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1 Introduction 

Virtual factories are abstractions of real factories that provide a multi-layered integration of the 

information related to various activities along the factory and the product lifecycle. The physical equipment 

of a factory is represented in the virtual factory, connected to the physical equipment of the other 

companies and can receive data and instructions. These virtual environments allow for the simulation and 

analysis of various production processes and systems and can be used for a variety of purposes, including 

production planning, process optimisation, training, and prototyping. Virtual factories rely on a 

combination of advanced digital technologies, such as Artificial Intelligence, the Internet of Things, and big 

data analytics, to optimise manufacturing processes in order to increase productivity and quality. 

However, the implementation of virtual factories and Industry 4.0 technologies also presents a number of 

challenges, one of which is ensuring interoperability between the vast number of different systems and 

technologies that are required to realise the full potential of virtual factories and Industry 4.0. Ensuring 

interoperability in smart factories is critical because it enables different systems and technologies to 

exchange and process data effectively, allowing for the smooth operation of the factory as a whole. 

Without interoperability, different systems and technologies may be unable to communicate and exchange 

data, leading to inefficiencies and potential errors. This deliverable discusses several challenges related to 

interoperability in the context of virtual factories and smart manufacturing that need to be addressed in 

order to enable the communication among heterogeneous software components of the virtual factory, as 

well as the exploitation of services and data according to business process objectives. 

Section 2 explores the use of Manufacturing Execution Systems for building an industrial software layer for 

virtual factories. The virtual factory system is focused on the management of manufacturing assets. As a 

result, the production workshops of a virtual factory require a full-featured, well-interactive Manufacturing 

Execution System to solve tasks such as dispatching manufacturing parts and materials and managing 

production resources. The Manufacturing Execution System is one of the indispensable systems for building 

an industrial software layer of such smart factories and the virtual production systems. It plays a bridge role 

between many different parts of the entire manufacturing system. 

Section 3 discusses how digital twins, which build upon Internet of Things concepts, can be leveraged to 

simulate complex systems with diverse components whose simulation incorporates approaches from 

multiple disciplines. Such simulations are desired in many advanced systems, including modern approaches 

to manufacturing. Section 4 explores the automatic composition of services provided by digital twins, which 

resembles the composition of Web services. Since a single manufacturing process may comprise hundreds 

of different digital twins that may suddenly fail or provide bad performance, the manufacturing process 

should be able to adapt to new conditions automatically, considering new digital twins for the fulfilment of 

the manufacturing goals. This task cannot be performed manually when actors span multiple organisations 

that are possibly separated from both the geographical and organisational points of view, which is why it is 

crucial to have a plan for the manufacturing process to be able to manage several digital twins, taking into 

account their possible failures and costs. 

Section 5 considers the use of verification techniques to understand the processes of virtual factories, verify 

their correctness and diagnose potential problems. Such verification techniques allow us to check whether 

a process conforms or complies with some specification, but the terms conformance and compliance are 

often used as synonyms. As a result, the terminology used to describe the techniques or the corresponding 

verification activity does not always match the precise meaning of the terms as they are defined in the area 
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of verification, and the confusion of these terms may hamper the application of the different techniques in 

smart factories. 

In Section 6, the issue of interoperability at the development level is considered. Nowadays, traditional 

software development methodologies are no longer sufficient for fulfilling business requirements. The 

implementation of Continuous Integration and Continuous Delivery, CICD, has enabled fast delivery of 

software and increased productivity. A considerable benefit of having a CICD pipeline is a separation of 

responsibilities that will help team members to focus on their part while the CICD pipeline takes care of 

integration and delivery, which results in rapid releases.  

Section 7 presents Complex Event Processing as a means to provide stronger interoperability between 

virtual factories and the Internet of Things, one of the key technologies on which virtual factories rely. 

Complex Event Processing can not only be used to obtain valuable insights from the data obtained from the 

Internet of Things devices but also to perform real-time analysis to allow preventative actions. An 

important trade-off for such systems is between the quality of the results obtained from the analysis and 

the level of privacy that the system guarantees. 
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2 Interoperation and its Implementation of MES to Support Virtual Factory 

The VF (virtual factory) technology can effectively be used to control product manufacturing quality, 

business collaboration efficiency, demand response speed, and reduce manufacturing costs on a large-scale 

customised collaborative business chain (Wei, Bai, and Xu 2020a). The collaborative manufacturing industry 

chain links based on the VF framework are composed of manufacturers or service providers with the best 

comprehensive competitiveness. Therefore, the establishment of a VF system is the key to achieving 

manufacturing business innovation. The VF is an upgrade of the digital factory and it has more connotations 

and functions. Because, from one hand, it is based on the automation of workshop equipment and applies 

technologies such as the Industrial Internet of Things to realise automatic data collection and information 

integration of the physical resources of the manufacturing system; on the other hand, it can use the CPS 

(Cyber Physics System) to construct a digital twin model to realize the control of the virtual and real two 

ways of the manufacturing system. In short, the VF platform/system is focused on the manufacturing assets 

management. As a result, the production workshops of a VF should need a full-featured, well-interactive 

MES (Manufacturing Execution System) to solve the tasks such as manufacturing parts/materials dispatch, 

production resource management etc. Otherwise, it is difficult to map the manufacturing assets of the 

virtual factory to the actual production tasks and realise data integration. From this perspective, the MES 

interoperability of the workshop is the key to the operation of the entire VF system. 

The MES interoperability framework supporting VF operation plays a bridge role in many links such as 

product design, manufacturing process planning, production process management, and quality inspection. 

It organises the manufacturing assets, schedules production cycles, and optimises the entire production 

systems by integrating the useful data sources from different information systems. Therefore, the 

interoperability of MES in the VF environment is the key link of whether the VF system can operate 

smoothly and effectively. However, the existing MES integration framework lacks a mechanism to integrate 

the VF platform. Consequently, the MES is necessary to adopt an improvement development manner for 

this purpose, yet it is found that there are rarely applicable researches in this field. Therefore, it becomes 

the motivation of the research on MES interoperability to support manufacturing business innovation. 

The research objective is to explore a way of how to improve the existing MES systems functions and their 

application ranges via integration strategies. It can effectively integrate distributed manufacturing 

resources (machine tools, equipment, robots, stackers, operators, etc.) and provide corresponding MES 

that meets the requirements of the industrial software layer in an intelligent software system. Among 

them, the following two specific questions need to be addressed. 

1) The MES uses what method to collect and process of the real-time operating data of the distributed 
workshop manufacturing assets of VF reliably. By acquiring these data, the MES system can provide 
the shop floor production management staff with reliable data required for manufacturing 
resource planning and scheduling.  

2) According to the integrated distributed manufacturing assets and their operating data, how the 
MES uses the information to evaluate the feasibility of the initially formed production plan and 
manufacturing resource scheduling plan of VF? That is, the production plan established by MES 
according to the product production process, and the corresponding machine tools, equipment, 
robots, operators, etc., whether the combination of these resources is optimal which can be 
evaluated by using some software tools, e.g., ProModel, Flexsim, etc. As a result, there is a problem 
with how to integrate the MES and the simulation software tools combined the distributed 
manufacturing assets. Then, MES can use the results of the assessment to decide whether to adjust 
these production plans and manufacturing resource scheduling plans. 
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2.1 MES Interoperability Framework Integrated with VF Platform 

The VF is the key to achieving large-scale customised services in Industry 4.0. The establishment of a VF can 

focus on the manufacturers in the advantageous industrial chain to form a dynamic production system with 

high-level, reliable production and transparent management.  

According to the foregoing, combined with the VF production system performance evaluation technology 

based on VF manufacturing assets vertical integration method, and the cloud manufacturing model based 

on VF manufacturing assets horizontal integration technology, the existing MES can be extended to support 

the integration with virtual factories platform (refer to Figure 1). 
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Figure 1: MES interoperability framework supporting VF applications. 

In terms of vertical integration method, the VF uses the information model to interconnect and 

interoperate with equipment via the standards/protocols, e.g., MTConnect, AutomationML, and OPC-UA 

(Unified Architecture), to read the running data of the equipment layer in the workshop in real-time. The 

data from the IoT platform provides a reliable input for the evaluation of the operating effectiveness and 

efficiency of a VF manufacturing system. By integrating MES into the VF platform, on the one hand, the 

evaluation results can be utilised to provide a basis for the MES production scheduling and task scheduling 

of the VF, on the other hand, it can also be used as an auxiliary to dynamically build or improve the 

performance of the VF production system.  

Using VF horizontal integration technology, it can integrate the distributed manufacturing assets and then 

establish a cloud manufacturing model. In addition to evaluating the performance of the collaborative 

manufacturing production line, the VF integration platform also manages product manufacturing business 
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activities and related information in the VF environment. The IDEF (Integrated Definition Methodology) can 

be used for platform modelling. The platform supports multiple levels and multi-view integration of the 

manufacturing assets throughout the product life cycle and establishes a real and virtual digital twin model 

of mutual mapping. The MES can more reasonably perform production management, scheduling, and task 

scheduling, and optimize the performance of job tasks than the past, by integrating the digital twin model. 

