Inkjet-printed patch antenna on unfolded 3D-printed cube and
“Origami”-folded cube after heating, folding, and cooling down [73].

Fig. 18. Assembly of the plug-in rectenna modules for the scalable
wireless energy harvesting system [77].

applications is presented in [73]. The process involves the
fabrication of a planar structure using 3D printing technology
and subsequently utilizing inkjet printing to form conductors
directly on its surface. The combination of 3D printing and
inkjet printing can greatly facilitate rapid prototyping, as
both are fully additive processes. A significant advantage of
this combination is that no post-processing is required after
the 3D printing phase to start the inkjet-printing phase. In
principle, the two processes could be combined in the same
piece of equipment capable of performing a sequence of 3D
material deposition and jetting of conductive, semiconductive,
or dielectric inks [73], [74]. The same patch antenna has been
printed on two orthogonal sides of the cube, to realize the
multi-direction harvesting/communication system, as shown in
Fig. 17. After the antennas fabrication, the structure is heated
and folded to its 3D form (shown in Fig. 17).

A fully inkjet printed novel Cantor fractal antenna for RF
energy harvesting is presented in [75], which can harvest
energy from relevant RF bands (GSM900, GSM1800 and 3G)
at the same time. The proposed antenna has been realized
through a combination of 3D inkjet printing of plastic substrate
and inkjet printing of metallic nanoparticles based ink. A 3D
printed vibrational energy harvester is presented in [76], which
can potentially meet the power supply requirements supply for
the next-generation of low-power sensors and IoT devices.

In energy harvesting and wireless power transfer systems,
angular misalignment between transmitter (Tx) and receiver
(Rx) is a key feature in PCE reductions [77]. Fig. 18 shows
a compact 3D multisector wireless power transfer system to
reduce angular misalignment problems.

III. ENERGY HARVESTING APPLICATIONS

A continuous, low cost and stable sensor data flow in
the supply chain is a critical component of the Industry 4.0
research agenda. Energy harvesting can be a game-changing
solution for digitalization of the smart manufacturing work
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Fig. 19. BLE chipset duty cycle current consumption pattern.

flow and is a research topic of interest in the field of the
Internet of Things (IoT) [78]. Three key enabling elements
in this concept are (i)- A low-energy communication network
such as Bluetooth Low Energy (BLE), RFID platform, LoRa
networks, and ZigBee [79]. (ii)- Power harvest units such as
RF antenna, piezoelectric transducer, solar cells, or Thermal
Energy Generators (TEG). (iii)- Sensor and MCU are respon-
sible for digitalizing parameters such as temperature, humidity,
pressure, and so on to transmit them using the communication
network. In the following section, some harvesting applica-
tions based on low-energy wireless networks such as BLE,
RFID technology, and LoRa networks are discussed.

A. Energy Harvesting Using BLE Technology for
Industrial IoT Applications.

BLE is a power-efficient version of Bluetooth specifically
designed for coin cell network communication. Several factors,
including temperature, humidity, obstacles, and radio inter-
ference, can contribute to increased power consumption in
the chipset functionality. However, the power consumption
generally follows the pattern illustrated in Fig. 19 during
packet data exchange. To minimize power consumption in
Bluetooth modules, endeavours are made to reduce the duty
cycle and maximize the duration of the sleep mode. These
efforts aim to optimize power efficiency and extend battery
life in BLE devices.

Bluetooth chipsets consume the most energy during wake-
up and cause a spike in the current consumption graph. The
energy harvesting module’s internal impedance should thus
be designed to be small enough to meet this demand. Data
reception and transmission (depending on the data volume and
antenna parameters) demand the highest power consumption
across the duty cycle. Finally, after processing the data, the
radio and processor return to the low power consumption sleep
mode. Moreover, the potential for reducing average power
consumption is substantial. This is facilitated by the possibility
of switching between advertisement mode, where devices
broadcast their presence, and broadcast mode, where infor-
mation is sent to multiple devices without forming individual
connections. Such reduction in average power consumption
can be achieved and driven by RF energy harvesting [80],
[81]. In this regard, the authors in [80] describe an RF energy
harvesting system operating at 868 MHz to digitalize tem-
perature, humidity, and geolocation parameters and transmit
them using an ultra-low-power BLE SoC made by NXP for

Fig. 20. (a) Schematic of the battery-less Ultra wide band BLE tag. (b)
Prototype of BLE tag [80].

Fig. 21. Ambient light energy harvesting setup and data latency
improvement by avoiding restarting the BLE node [82].

2.45 GHz. As shown in Fig. 20, a sensor sends the value
in the I2C data package to the microcontroller powered by
the harvesting unit. The MCU then broadcasts the data using
the BLE network. The low energy density associated with RF
energy harvesting is an obstacle to powering the BLE modules
in higher-duty cycles. Therefore, different harvesting solutions
are studied to drive BLE nodes by solar Harvesting in [78],
[82]–[85] and using wind energy harvesting in [86], [87].

The authors in [82] utilized an indoor solar cell for energy
harvesting and gauged ambient light levels by assessing the
amount of harvested energy available. Results in Fig. 21 reveal
that the energy-aware system developed achieves enhanced
performance (up to 74%) in both uni- and bi-directional data
transmission through a strategic approach. This approach in-
volves optimizing the power consumption profile, as discussed
in the cited paper’s abstract, which addresses the development
of energy-aware batteryless nodes for Bluetooth Low Energy
(BLE) communication. A similar study was investigated in
[78] to validate ambient light sensing with the Energy Au-
tonomous Wireless Sensor Node (EAWSN) based on the BLE
communication platform.

B. Energy Harvesting Applications based on the RFID
Platform

RFID technology plays a crucial role in the Industry 4.0
landscape by providing solutions for tracking assets and
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Fig. 22. System setup of RF energy harvesting usung 3rd harmonic to
increase reading range of passive RFID [88].

controlling access. This technology functions by capturing
radio frequency energy emitted from an RFID reader an-
tenna. This energy drives RFID tag chips, which not only
relay essential identification data but also provide information
gathered from the surroundings. The advancement of RFID
technology into the microwave frequency band has amplified
the available radio frequency energy, enabling designers to
fine-tune antenna size and operational range. Additionally,
the heightened sensitivity of these chips has led to reduced
power consumption, rendering RFID tags highly compatible
with energy harvesting systems. Earlier academic research
has predominantly centered around three key dimensions in
the context of energy harvesting for RFID applications, as
elaborated below:

1) Previous studies in [88]–[93] have successfully used
energy harvesting to extend the reading range of passive
RFID tags.

2) Further scholarly investigations have focused on im-
proving the efficiency of RFID tags, as evidenced by
references [89], [93]–[98].

3) Energy harvesting has also found application in the
digitization of various parameters, such as temperature,
humidity, location, and pressure. These parameters are
seamlessly transmitted to RFID readers through the
RFID platform, as outlined in references [99]–[105].

According to Fig. 22, the authors in [88] demonstrate energy
harvesting from unwanted harmonics at 3f0 to provide extra
energy for the RFID system and hence to increase the reading
range. The results show that this concept increased efficiency
by approximately 33% and the reading range by approximately
2.5 m.

A novel hybrid energy harvesting method is introduced in
[89], [91], [100], [106] where the simulation and prototype
development of embedded solar harvesting cells into an RFID
antenna patch is described. DC energy from the solar cells
drives an E-class oscillator set at 340 MHz and is coupled to
the patch antenna to increase energy transferred to the RFID
chip [91]. The setup shown in Fig. 23 is inefficient as it
converts DC and RF power twice. Hence, authors in [100]

Fig. 23. Solar energy harvesting prototype to improve the passive RFID
tag reading range [91].

used the RFID chip with the capability of external battery
input so that the chip could be directly powered by the DC
solar unit output.

Wirelessly measuring and transmitting sensed parameters
without needing any battery has been a topic of interest for
some time, most recently in particular for IoT applications.
This concept was enabled thanks to the development of low
energy-consumption technologies such as RFID associated
with energy harvesting techniques. The possibilities for such
systems in the marketplace motivate market leaders to add new
features to their next-generation RFID chips being developed.
In this regard, EM MICROELECTRONIC introduced the
EM4325 RFID chip with a built-in temperature sensor, 4-
bit programmable digital I/Os, and Serial Peripheral Interface
(SPI) bus. This chip harvests the necessary energy for its
processor to transmit data using commercial RFID standards
and to be a source of data transmission for external peripheral
devices [107]. Researchers in [99]–[105] used harvesting tech-
niques to drive on-chip integrated sensors as well as external
sensors to digitalize sensed parameters of interest. Despite
the presence of an integrated internal temperature sensor in
the EM4325 chip, the authors in [103] used RF harvesting at
3f0 frequency to charge an external temperature sensor and
send its data using the RFID platform. The approach involves
harvesting the energy contained in the unused third harmonic
signal generated by a standard passive RFID chip to produce
additional power to drive a temperature sensor. As shown in
Fig. 24, The RFID chip, third harmonic harvester (at 3f0), and
RFID tag antenna (at f0) are coupled together and generate
39 µW for the temperature sensor.