2.1.1 Case Study 

A large domestic ship manufacture group that has tens of subordinate manufacturing plants and research 

institutes has formed an industrial chain that is similar to a VF. It has applied the intelligent manufacturing 

systems developed by KM-Soft Co since 2006. Recently, the group started the construction of the National 

Intelligent Manufacturing Demonstration Project, called Digital Workshop of Shipbuilding Engineering 

Mechanical and Electrical Equipment, which focused on the construction of the KM-MES based on an 

integration platform of the manufacturing assets from the distributed subordinate manufacturing 

enterprises (refer to Figure 2). Therefore, this study takes the case as an example to explain the availability 

of the aforementioned MES interoperability framework model which can be used to support VF operation.  

First, the bottom layer is the VF platform. It uses MTConnect (MTConnect Institute 2018), AutomationML 

(Yemenicioğlu and Lüder 2014), OPC-OA and other protocols to collect hardware data, such as machine 

tools, robots, and transportation equipment of the companies on the manufacturing chain. Through 

CPS/DNC and other methods, the dynamic data of the hardware equipment is transmitted to the IoT 

database. The vertically integrated subsystem for the distributed manufacturing assets can be used for the 

VF production line evaluation purpose by combining with the production order information from the VF; 

the horizontally integrated subsystem of the distributed manufacturing assets can be established to 

provide services such as manufacturing assets discovery and optimised combination in the form of cloud 

manufacturing. 

Second, it is the MES system layer. By integrating with the VF platform, it can optimise the establishment of 

the marine power propeller product manufacturing chain and form an optimised VF production line by 

utilising the manufacturing assets discovery and combination services provided by the cloud manufacturing 

subsystem. Also, it can integrate the subsystem which vertically integrates the manufacturing resources 

based on the VF platform, and to evaluate the performance of the established VF production line. 

Furthermore, it can continuously improve the performance of the VF production line.  

The third layer is the industrial software layer. This layer is composed of CAD/CAE/CAX, the systems of 

PDM/PLM, the process design and management system, and the enterprise manufacturing assets 

management ERP/CRM/SCM. A production database of the VF is required at this layer to support the 

operation of the entire VF information system. The MES on the second layer can integrate the industrial 

software system on the layer through the enterprise application integration platform to realise the 

functions of production planning, organisation, and manufacturing resource management in the workshop. 

The top layer is the enterprise user layer. This layer uses real-time data from the VF database to mine the 

manufacturing data. It can help to provide users with multi-view and multi-dimensional data mining results 

by BI technology, which assists corporate decision-making quickly and reliably. The other functions, e.g., 

browse and query personalised data via a graphical interface, are also provided.  
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Figure 2: A case of virtual manufacturing platform between MES and VF. 

2.2 Quality Management 

Quality management is a crucial activity in discrete manufacturing (Wei, Bai, and Xu 2020b). One of the 

primary functions of the MES in the workshop is to provide related management functions for quality 

management. Quality management must not only collect the processing quality data of parts but also carry 

out relevant quality data analysis to find the causes of quality problems and channels and improvement 

methods to improve product quality in the product design, product manufacturing, and maintenance of 

production machine tools, etc. The analysed result can be used in different production stages to improve 

and enhance the quality of these activities and ultimately achieve continuous product quality 

improvement.  
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CMM (Coordinate Measurement Machine) is one of the main methods of quality inspection widely used in 

the manufacturing workshop. Enterprises use CMM inspection results to provide users with reliable parts 

manufacturing quality reports. Data analysis can provide necessary data for equipment maintenance 

management, manufacturing process route improvement. The reasonable use of CMM to ensure the 

manufacturing system quality can help to continue producing high-quality parts. As a result, CMM plays a 

vital role in product quality management, and it has become one of the hot issues in manufacturing 

technology (Mears et al. 2009). Recently, CMM technology and measurement software technology has 

developed rapidly, making the parts inspection process more automated. Because the technology provides 

the more possibility of using the inspection data, the manufacturing quality management module of MES 

helps improve the production process. It provides more great conditions for it (Machado et al. 2020). 

2.2.1 Motivation 

There is usually a long delay between manufacturing, CMM inspection, and part process evaluation. When 

the production system has problems meeting the design or process parameters requirements, the quality 

assurance team has to identify and correct it as soon as possible through quality management mechanisms. 

Researching the CMM data interoperation mechanism is conducive to solving three critical problems that 

are ubiquitous in intelligent manufacturing systems and urgently need to be addressed. (1) For the 

maintenance of crucial manufacturing machine tools, it is vital to establish the prediction models of 

machine tool accuracy and cutting tool parameter by applying big data and artificial intelligence technology 

via linking CMM measurement data and the use data of the cutting tools through MES. It can help carry out 

predictive maintenance, avoid the economic losses caused by improper maintenance schedule or the 

critical equipment shutting down, and reduce the maintenance cost. (2) Correlate the CMM measurement 

data through the MES, associate the processing data of the geometric features of the part with the process 

model, analyse the correlation between the process parameters and the actual part processing quality 

data, to improve the processing process and process parameters. (3) Through the MES correlation CMM 

measurement data, the geometric feature processing data is associated with the design model to realise 

the design-manufacturing data model associated maintenance, integrate processing cost and other factors, 

and improve the design model.  

The format and content of the measurement report provided by the CMM software are fixed (i.e., pre-

defined). If the data and evaluation items required for subsequent quality management cannot be obtained 

directly from the report, it should find other methods, such as manual calculation. Therefore, to support 

the above three key issues, it is necessary to establish a CMM data interoperation mechanism. When the 

measurement software provides the APIs, the original measurement data can be accessed during the 

measuring by calling them, then calculates the required dimensional tolerances and geometric tolerances 

of the specific features with the data via calling the geometric fitting algorithms module. It is only carried 

out when the data analysis for quality management is a need that cannot be gotten directly from the 

measurement report, and it does not aim to replace the CMM measurement reports but is just a 

supplement. The whole process is automatically done without any interference or man-machine 

interaction, and thus it can avoid the human error. The other way to access the original measurement data 

is to use the DMIS program produced by CMM software. The method of processing the obtained 

information is the same as above mentioned. 
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2.2.2 Requirements 

We use a UML USER-CASE diagram to describe the requirements of the CMM data interoperation layer. In 

the CMM interoperation scenario, the roles involved are CMM operator, CMM data user, MES system user, 

CAD/CAPP designer, and workshop equipment, a maintenance engineer. The activities related to each role 

are described below in Figure 3. 
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Figure 3: CMM interoperation use-case diagram. 

CMM operator initiates the activities, which involves measurement moving path planning, the 

implementation of online/offline inspection, error evaluation for the inspected parts based CAD model. 

When performing an online/offline check, the CMM software records the DMIS automatically that stores 

the commands and original data in the measurement process according to the DMIS specifications to form 

a DMIS file. It is designed for professional users to programming the expected inspection scheme. In 

contrast, the result is output to the report by the CMM software for the general users when the machining 

error evaluation is done based on the CAD model, which is also the content of most current research on 

CMM data interoperation. 

CMM data users call the APIs of CMM-DIL (Data Interoperation Layer) interface to generate the additional 

geometric elements from the original measurement data (e.g., the axis of a cylinder, the center of a circle, 

or the vector of the plane from a circle element), which are not included in the CMM output inspection 

report but are needed for quality management, CAD/CAPP improvement, etc. These data can be output to 

the DFM (Design for Manufacturing) system as essential information to improve the related CAD model; 

CAPP can use the data to verify if it needs to improve the planned operation steps; the data also can be 

used by the equipment management team to analyse the operating status of critical equipment in a 

workshop.  

Also, the MES production quality manager adopts statistical analysis methods to report the quality 

problems found to the relevant departments. For example, the product designers and manufacturing 

process planners improve the CAD/CAPP models via the personalised geometric evaluation result 

supported by the CMM-DIL. The workshop equipment maintenance engineer can formulate a reasonable 

equipment maintenance plan or improve the existing maintenance plan based on the quality report of the 

quality manager of the workshop via MES. 
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2.2.3 CMM-DIL Developments 

To the problem of full use of CMM measurement information, the key is to design a reasonable CMM-DIL 

module to obtain the CMM original measurement commands and data reliably in real-time. In this manner, 

the information of the CMM system can be organised as a service for the users who require it by calling the 

personalised data definition tool provided by CMM-DIL. The following is an analysis of the critical activities 

of the CMM raw data acquisition process (see Figure 4). 
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Figure 4: The raw data acquisition logic versus the key activities. 

Activity 1: For a specific element required to inspect, the CMM operator runs an online/offline 

measurement task through human-computer interaction. Online mode is for a real inspection, and offline is 

for DMIS programming. If it did automatically, the DMIS program (complete or partial) run could be 

managed by the CMM software. The measurement commands and data are sent to MDE (Measurement 

Device Equipment) one by one according to the I++ protocol, and the MDE will guide the measurement 

machine to perform the inspections. 

Activity 2: After receiving the measurement command, MDE drives the probe, touches the surface of the 

part, and triggers the measurement signal. The motion controller latches the measurement point data, and 

then reliably feeds it back to the CMM software according to the I++ protocol. The CMM measurement 

software will save the current measurement point data.  

Activity 3: After the CMM GUI receives the measurement points feedback from the motion controller, the 

number of measurement points on the measurement dialog interface starts to count in reverse order (n=n-

1). If the number of measurement points required at this time is zero, the measurement software will 

automatically jump to activity five and complete the current measurement; otherwise, it will wait for the 

next measurement point of the MDE.  

Activity 4: CMM operators can increase or decrease the current number of measurement points in the 

measurement dialog box through human-computer interaction.  

Activity 5: After the measurement software obtains the current measurement point, the reverse count is 

zero. The measurement software will automatically finish the current measurement task, perform 
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geometric fitting based on the acquired measurement point, and perform error calculations based on the 

theoretical value and the actual measurement value.  

Activity 6: After the geometric element is fitted in measurement software, the original measurement data 

(including measurement commands and actual measurement point data) are transferred to the DDE 

memory through the APIs of the CMM software.  

Activity 7: CMM-DIL can access the DMIS program of the measurement software through the DMIS 

interface and obtain the current measurement object of the measurement system and its original 

measurement data by analysing DMIS.  

Activity 8: Use the APIs to access the DDE memory, obtain the current measurement object and original 

data, and save it in the personalised format.  

Activity 9: Customise the required measurement data through the GUI, and then store the current 

measurement raw data in the DDE memory obtained by CMM-DIL in a predefined format.  

Activity 10: According to the items subscribed in Activity 9, the geometric element evaluation result by the 

CMM-DIL is automatically obtained.  

The following study of the CMM-DIL module logic design is given below through the above discussion and 

analysis of the raw measurement data acquisition activity. 

CMM data interoperation interlayer (CMM-DIL)

CMM software
e.g., PC-DMIS, DIRECT-DMIS etc.

Geometric 
element 

measurement

Adding 
measurement 

point 

Counting the 
number of the 

points
Satisfy the 
required 
number?  

No

Yes

Finish the element 
measurement job 
and then to fit the 
geometric target 

Evaluation the 
fitted geometric 

element

Put the information 
to measurement 

report

Put the 
information to 
DMIS program

Monitor port and 
judge the status of 

DDE
Is there new 

element 
coming?

No

Access the 
measurement data 
from the DDE stack

Yes

Finished?

No

No

Finished the DDE 
thread and 
release the 

memory

Finish DDE 
thread?

Yes

   

Point2

Point1

DDE Memory

Stack of the measurement 
data for specific geometric 
element

PTMEAS/CART,-

276.746303,166.331067,32.000128,-

0.000006,0.000001,1.000000

PTMEAS/CART,-

286.308346,212.021403,31.999077

,0.000008,-0.000007,1.000000

 

Figure 5: Flow of CMM-DIL access the measurement raw data via DDE memory. 
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At the end of the element measurement, the measurement software writes the measure raw data into the 

DDE memory according to a particular standard format, and then the CMM-DIL monitors the changes in the 

DDE memory data and calls API to access the measure raw data in the DDE memory. Therefore, the process 

for CMM-DIL to access these data can be summarised as follows.  

First of all, the CMM-DIL monitors the data changes in the DDE memory through the API of the CMM 

software. When the CMM software finishes a measurement task and writes the original data into the DDE 

memory, the CMM-DIL can detect this change; then, the CMM-DIL creates a temporary measurement 

original object according to the read measurement command and later measures the original one by one. 

After reading a complete measure task and its unique data, the CMM-DIL will end the current data reading 

activity (refer to Figure 5).  

2.3 Conclusion 

Through the integration of the VF platform, its vertical integration (production line performance 

evaluation) and horizontal integration technology (cloud manufacturing) are taken as two aspects. (1) MES 

can effectively manage the distributed manufacturing resources of the VF by integration with the virtual 

manufacturing assets discovery, combination, and management services. (2) Combining the production 

plan information of ERP/MES, it can be used to evaluate the performance of the VF production lines, to 

continuously optimise and improve the performance of VF production lines, and to realise manufacturing 

business innovation. 

Another important function of MES is to provide related management functions for quality management, 

for which CMM is generally one of the main method. The CMM measurement report (format and content) 

provided by the CMM software is usually fixed. If the required data used for quality analysis cannot be 

obtained directly from the report, it should be solved in other ways, e.g., manual calculation, but it may 

introduce calculation errors. This research aims at the quality management of critical business activities in 

the discrete manufacturing industry. By collecting real-time measurement raw data from the CMM 

software, it provides more abundant inspection data for quality analysis. This research aims not to replace 

the measurement results/reports of the CMM software, but to provide a lower-level and more 

comprehensive real-time data for quality analysis in MES to support better quality analysis and 

improvement based on the measurement data analysis. 
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3 Interoperable Collaborative Manufacturing Process Simulation for 
Digital Twins 

Digital twins are a key concept, building upon Internet of Things concepts, in many advanced systems, 

including modern approaches to manufacturing. As a concept, a digital twin provides a digital 

representation of a physical twin (Jones et al. 2020), allowing for digital interaction with the physical twin, 

enhanced access to its properties and simulation of the twin in future or speculative contexts (Schluse et al. 

2018). As such, the digital twin concept combines adaptive modelling with simulation and gains additional 

capabilities from this combination. 

The physical entities represented by digital twins do not exist in isolation but are part of larger systems and 

processes (configurations). These configurations can also be represented in a configuration of digital twins 

that extends the advantages of digital twins to the larger context. 

These configurations could themselves be fully functional (composite) digital twins and part of a layered 

configuration or hierarchy of digital twins. In this context, where the higher-level digital twins are used to 

represent (including to validate) an entire hierarchy, this implies that the physical counterparts (or the 

operational aspects of the digital twins) are interoperable. 

The constituent elements (digital twins) must communicate using some protocol with transport and 

application layers for the configuration to exist (even without any digital twins). The simulation aspect of 

the digital twins must also be interoperable but could take advantage of the existing interoperability of the 

physical counterparts, ideally retaining the application layer protocol and only replacing the transport layer. 

As done in (Platenius-Mohr et al. 2020), interoperability for digital twins can be understood on the basis of 

IEC21823-1 (International Electrotechnical Commission 2019). IEC21823-1 recognises five interoperability 

aspects: Transport, Syntactic, Semantic, Behavioural and Policy interoperability. Most work looks at 

syntactic, semantic and behavioural interoperability. When looking at simulation of interconnected 

configurations of physical/digital twin pairs, interoperability outside the simulation context (which is to be 

simulated) addresses most of these issues, with the exception of transport (and in some parts syntactic) 

interoperability. 

In the context of Industry 4.0, it is desired to simulate complex systems with diverse components whose 

simulation incorporates approaches from multiple disciplines. Many digital twins represent extensive 

investment in their development and may have confidential aspects. In addition, there may be specific 

simulators for specialist equipment, needing to be integrated in the simulation of the surrounding 

manufacturing and business processes. While it is possible to reduce the behaviour of components to 

probability distributions, this requires additional work, loses precision and cannot account for interactions 

between different process steps. 

For example, in the context of industry 4.0, where multiple organisations are collaborating with each other 

to achieve a common objective, different operations such as manufacturing, supply chain, logistics and 

services are handled by different partners. In this case, multiple simulation components for each of the 

operations present a more reliable and achievable solution as compared to a monolithic simulation. 

Interactions and data sharing of these components as desired by the partners can be facilitated. The 

combination of these components is envisaged as a complete Digital Twin of the whole collaboration. 

The alternative to using probability distributions for overall simulations is to use more specific simulation 

models (the simulation aspect of the digital twins) for the components. One approach to solve this is co-
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simulation (Gomes et al. 2018), federation is a variation of this where the component simulators are not 

required to be run on the same system or in the same process, and certainly not in the same simulator (to 

execute the simulation model). 

Co-simulation and federated simulation both have components (simulators which are called federates or 

simulation units) which are governed by an entity which sets some rules for the communication and 

synchronisation of the simulator components. Co-simulation, which is standardised by FMI, uses a 

governing strategy where a orchestration algorithm is responsible for synchronisation and other aspects of 

simulation units. Whereas in federated simulation, standardized by HLA (‘IEEE Standard for Modeling and 

Simulation (M&S) High Level Architecture (HLA)– Framework and Rules’ 2010), provides more freedom to 

federates, but its runtime interface has some services which provides the synchronisation and data 

exchange between the federates. FMI has some pre-defined data exchange points, and only at those 

points, the data is exchanged between the simulators, whereas in federated simulation, communication 

can be more frequent. 

With the lack of interoperability of simulation approaches and related underlying models and execution 

environments (simulators), the realisation of such system-level simulations incorporating all individual 

simulations is technically hard to achieve within a single simulation system. Concepts like the virtual factory 

(Xu et al. 2020) aim at simulating a collaborative manufacturing network, which requires the 

interoperability of the systems and related underlying models in the collaborative manufacturing network 

where different parts are controlled by different organizations and the independence (and confidentiality) 

is a desired quality. In addition, where a simulator is provided by a third party (or the manufacturer), there 

is often a commercial interest in keeping the details confidential. 

In short, many tools and interfaces are available to solve parts of the digital twin simulation problem, but 

simulating complex systems such as a collaborative manufacturing network still is a big challenge. This 

chapter provides an overall approach to integration and interoperability of different simulation systems, i.e. 

federated simulation. 