C. Low Power Wide Area Network (LP-WAN) LoRa
Technology

The development of a variety of IoT applications has led to
increasing demands for a sustainable, low-power, long-range
platform to connect things with a low bit rate. LoRa represents
a wireless modulation technique derived from Chirp Spread
Spectrum (CSS) technology, and LoRaWAN is an industrial
networking protocol for the LoRa physical layer. As LP-WAN
networks are designed for low energy consumption, these
networks are ideal applications to be fed by Energy harvesting
techniques. The superiority of low-energy Bluetooth is in its
deficient consumption, but in applications that require a longer
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Fig. 24. Two RF energy harvesting prototypes using EM-4325 RFID
chip [103].

range, the LPWAN network is the promising and significant
technology used in IoT scenarios.

The commercially available WSNs are still power-hungry
to be fed only by RF ambient harvesting [108]. The multi-
harvesting structure is investigated in [109]–[111] using RF,
solar, piezo, and thermal harvesting to drive LoRa-based
applications. Authors in [112] proposed an energy harvesting
optimization method (EM-CRAM) that operates at the MAC
layer of LoRa to increase solar harvesting efficiency in LoRa
networks. EM-CRAM is a sustainable solar-based energy
harvesting algorithm for LP-WAN. The energy consumption
was managed by optimizing the configuration of the spreading
factor and data transmission rates. [113] was investigated
on resource management, scheduling functions, and wireless
parameters optimization to minimize the LoRa device’s power
consumption. Results show that a multi-energy harvesting
method with optimized parameters can guarantee sustainable
energy provided by harvesting in the LP-WAN LoRa nodes.

Authors in [117] studied Thermo-Electric Generators (TEG)
as an energy harvesting solution for a LoRa IoT node. The
harvesting structure contained a power management unit and
super-capacitor to store energy using an IoT low-power algo-
rithm. The system demonstrated generates a continuous 0.4-12
mW, and IoT device current consumption is 79 mA in data
transmission mode and less than 50 µA in sleep mode.

In the realm of wireless technologies, the power consump-
tion of various protocols has been a focal point of research.
As summarized in Table IV, energy consumption in wireless
technologies varies based on several parameters, such as data
rate, wireless transmission range, DC power consumption,
operating frequency, and network topology. ZigBee and BLE
are designed with low power consumption in mind, with BLE
being particularly efficient for short-range communications
[114]. RFID is known for its low power consumption and
is primarily used in asset tracking applications [115]. LoRa,
a protocol for wireless sensor networks, offers a longer trans-
mission range with low power consumption, making it suitable
for IoT devices [116]. When considering energy harvesting
applications, it is crucial to select a wireless technology that
can efficiently transmit the digitized data of sensors while
being powered by ambient energy sources. BLE emerges as a
promising candidate due to its very low power consumption

Fig. 25. Automation pyramid data flow and RF Energy Harvesting data
acquisition block diagram.

and high data rate. However, for applications requiring longer
transmission ranges, LoRa might be a more suitable choice.

Table V presents a comparison of various energy harvesting
methods. This table provides a comprehensive overview of
these methods, highlighting their unique characteristics, in-
cluding energy density, efficiency, installation prerequisites,
and the average energy harvested per unit surface area. By
conducting this comparative analysis, we aim to discern the
strengths and potential limitations inherent in each method. For
instance, solar energy exhibits high energy density but may be
susceptible to environmental variables affecting its efficiency.
In contrast, RF energy harvesting, while necessitating specific
installation conditions, offers the advantage of continuous
operation.

IV. ENERGY HARVESTING FUTURE PERSPECTIVE

Data digitization in Industry 4.0 is looking for stable,
self-powered, and wireless methods to quickly expand data
digitization in the supply chain. Based on the automation
pyramid in Fig. 25, sensors, actuators, and switches in the field
layer are connected to the control layer through wiring with
an external power supply. Status data after initial processing
is sent to the supervisor layer through local cable networks.
This study looks to introduce a passive and wireless method
to digitize the field layer data using BLE fed by RF energy
harvesting. A low-energy Bluetooth module will interact with
the control layer by programmable logic controller (PLC) or
embedded boards in the control layer.