In terms of simulation interoperability, there is an additional layer of both behavioural interoperability of 

the simulation system as well as policy interoperability in terms of avoiding unlimited sharing of simulation 

configuration and parameters. 

Instead of looking at interoperability of configurations of digital twins per se, we look at the interoperability 

of the simulation (that are enabled/driven by the digital twins). Looking at making simulation 

interoperability, it allows detecting incompatibility of the digital twins in the configuration (and thus an 

operational incompatibility), rather than loosing this information due to independent interoperability. 

While simulations are generally defined using higher level constructs, these constructs are specific to their 

execution environments and changing the simulations to match a different standard is not trivial, requiring 

the environment to be part of the simulation definition, effectively requiring the simulation environment to 

function as a virtual machine. 

Instead of the single simulation environment approach we propose federated simulation as an alternative 

approach that provides practical interoperability combined with flexibility and an opportunity for policy 

enforcement at the level of each digital twin. 
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3.1 Concepts of interoperable digital twin simulation 

To present a formal approach for interoperable digital twin simulation, we first need to consider the 

conceptual problem that needs to be addressed. Figure 6 presents this conceptualisation. 

 

Figure 6: Digital twins' simulation. 

As a starting point of the conceptualisation, a digital twin is the digital representation of a "physical" twin 

(Jones et al. 2020) forming a digital twin pair. We would note that this "physical" twin could be something 

abstract such as a business process (manually executed or managed automatically using a BPMS). In any 

case, most physical twins have some sort of process they perform (which could be doing nothing), as well 

as some state. 

The digital twin then maintains its own model/interpolated representation of the state of the physical twin 

through interaction with the physical twin. To maintain the model, it may be using sensors and actuators as 

well as interpolation, prediction and other soft-sensor techniques. To maintain the information and allow 

for monitoring and control, the digital twin, where possible, intermediates the interactions the physical 

twin has with its (real) counterparts in the overall processes it is involved in. 

The intermediation provides interfaces and ability for the digital twin to be an effective stand-in for the 

physical twin when the digital twin has a sufficient simulation model for its process/behaviour. Replacing all 

physical twins with their simulation capable digital twins effectively provides for the simulation of the 

entire process. When simulating, the simulations would interact with simulated counterparts (generally 

also digital twins-based simulations) rather than "real" counterparts. 

There are various challenges to updating simulation models and parameters as the state of a physical twin 

changes (especially when it represents factors such as wear). In addition, in order to be able to simulate the 

full process, it is necessary that the digital twin’s simulation does have the ability to interact with its 

environment (simulated counterparts) in line with the behaviour of the physical twin. 

In a manufacturing context there are many moving parts, conceptually depicted in Figure 7. Not only is 

there an overall process handling the manufacturing of items through various assets (e.g. machines) that 

transform (semi)products in various ways, either modifying, combining, or a combination, but there are 

many component twins for the assets involved. 

From a process perspective, manufacturing is performed along some process. This could be manual, ad hoc, 

managed through a manufacturing execution system or even including some sort of business process 

management. From a digital twin perspective, to be able to have an effective digital twin, some sort of 
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structured process is needed that can be measured (for example, using process mining (Van Der Aalst 

2012)) and modelled. The Digital (Process) twin here represents an abstract process rather than a physical 

entity. However, even in case of automated process execution, the integrated simulation afforded by a 

digital twin does still have advantages. 

 

Figure 7: Potential digital twins in a manufacturing process. 

The manufacturing assets have a straightforward relation with digital twins in monitoring their 

performance, as controlled by the process. In a digital twin context, the interaction is ideally intermediated 

by the digital twin (for monitoring) but using the same interfaces as the physical twin has. The 

(semi)products consumed and produced (or transformed) may also have digital twins. Here, interactions 

may very well be physical, and explicit interaction with digital twins may be needed to allow the digital 

twins to update their models. 

Product digital twins can range from very simple to very complex. At the base level, it can be some data 

stored against a part serial number, where at an advanced level it can be a digital twin of a complex 

machine that is based upon (and has tracking of) its original creation, but then is also related to the 

products it makes in turn. 

A key observation to make here is that monitoring and modelling of processes requires interactions to be 

explicit to be most effective, for example, to verify the validity of a configuration. Explicit interactions 

require explicit interfaces to exist for these interactions. Given such interfaces for the physical twins, the 

simulation can inherit these interfaces, as well as the solutions to syntactic, semantic and behavioural 

interoperability. It may be feasible to use simulated transports for transport interoperability, but generally, 

simulation would use simulation specific transports (in cases where transport simulation is not desired this 

reduces simulation overheads). Policy level interoperability would be orthogonal, but where digital twins 

are used for enforcement, this can be incorporated in the simulation where required. 

Where digital twins differ from normal simulation, this stems from the combination of modelling, 

intermediation and simulation. This combination allows the simulation to be adaptive, starting from a 

general simulation model based upon the general asset class, over time it will observe the properties of the 

actual physical twin and be able to adapt to provide a higher accuracy prediction of the specific twin. 

In practical terms, there are two restrictions upon the implementation of the simulation. First, it would be 

required that digital twin snapshots could be used so that not only does the simulation model not change 

during a simulation, but also so that simulations are replicable. The second restriction is that simulation can 

be done isolated away from the intermediation and monitoring part of the twin. When using simulation to 
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determine the properties of a setup or to determine the best parameters, this involves many rounds of 

simulation, something resource intensive. The simulation should not be allowed to interfere with the 

remainder of the digital twin and the operational process. 

3.2 Extended digital twin simulation support 

As we wish to allow the use of existing simulators, further tools in the form of interaction primitives are 

beneficial. In addition, looking at simulating configurations of digital twins, these configurations may have 

standard components where any difference in implementation does not make a difference. Some of the 

standard twins that may help in creating simulated configurations of digital twins is also discussed.  

3.2.1 Interaction primitives 

A key aspect of interaction in digital twin simulation is that the interactions mirror the physical twins as 

much as possible as this allows for the most complete verification of the configuration of digital twins such 

that the configuration and its simulation effectively form a digital twin pair by themselves. 

Interaction between two physical twins can either be normally mediated through a digital twin, for 

example, through automated management and interaction. In this case, the simulated interactions 

automatically match the physical twin counterparts, except for their target as being simulated. 

Interactions between physical twins can also take the form of physical interactions (i.e. a cutter interacting 

with a steel plate by cutting it). This may already have been modelled as part of creating the digital twin but 

may also require some additional constructs for simulation. 

Based upon the principle of mirroring the physical twin interactions where possible, common interaction 

patterns should be supported by (federated) digital twin simulation platforms. Here we assume that the 

interaction is modelled as some sort of service interaction. Different patterns are discussed below. 

The basis for our suggestions is that there would be a platform for federated digital twin simulation. Even 

independent digital twins’ simulation would be based upon existing platforms such as SimPy3, a python 

based simulation library. Such platforms provide various higher level interaction primitives. To support 

federation without requiring the simulation models themselves to be modified, it is needed to ensure that 

the interaction primitives are adapted to work in the federated context. In effect, this means transforming 

the libraries/platforms to be built on top of the federation platform, ideally with minimal changes. In 

addition, some primitives allow for increased efficiency of the simulations. 

Below we present a list of such higher-level interaction primitives based upon the features typically found 

in simulation libraries and inter-process communication (IPC) approaches. It is worth noting that, with a 

basis in IPC, implementation of higher-level communication structures on top of base primitives is a well-

studied field with good solutions that is out of scope of this chapter. 

3.2.1.1 Unidirectional messaging 

In practical context, different events are defined, including messaging events with payload, destination and 

an optional sender. This increases efficiency by simulators not needing to be synchronized for irrelevant 

events. When including standard support for receiving messages, it also simplifies the overall modelling of 

messaging between digital twin simulations. 

Simulation must be synchronised at a point of interaction. As such, the synchronisation should be 

performed through the federation system to ensure that the interaction is received at the correct time 

point. Messages as a restriction upon events embed. 



H2020-MSC-RISE-2016 Ref. 6742023 Page 19 

 

As messages from one simulator may have consequences in another, even cyclically, it is important from a 

correctness perspective that there is an order to these messages. In line with physical constraints, this 

implies that message delivery must be strictly after message sending in simulated time (even if the time 

difference is infinitely small). Similarly, any consequences of an event/message should be strictly after its 

receipt. 

In our implementation of federated digital twin simulation on top of simply the model was such that 

unidirectional messaging was sufficient, but clearly necessary. Overall, messages are straightforward to 

implement, mainly requiring some sort of identity/address for the receiver (and sender if a reply is 

expected). 

3.2.1.2 Bidirectional messaging 

Most uses of communication in the real world, including service invocations, are bidirectional, or even 

conversational. A full bidirectional reliable messaging system could be defined upon unidirectional 

messaging, but as a minimum, a message identity needs to be added together with an optional “in-reply-

to” attribute that links two messages as being in the sequence of the same conversation. 

As federation is per definition asynchronous, the bidirectional messaging is asynchronous itself. For a 

simulation platform, we would wish to provide/substitute synchronised messaging primitives so that 

simulators themselves do not need to adapt to the asynchronous nature of the simulation. 

3.2.1.3 Buffers and Queues 

If we consider that a machine working on a part is per definition also a buffer for that part, as well as the 

need for temporary storage in the interaction between physical twins, buffers and queues are a very 

common interaction construct. For simple machines, they may even be the only interaction needed in their 

normal execution flow beyond any simulated monitoring events. As an example, SimPy provides built-in 

container and store constructs for the purpose of modelling buffers and queues. 

In a federated context, buffers and queues can be used to communicate between digital twin simulations, 

so they need to be implemented on top of the event system. Such buffer and queue implementations allow 

the simulation to pause when the buffer is exhausted or,full, depending on the operation of adding or 

removing items. A quantified resource system for uniform resources as provided by SimPy could be 

implemented on top of a buffer, but also directly implemented. 

3.2.1.4 State access 

Beyond direct messaging constructs, another form of interaction is through state access, in particular the 

observation of the state of another entity. Providing basic CRUD primitives (Martin 1983) upon events or 

messages is straightforward, although in most cases it should be limited to read operations (write 

operations are typically actions controlled by the physical or digital twin and their simulation). 

3.2.1.5 Subscription 

In addition to the ability to monitor state, it is beneficial to have support for subscription to state changes. 

This allows for increased efficiency of the simulation due to reduced polling but may also be a construct 

already used in simulations. As such, we would support subscription to both changes in state, as well as 

events. The latter event subscription being primarily an optimisation from the perspective that 

synchronisation upon an event is only needed if the event is being observed by another simulator. 
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3.2.2 Standard twins 

Beyond providing support for various interactions between digital twins, a full digital twin configuration 

may include various standard components where specific details are not required. Examples may include 

undifferentiated storage space (e.g. floorspace, warehouse, or shipping container). Perhaps more 

interesting could be an electricity supply twin that would allow for modelling of energy consumption even if 

not modelling the actual network and potential supply limits incurred (max amperage through specific 

connections). 

Modelling always has specific purposes, and constraints available resources. As such there are parts of 

digital twin configurations that have limited impact on the goals of the modelling or simulation. For those 

parts, standard "off-the-shelf" twins can provide such non-specific capabilities to complete (the simulation 

model of) the digital twin configurations. 

These twins could either be used at the edge of the configuration/simulation or to model simple physical 

entities needed for completeness. Example categories of such standard twins are: 

• Storage  
Undifferentiated storage space (of given capacity) that functions as a buffer between components. 
This could be a machine output.  

• Transport  
Transport components that represent simple transport operations (with a capacity), for example, to 
model a conveyor belt, but potentially also a human moving parts from one place to another. 

• Utilities  
Real world processes generally consume utilities and utility supplies. Examples are water and 
electricity, but it could also include supplies such as pens, paper, or even lubrication oil. Generally, 
the processes involved would be out of scope of a model of a (production) process. 

• Suppliers & Consumers 
Production processes involve suppliers of various goods at one end, and consumers of the 
production at the other end. They would generally be sufficiently modelled in a generic way, not 
being a part of the process of interest. 
 

In practical application, a base formalism is not sufficient. As such, this section has discussed both 

interaction primitives build upon the event/messaging system, as well as standard "twins" that can be used 

to model both the boundaries of a simulation and physical elements required for a complete simulation, 

but with little impact upon the overall simulation outcomes. 

3.3 Evaluation 

To experimentally evaluate the federation, we have implemented the federation algorithms to extend the 

SimPy simulation library. This allows multiple SimPy simulations to run federated, only mediated through 

event/message passing. While it would be possible to run each simulation in a separate thread or even fully 

independently in different processes, the implementation does not attempt that (as this does not further 

validate the approach). 

The simulation used for validation is a (slight) variation upon the Machine Shop example (Scherfke 2013) 

provided in the SimPy documentation. This is a simulation where (by default) 10 similar devices are used to 

make products. These devices fail periodically and require a repairman to fix them. The repairman can only 

repair one device at a time and takes a while to do so. Machines cannot produce parts until fixed. For 

experimental purposes, we added log messages and the ability to use random seeds for reproducible 

variability. 
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For the federated library to be valid, the simulation results should be identical between a federated setup 

and a monolithic setup. We show this for the monolithic and three different federated configurations by 

having the simulations produce detailed simulation logs and comparing them. 

The different simulation configurations are based upon a common basis. The simulation of the machines 

and repairman are shared, but for federation a subclass of the normal simulation environment is used. This 

subclass supports messaging between simulators, but is otherwise identical in its behaviour. For the third 

configuration (where machines are split between simulators) there are some additional complications due 

to the need for replication with identical seeds (this case creates a single configuration and then transplants 

the machines into two separate ones). 

Table 1: Partial log of federated simulation. 

Time Simulator Machine Event Partno. 
1605 Repairman 1 8 Start Repairing N/A 
1605 1 5 start making part 148 
1606 1 3 finish making part 150 

1606 1 3 start making part 151 
1608 1 4 finish making part 149 
1608 1 4 start making part 151 
1611 1 2 finish making part 142 

1635 Repairman 1 8 Finish repairing machine N/A 

 

Table 1 and Table 2 show slices of the logs. With these adaptations, we executed the simulations in various 

different configurations, where different parts of the simulation were federated and compared them with 

each other and then ran the simulation in various configurations, comparing the resulting logs, including 

the non-federated version. 

Table 2: Partial log non-federated simulation. 

Time Simulator Machine Event Partno. 
1605 Repairman 1 8 Start Repairing N/A 
1605 1 5 start making part 148 
1606 1 3 finish making part 150 
1606 1 3 start making part 151 
1608 1 4 finish making part 149 

1608 1 4 start making part 151 
1611 1 2 finish making part 142 

1635 Repairman 1 8 Finish repairing machine N/A 

 

The base configurations used were: non-federated; the repairman federated separate from a simulator for 

all machines, federating the repairman and splitting the machines into two separate simulators. The logs 

for all three configurations show equal simulation results. 

In addition, there are two configurations that have two full machine simulators but either share or have 

separate repairmen. Both these duplicate configurations (that are not constrained by the repairman) are 

also equivalent. 

There are various observations that can be made from the implementation. The SimPy framework provides 

access equivalent to step and nextTime without any need for modification of the library. There is also an 

event system that can be used to implement deliver without modification of the library. The actual 

simulation makes some shortcuts in interactions between components, so a messaging system is needed as 

an extension, and it needs to be invoked at appropriate places. Similarly, the simulation parameters needed 
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encapsulation into an object to allow for multiple instances to co-exist (not an issue when not splitting up a 

simulation). 

 

Figure 8: Simulation snapshot of simple federation. 

Looking at the actual simulation result, Figure 8 provides a cut of the productivity logs (the entire log is too 

large to see any details). The figure is adapted in a number of ways: Initial production counts have been 

offset by 10 parts for each machine, so the graphs do not overlap. In addition, when a machine is under 

repair, this is depicted as having made 0 parts. On the side of the repairman, the vertical axis shows the 

machine under repair at that point, or 0 if there is no machine under repair. The figure shows the pausing 

of production when machines are broken (awaiting repair) as horizontal bars. It also shows the repairman 

contention in the repairman graph. Note that as all simulations have equal results, the graphs for the other 

cases would be equal and are therefore not included. 

Overall, we found that the log messages were equal (except where they indicate which simulator executes 

the event, something expected to be different) in most cases. The simulation, however, models 

communication as instantaneous rather than involving some random delay. To allow for comparison, we 

retained this instantaneous communication, despite it not matching the requirements the formalism puts 

upon events (that requires consequences to be strictly after the event initiating them). In some cases, this 

causes differences in ordering log messages associated with the same time.  

Figure 9 compares the time differences for the three different base simulation configurations, each 

repeated 20 times. Non-federated simulations took on average 571 ms, simple federated took 597ms and 

double federated took 609 ms. These results show that while there is some additional overhead by having 

federated simulators, with additional simulation this is limited and within expected variance for individual 

invocations. In addition, this is in a case where the simulations do not involve computation more complex 

than determining random action durations. 
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Figure 9: Comparison of run times between different scenarios. 

One observation from initial comparison runs (not included as paper logs) is that there is a limit with event 

ordering. Due to a lack of randomisation, events (machines breaking) would occur at exactly the same time, 

and the order of their processing would differ between the simulator configurations (be nondeterministic). 

To resolve this limitation of the original simulation, the relevant times/delays were randomised, effectively 

providing a deterministic ordering of events. In a real-world context, a lack of determinism issue should not 

be an issue as simulations are normally not of such accuracy that they can accurately predict ordering 

within a tight time-frame. 

3.4 Conclusion  

Based upon a review of related work, we have set out a conceptual basis and a set of requirements for 

interoperable digital twin simulation concluding with a strong motivation for supporting interoperable 

simulation of digital twin configurations through the use of federated simulation. The interface required for 

federated simulation is small, maps almost directly upon the commonly used Discrete Event Simulation 

model and allows other simulation approaches to be supported easily while providing minimal restrictions 

upon simulators themselves (consequences of events must be strictly after their cause). How simulation 

libraries can be extended with constructs that support the implementation of digital twin simulations. 

Finally, the evaluation is also provided through experimental implementation for interoperable digital 

twins. 