In the field layer side, the rectenna harvest module will
provide DC power for a Low energy V5.0 Bluetooth chipset
module to interact with analog and digital I/O. Thanks to
the System on Chip (SoC) method, a variety of Bluetooth
cheapest, E.g., Atmel ATBTLC1000 (15.1 µA average ad-
vertisement current), is designed and manufactured for low-
energy applications. Built-in features in the EM4325 RFID
chip made it possible to digitize analog dry contact signal of
limit switches passively and wirelessly. Fig. 26 presents the
digitization layout for limit switches in the production line by
EM4325 advance RFID tag through RF energy Harvesting.

The future perspective of using energy harvesting for on-
chip RFIC (Radio Frequency Integrated Circuit) applications
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TABLE IV
COMPARISON OF DIFFERENT WIRELESS TECHNOLOGIES BASED ON VARIOUS PARAMETERS.

Ref. Wireless
Technology Data Rate Range

(m)
DC Power

Consumption Frequency Network Topology Application

[114] ZigBee 250 kbps 10-100 Low 2.4 GHz Star, Mesh Home Automation

[114] BLE 1 Mbps 50-150 very low 2.4 GHz Star Wearable devices
IoT applications

[115] RFID 120 kbps 3-10 Low Varies Point-to-Point Asset tracking
[116] LoRa 0.3-50 kbps 2000-5000 Low Sub-GHz Star IoT devices

TABLE V
COMPARISON OF DIFFERENT ENERGY HARVESTING METHODS.

Ref. Method Energy Density Efficiency Installation limitation/needs
Harvest Energy

(W/cm2)
Average Energy

Harvested (mW/cm2)

[118] Solar Moderate Various with lighting
conditions

Dust and environmental parameters
affect efficiency and performance Moderate 10-20

[119] Wind Low to moderate High at optimal
wind speed Requires open space for installation Low 0.1-0.5

[118] RF Low Various with RF
sources level

Requires efficient Rectenna/Rectifier part
as RF-to-DC converter Low 0.01-0.1

[120] Thermal Low Various with Temperature Requires a significant temperature difference Low-moderate 0.5-5

[120] Vibration Low A function of vibration
amplitude Requires a consistent vibration source Low 0.1-2

holds tremendous promise for advancing the capabilities of
wireless devices [121], [122]. As technology continues to
evolve, the integration of energy harvesting into RFICs is
expected to become more efficient and widespread. Advance-
ments in miniaturization, materials science, and circuit design
will enable on-chip energy harvesting to be seamlessly in-
tegrated into a wide range of electronic devices, including
smartphones, smartwatches, and medical implants. Moreover,
with the emergence of 5G and beyond, the proliferation of
RF signals will provide abundant opportunities for harvesting
energy from the surrounding environment. This will lead
to the development of ultra-low power and even energy-
autonomous IoT devices, revolutionizing the way we interact
with technology [123], [124]. Additionally, ongoing research
and innovation in energy storage technologies will address
the challenges of intermittent energy availability, further en-
hancing the viability of on-chip energy harvesting. As this
field continues to mature, we can envision a future where
wireless devices are not only highly efficient and self-powered
but also contribute to a sustainable and low-carbon society by
minimizing energy consumption [125] and reducing the overall
environmental footprint.

V. CONCLUSION

The recent emergence in IoT, Industry 4.0 and 5G com-
munication has resulted in a demand for using self-powered,
battery-less and maintenance-free devices and circuits. Energy
harvesting is a promising method to harvest energy and
convert it to DC power for powering electronic devices and
sensor nodes in Industry 4.0 applications and next-generation
wireless sensing applications. In this paper, a literature survey
on energy harvesting; methodology, technical developments,
low-power circuits and applications in Industry 4.0 and 5G
communication were discussed. The paper explained various
advanced methods for improving the efficiency of RF energy
harvesting circuits by manipulating and recycling harmonics,

Fig. 26. Wireless and passive digital I/O digitization using EM4325
advance RFID tag and Energy Harvesting.

along with the use of innovative packaging techniques for
combining multiple power sources. Additionally, the paper
presented a novel perspective on low-power IoT and intro-
duced the concept of a brand-new industrial IoT and smart
sensing applications based on RFID technology.
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