The framework, with its formal basis in (de Vrieze, Arshad, and Xu 2023), presents a common ground to 

enable the interoperability of simulations in the context of Industry 4.0 processes. The assumptions made 

and restrictions posed are minimal, and the base communication constructs used for simulation provide a 

sound starting point for simulation frameworks to add support for federated digital twin simulation. The 

implementation shows that coordination can be limited to only those times where needed, and simulations 

can execute in parallel in between. As the prototype implementation mainly amends the SimPy interface, 

and this is a general-purpose simulation library, it demonstrates that many simulations can be supported 

without, or with minimal change in a federated approach. The changes needed are related to the 

communication with other twins, and as such would be needed in other comprehensive simulation 

approaches as well and federation allows the needed changes to be restricted to such, without requiring 

switching simulation frameworks, or even simulation approaches.  
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4 Digital Twin Composition in Smart Manufacturing via Markov Decision 
Processes for a Resilient Factory 

The term Industry 4.0, which denotes the fourth industrial revolution, was first introduced in Germany in 

2011 at the Hanover fair, where it was used for denoting the transformation process in the global chains of 

value creation. At present Industry 4.0 is a result of the emergence and distribution of new technologies — 

digital technologies and Internet technologies — which allow the development of fully automatised 

production processes, in which only physical objects that interact without human participation take part. 

Smart Manufacturing is nowadays a term highly used in conjunction with the concept of Industry 4.0. Smart 

Manufacturing aims at improving the manufacturing processes in order to increase productivity and 

quality, to ease workers' lives, and to define new business opportunities. This is enabled by leveraging 

innovative techniques like Artificial Intelligence (AI), big data analytics, Machine Learning (ML), and 

Business Decision Support Systems (BDSS). The employment of these technique has made it possible to 

create new possibilities of interoperability, modularity, distributed scenario processing, and integration in 

real time with other industrial processes.  

Essentially in the same period, the concept of Digital Twin (DT) was introduced as a key technology used in 

the industrial context. Many different definitions for digital twin can be found in the literature, mainly 

caused by various application areas. The first clear definition was given by NASA in 2012. They define digital 

twin as “an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses 

the best available physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin”. A 

generalized definition for a Digital Twin defines it as “a virtual representation of a physical system (and its 

associated environment and processes) that is updated through the exchange of information between the 

physical and virtual systems”. 

The application of DT in the manufacturing sector impacts the way the products are designed, 

manufactured and maintained. On a high level, the DT can evaluate the production decisions, access the 

product performance, command and reconfigure machines remotely, handle the troubleshoot equipment 

remotely and connect systems/processes to improve monitoring and optimise their control (Kitain 2018). 

DTs can also be applied for process control, process monitoring, predictive maintenance, operator training, 

product development, decision support, real-time analytics, and behaviour simulation (Pires et al. 2019). A 

single manufacturing process may include hundreds of different actors, i.e., digital twins, that may suddenly 

fail or provide bad performance. In reality, due to their continuous use, actors could wear out and 

therefore have not only a greater probability of breakage but also higher costs to complete their job. At any 

moment in time, in order to provide resilience, the manufacturing process should be able to automatically 

adapt to new conditions, considering new actors (with lower cost and low probability of breaking) for the 

fulfilment of the manufacturing goals. This task cannot be performed manually when actors span multiple 

organisations that are possibly separated from both the geographical and organisational points of view. For 

this reason, it is crucial to have a plan for the manufacturing process to be able to manage several actors, 

taking into account their possible failures and costs. 

In that regard, very little research effort has been put in defining automatic techniques to orchestrate 

manufacturing actors towards a final goal. An important step towards the development of new automated 

techniques in smart manufacturing is modelling DTs in terms of the provided services. This would allow to 

partly reuse the results obtained in the area of Web Services (WSs), such as the automatic composition and 

orchestration of software artefacts. Particularly, the idea is to capture the analogies and differences 

between DTs and WSs, and enables the integration composition of DTs through offered services and data 

available in the data space.  
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The inherent limitation of such approaches, though, is the assumption that the available services, i.e., the 

services that can be used to realize the target service, behave deterministically. This assumption is 

unrealistic in the case of DTs for smart manufacturing, because in practice the underlying physical system 

modelled as a set of services might show a stochastic behaviour due to the complexity of the domain, or 

due to an inherent uncertainty on the dynamics of such a system. In these cases, the deterministic service 

model is not expressive enough to capture crucial facets of the system under consideration. 

Service composition techniques can, therefore, be used to orchestrate digital twins in order to generate a 

plan for a manufacturing process to reduce the costs while preserving the quality of the final outcome. In 

particular, the service composition techniques can be generalised in a stochastic setting, in which the 

services, (both machines and humans) have an unpredictable behaviour and are subject to wear. An 

optimal solution can be found by solving an appropriate probabilistic planning problem (solving a Markov 

decision process - MDP), taking into account the probability of breaking and the cost of employing specific 

actors. Such an approach is enabled by leveraging the capability of DTs to assess the status and the wearing 

of the underlying physical entity (Melesse, Pasquale, and Riemma 2020; Aivaliotis, Georgoulias, and 

Chryssolouris 2019). In this way, it is possible, autonomously, i.e., without human intervention, to obtain a 

production planning which is adaptive, as it changes every time that the manufacturing of a new product or 

batch is started, and context-aware, as it is dependent on the current status of involved actors. 

4.1 Smart Manufacturing Architecture 

Figure 10 represent the general architecture in Smart Manufacturing based on DTs (Catarci et al. 2019). It is 

composed of the following components: supervisor, orchestrator, the DTs of involved actors and the data 

space. 

The DT was originally intended to denote a digital model that faithfully reproduces a physical entity and 

allows to perform physical simulations (e.g., mechanical solicitations). In the last years, the term has been 

used to more generically denote a digital interface allowing not only for simulations but also for an all-

round control of the physical entity during run time. It wraps physical entities (actors such as manufacturing 

machines, human operators/workers and external suppliers) involved in the process and exposes a Web 

API consisting, in general, of three parts: the synchronous one, the query interface and the asynchronous 

one. The synchronous interface allows to give instructions to the physical entity. These instructions may, 

for example, produce a state change in a manufacturing machine (in case the twin is over a machine) or ask 

Figure 10: Smart Manufacturing architecture based on digital twins. 
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a human operator to perform a manual task (in case the twin is over a manufacturing worker). The query 

interface allows for asking information to the physical entity about its state and related information; 

noteworthy, these latter can be obtained by applying diagnostic and prognostic function results of machine 

learning. The asynchronous interface generates events available to subscribers. In addition, each DT is 

equipped with a specification of the provided functionalities. This specification may take a form that 

depends on the specific framework employed to implement the DT. 

The data space contains all the data available to the process. These data are heterogeneous in their nature 

from the access technology point of view, the employed schema (or its absence) and the employed 

vocabulary. It is important to note how the DTs contribute to the data space with both the query API and 

the asynchronous one. Other sources for the data space may include relational and no-SQL databases or 

unstructured sources such as spurious files, which constitute the factory information system. 

The human supervisor is the one defining the goals of the process in terms of both final outcomes and key 

performance indicators to be obtained. 

In order to reach the goal defined by the human supervisor, available twins and data must be integrated. 

This task is fulfilled by the mediator, or more specifically orchestrator. The orchestrator acts in two phases: 

the synthesis phase and the execution phase. During the synthesis phase, the specifications of the APIs 

exposed by digital twins and the meta-data (e.g. data source schemas) available in the data space, are 

composed in order to construct a manufacturing process. During the execution phase, the orchestrator 

runs its program by preparing the input messages for the single twins involved in the proper 

sequencing/interleaving. Indeed, as each twin may potentially adopt a different language and vocabulary, 

in order to compose required input/output messages, the orchestrator translates and integrates the data 

available in the data space to comply with the format requested by the specific called service. An important 

aspect of the described architecture is that multiple companies can participate in the process (typically 

those ones involved in the value chain) and it is not reasonable to have twins directly communicating with 

one another. Therefore, the role of the orchestrator is fundamental, being the component that can access 

the services offered by the twins available in the different companies. 

4.2 Manufacturing Orchestrator 

The orchestrator (see Figure 11) is a software program intended to guarantee that the manufacturing 

process fulfils the goals imposed by a human supervisor selecting services to be employed maximizing a set 

of Key Performance Indicators (KPIs) (Catarci et al. 2019). Specifically, it aims at describing a manufacturing 

process, which needs to be executed while reducing the total cost, where the concept of cost embodies 

both the economic cost and quality loss due to the specific choices made by the orchestrator. For the sake 

of space, Figure 11 depicts a single machine #i and a single operator #j, but it is possible to imagine a 

factory including a multitude of them. In addition, each action (task) of a manufacturing process can be 

performed by different machines or humans. The choice of the specific actor to be employed for a specific 

action is driven by different factors, including the cost and the potential quality loss due to wear or 

obsolescence. As an example, humans are usually more expensive than machines for a specific action in 

terms of economic and time cost, but a worn machine could negatively impact the quality of the final 

product. 
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The orchestrator is called every time that the production of a new product or a batch of products is started. 

At this point, the orchestrator: 

• Gathers the specifications of all the available DTs. 

• According to these specifications, the orchestrator employs the query interface of each DT to 
obtain the current status of the machine. The status is continuously kept updated by the DT and 
may include the probability of breaking and the wear level of the correspondent device. 

• Computes the optimal solution given the current status and capabilities of each available actor, as 
reported by the respective DTs. A solution, or plan, consists of a sequence of manufacturing 
actions, consistent with the description provided by the supervisor, and of an assignment of a 
specific actor (machine or human) to each action. 

• Automatically executes the manufacturing process following the obtained plan, by leveraging the 
synchronous interface of each involved twin. In addition, it monitors the execution, by taking 
countermeasures when needed (e.g., when a specific machine breaks). 

• After a product or batch is completed, the orchestrator starts over, waiting for a new production 
start event. 

Noticeably, every time that a new production starts and the orchestrator is invoked, the decision this latter 

will make will be influenced by the production history, as the DT behind each service involved in the 

production will update information about costs and likelihood of a breaking event. 

Noteworthy, the definition of the orchestrator is open to several different implementation strategies. In 

particular, an orchestrator can be implemented as a tool that finds an optimal policy to a Markov Decision 

Process (MDP) which is constructed by combining in an innovative way the different MDPs modelling 

available actors/services. 

4.3 Composing the Digital Twins 

As DTs and corresponding physical actors can be modelled in terms of their service interface, their 

composition to obtain a manufacturing goal can be performed similarly to what has been done for Web 

service composition in the area of classical information systems. The problem of service composition, i.e., 

the ability to generate new, more useful services from existing ones, has been considered in the literature 

for over a decade (Hull 2008; Medjahed and Bouguettaya 2011; De Giacomo, Mecella, and Patrizi 2014). 

Figure 11: Orchestrator architecture. 
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The goal is, given a specification of the behaviour of a (complex) target service, to build a controller, known 

as an orchestrator, that uses existing (composing) services to satisfy the requirements of the target service. 

Such target service is the manufacturing process, whereas the composing services are the DTs wrapping 

physical actors. 

It is possible to formalise the orchestrator by taking inspiration from the approach known as the “Roman 

model” (Berardi et al. 2003; 2005). Particularly, in the Roman model, each available Web service is 

modelled as a finite-state machine (FSM), in which at each state, the service offers a certain set of actions, 

where each action changes the state of the service in some way. The designer is interested in generating a 

new service (specified using an FSM, too), referred to as the target service, from the set of existing services. 

A limitation of such an approach, when applied to the world of smart manufacturing, is that whereas Web 

services behaviour is predictable, i.e., the execution of an action in a specific state deterministically takes 

the service from one state to another, the execution of an action from an industrial actor (either machine 

or human) can have unpredictable effects (e.g., the machine breaks), which must be taken into account 

while computing a solution. In addition, the behaviour of a physical actor in manufacturing may degrade 

over time due to wearing. 

Moreover, it is not always possible to synthesise a service that fully conforms to the requirement 

specification. This zero-one situation, where we can either synthesise a perfect solution or fail, is often 

restrictive. Rather than returning no answer, the notion of the “best-possible” solution is preferred. A 

solution to this last issue has been proposed in (Brafman et al. 2017), where the authors discuss and 

elaborate upon a probabilistic model for the service composition problem, first presented in (Yadav and 

Sardina 2011). In this model, an optimal solution can be found by solving an appropriate probabilistic 

planning problem (e.g., a Markov Decision Process) derived from the services and requirement 

specifications. Still, the proposed solution is applicable only to deterministic and non-degrading services 

such as Web services. 

The solution relies on the concept of Markov Decision Process (MDP). An MDP M is a discrete-time 

stochastic control process containing (i) a set of states, (ii) a set of actions, (iii) a transition function that 

returns for every state and action a distribution over the next state, (iv) a reward function that specifies the 

reward (resp. the cost), a real value received (resp. paid) by the agent when transitioning from state 𝑠 to 

state 𝑠′ by applying action 𝑎, and (v) a discount factor in (0, 1). A solution to an MDP is a function, called a 

policy, assigning an action to each state, possibly with a dependency on past states and actions. The value 

of a policy 𝑟 at a state is the expected sum of rewards when starting at state 𝑠 and selecting actions based 

on the policy. This expected sum of rewards could possibly be discounted by a factor 𝑙, with 0 < 𝑙 < 1. 

Typically, the MDP is assumed to start in an initial state 𝑠0, so policy optimality is evaluated with respect to 

𝑟(𝑠0). Every MDP has an optimal policy 𝑟∗. In discounted cumulative settings, there exists an optimal policy 

that is Markovian, i.e., that depends only on the current state, and deterministic. Among the techniques for 

finding an optimal policy of an MDP, there are value iteration and policy iteration. 

4.3.1 Modelling Digital Twins as Stochastic Services 

In order to overcome the limitations of the Roman model when applied to smart manufacturing, each DT 

and the underlying physical actor can be modelled as a stochastic service. A stochastic service is a tuple 

containing the finite set of the service states, the initial state, the set of the service's final state, the finite 

set of services' actions, the transition function, and the reward function. 
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The stochastic service is the stochastic variant of the service defined in the classical Roman model, and it 

can be seen as an MDP itself. Such a solution allows for the flexibility required to model a physical machine 

operating in manufacturing environments. As an example, specific states can be defined to model 

unavailability conditions (e.g., a broken machine) and the probability of ending in such states. In addition, 

rewards can be used to model the degradation of service quality in time. Repair costs to recover from 

unavailability states can also be modelled to take into account in the solution the possibility to fix broken 

devices if they guarantee an high quality. All of these parameters can be computed and continuously 

refreshed by the DTs by using models trained by the equipment manufacturers. 

The stochastic system service 𝐶 is defined as the community of stochastic services. Intuitively, the 

stochastic system service represents, in a single MDP, all the stochastic services, i.e., all the DTs and 

underlying physical actors. As a consequence, its status includes the current status of all the composing 

services. A specific action performed on the system service changes only one component of the current 

state, corresponding to the service selected to execute that action. 

4.3.2 Modelling the Manufacturing Process 

In order to model the manufacturing process, the concept of target service 𝑇, introduced by the Roman 

model, is needed. The term denotes a complex service that can be obtained by composing simpler services. 

In this case, the manufacturing process must be obtained by composing the functions of available DTs. In 

particular, the definition adapted to the stochastic settings by (Brafman et al. 2017) is used. 

A target service is defined as a tuple containing the finite set of service states, the initial state, the set of the 

service's final state, the finite set of services' actions, the service's deterministic and partial transition 

function, the action distribution function, and the reward function. 

Noticeably, the target service itself, as the stochastic services modelling the DTs, is a particular case of 

MDP. In the vast majority of cases, manufacturing processes (differently from manufacturing actors) are 

deterministic. 

4.3.3 The Composition Problem 

The set of joint histories of the target and the system service is defined as 𝐻 = 𝑆𝑡 × 𝑆𝑧 × ( 𝐴 × 𝑆𝑡 × 𝑆𝑧)∗. 

An orchestrator, is a mapping from a state of the target-system service and user action to the index of the 

service that must handle it. 

Since the stochastic nature also comes from the services, the orchestrator does affect the probability of a 

history. Moreover, in general, there are several system histories associated with a given target history. 

A target history is realisable by an orchestrator if for all joint histories, the orchestrator is well-defined, i.e. 

it can perform all the actions requested by the target for every possible (stochastic) evolution of the system 

service. The orchestrator is said to realise a target service if it realises all the histories. 

The value of a joint history under orchestrator is the sum of discounted rewards, both from the target and 

the system services. 

Intuitively, what is taken into account are both the reward that comes from the execution of action in the 

target service, but also the reward associated with the execution of that action in service chosen by 

orchestrator. 
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The expected value of an orchestrator 𝑣(𝑦) is the value of the realizable histories under orchestrator (i.e. 

all the possible target histories which are processed correctly). An optimal orchestrator is defined as 𝑦 =

𝑎𝑟𝑔𝑚𝑎𝑥 𝑣(𝑦′).  

Theorem: assuming that (1) the target is realisable, and (2) every target-system history has strictly positive 

value, if the orchestrator is optimal, then the orchestrator realizes the target. 

Proof: assuming (2), if the set of target histories realisable using orchestrator 𝑦 contains the set realisable 

using orchestrator 𝑦′, then 𝑣(𝑦) ≥ 𝑣(𝑦′). Moreover, if the set of histories realizable by 𝑦 but not by 𝑦′ has 

positive probability, then 𝑣(𝑦) > 𝑣(𝑦′). If a target history is not realizable by 𝑦′, there exists a point in ℎ𝑡 

where 𝑦′ does not assign the required action to a service that can supply it. Thus, any history that extends 

the corresponding prefix of ℎ𝑡 is not realizable, and the set of such histories has non-zero probability. Since 

we assume all histories have positive value, the optimal orchestrator would always prefer realizing all 

possible target histories (which, by assumption (1), are all the ones to realize), possibly optimizing for the 

rewards coming from the services’ actions, and therefore realize the target. Note that by definition of 𝑣(𝑦) 

all the joint histories whose associated target history is not realizable by the orchestrator do not contribute 

to the value of an orchestrator (even the ones where y is well-defined). ∎ 

4.3.4 The Solution Technique 

The solution technique is based on finding an optimal policy for the composition MDP. The composition 

MDP is a function of the system service and the target service. It is composed by the set of states, the set of 

action, the transition function and the vector of reward functions. 

Even if the composition MDP is obtained by combining the system service and the target service, it has 

completely different characteristics. Indeed, the next action to perform is part of the state of the MDP, 

whereas the “action” is the selection of a specific service to execute that action. This means that by solving 

the composition MDP, an assignment of manufacturing actors to actions (manufacturing tasks) as well as a 

sequence of actions is found. 

This definition is pretty similar to the construction proposed in (Brafman et al. 2017), with the difference 

that the transition function also needs to take into the account the probability of transitioning to the 

system successor state when doing a system action. Moreover, in the reward function, it is needed to take 

into account also the reward observed from doing system action and sum it to the reward signal coming 

from the target. The state sink is an absorbing state, that transitions only to itself and that generates only 

rewards of value 0, and it is needed to make the transition function of the MDP well-defined. If a trajectory 

reaches that state, it means it represents an unrealizable (joint) history. 

Theorem: assume that for all policies and target histories, an orchestrator found a solution. If it is an 

optimal policy, then the orchestrator is an optimal orchestrator. 

Proof: Observe that for realisable joint histories, for some policies and orchestrator associated to the 

policy, there is an obvious one-to-one relationship between the joint histories and non-failing trajectories 

of the composition MDP. By construction, for any joint history and policy, the value of the orchestrator is 

the total return of a trajectory obtained by following the policy divided by the discount factor (this is 

because the MDP requires an initial auxiliary action needed for the equality). Then, the value of an 

orchestrator is proportional to the value of the initial state of the MDP by following policy 𝑝 𝑣(𝑦) = 𝑣𝑝, 

where 𝑣𝑝 is the value of the policy. Given that, the thesis holds because 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣𝑝. ∎ 
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To summarize, given the specifications of the set of stochastic services and the target service, the 

orchestrator first computes the composition MDP, then finds an optimal policy for it, and then deploys the 

policy in an orchestration setting and dispatches the request to the chosen service according to the 

computed policy. 

4.4 Case Study 

In order to show the suitability of the approach, a real-world application scenario of a ceramics 

manufacturing company is described. Figure 12 depicts a snippet of the process to be automated and 

monitored expressed as a target service.  

 

Figure 12: State machine of the target. 

The process is a deterministic sequence of actions. The complete sequence is the following: (1) 

provisioning, (2) moulding, (3) drying, (4) first baking, (5) enamelling, (6) painting, (7) second baking, and (8) 

shipping. Some of the actions are followed by the corresponding checking actions, which verify the 

correctness of the output (e.g., the check moulding action checks the outcome of moulding). Each action in 

the manufacturing process can be executed by different machines or human workers. In particular, it is 

possible that the same action is provided by different models of the same machine, and that these 

machines can be replaced by human operators. The DTs corresponding to these actors must be modelled as 

stochastic services. Each actor is associated with a unique identifier 𝑖, which allows to specify the 

parameters of the associated MDPs. Services are classified into three categories, according to their 

complexity and provided actions. 

Simplest services like those exposed by actors with no possibility to break and not provide any checking 

functionality. Actors in this category are external suppliers, which are seen as black boxes providing an 

action with a specific cost. Such services have a single state and a self-loop deterministic (with probability 

1.0) transition triggered by the operation action. The transition is associated with a cost to perform the 

action.  

Services that represent human workers have two states and no possibility to break. The service starts in the 

available state and the operation action available. Executing operation action the service deterministically 

(with probability 1.0) ends in the done state, with a certain cost that is smaller than zero. In the done state, 

the check_operation action is available, assumed to be executed by the target right after operation action 

to make the service available again after it has completed an action.  

A complex service that has the possibility to break is initially in the available state. The execution of the 

operation action takes with probability 𝑏𝑖 to the broken state, and with probability 1 − 𝑏𝑖 to the done 

state. In both cases, the cost of performing operation action is 𝑐𝑖 < 0. The probability 𝑏𝑖 models the 

chances of the machine to break while performing operation . The action check_operation is assumed to be 
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executed by the target right after the operation in order to make the service available again, and 

additionally, to force the repairing in case the service is in the broken state. In this latter case the repair 

cost for the service is 𝑐𝑖, 𝑟 < 0. 

The goal of the orchestrator is to first find a plan such that the overall expected sum of rewards is 

maximised (or, equivalently, that the expected sum of costs is minimised), even if the orchestration is not 

guaranteed to succeed in all the cases. The plan assigns an actor to each action taking into account 

breaking probabilities and action and repair costs provided by the DTs. It is not straightforward indeed to 

determine a-priori which service a certain action must be assigned to. For example, it might be the case 

that despite the action cost of a machine is low, its breaking probability might be high, and considering the 

repair cost it might let us to prefer a human worker for that action. 

4.5 Software Architecture 

Figure 13 depicts the software architecture for the DTs composition. The server allows devices (both 

available services and target service) to connect to the server via Web Sockets, while the orchestrator can 

interact with the server via HTTP requests. The services can connect to the server in order to register 

themselves and then wait for requests of action execution or maintenance tasks. The orchestrator can 

interact with the server in the following ways: query the server to retrieve both the specification and the 

current state of the available services and the current active target service, request an action from the 

target, request the execution of an action to be performed by a service, and request maintenance of the 

services. 

Each actor, the target process (service), and the orchestrator, which are implemented as separate 

processes, do not communicate directly with each other. Their behaviour specification is recorded by the 

server at registration time, while the features of the current state are updated during the execution of the 

process. The description of the services is provided as a JSON document containing: 

- an id that uniquely identifies the device;  
- a set of attributes containing the static properties of a DT;  
- a set of features modeling the dynamic properties of a DT. 

Figure 13: Software architecture. 
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The orchestrator works as a client for the server and communicates with it through the HTTP protocol. The 

Server then dispatches messages from the orchestrator and the DTs and vice versa. 

Every time that an available actor is used to perform a certain action, it undergoes a slight wear. Obviously, 

this does not happen for the services that cannot break, like services with a single state and services 

provided by human workers. After the service executes the action, its MDP parameters change, in 

particular the probability that the service will end in a broken state grows. 

Moreover, a machine that is wearing out is less performing, so the cost of executing an action also 

increases. In particular, it is assumed that at the beginning of the manufacturing production every machine 

starts from a low broken probability and a low cost to perform a certain action, as it is not worn. At each 

iteration, i.e., at each use of the machine, it will gradually start to degrade, so both the broken probability 

and the cost increase.  

Different services (i.e., actors) that can perform the same action. The orchestration is able to execute 

actions following the optimal policy that allows the choice of the best service that has a low cost and a 

minimal chance of breaking. Since at every call the probability of breaking and the cost increase gradually, 

the optimal policy must be recalculated at every repetition of the manufacturing process. What the 

provided implementation shows is that despite initially the machine is chosen for the painting action 

(because it has low-cost respect to the human), at a certain point the human will become more convenient. 

Every machine that breaks can be repaired, returning available, at a certain cost. Beside this aspect, which 

is taken into account while computing the new policy, a scheduled maintenance strategy is implemented. In 

particular, the orchestrator periodically sends a maintenance event to each actor, which restores its quality, 

i.e., resetting the breaking probability and the action execution cost. In this way, all the machines that have 

reached a significant state of wear can be restored and return to their initial status. This allows to 

overcome the problem that once a machine degrades it will no longer be chosen. Through scheduled 

maintenance, all the machines are checked and repaired periodically, in such a way as to ensure their 

optimal functioning. 

4.6 Conclusion 

Composition techniques offer many possibilities in smart manufacturing. The intuition is that, like a Web 

service, a DT, which is a fundamental concept in smart manufacturing, can be described as a stateful 

automaton and, as a consequence, DTs can be combined following approaches that have been proposed to 

combine Web services aiming at a specific goal.  

DTs are considered key components in smart manufacturing. They bridge the virtual and real world with 

the goal to model, understand, predict, and optimize their corresponding real assets. Such powerful 

features can be exploited in order to optimise the manufacturing process. Web service composition and 

Markov Decision Processes (MDPs) can be combined together to automatically propose an assignment of 

devices to manufacturing tasks. A stochastic service composition was described, in which also the services 

are allowed to have stochastic behaviour and rewards on the state transitions. This assignment takes into 

account the uncertainty typical of the manufacturing scenario, thus overcoming limitations of approaches 

based on classical planning. Obtained policies are proven to be optimal with respect to cost and quality, 

and are continuously updated in order to adapt to an always evolving scenario.  
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5 Compliance and Conformance for Processes in Smart Factories 

A wealth of techniques have been developed to help organisations understand their processes, verify 

correctness against requirements and diagnose potential problems. Such understanding and verification is 

even more vital to smart factories due to their inherent reliance on adaptive processes. In general, these 

verification techniques allow us to check whether a process conform or complies with some specification, 

and each of them is specifically designed to solve a particular business problem at a stage of the process life 

cycle. However, the terms conformance and compliance are often used as synonyms and their distinct 

differences in verification goals is blurring (Groefsema, Beest, and Governatori 2022). As a result, the 

terminology used to describe the techniques or the corresponding verification activity does not always 

match with the precise meaning of the terms as they are defined in the area of verification. Consequently, 

confusion of these terms may hamper the application of the different techniques in smart factories. In this 

section, we aim to provide definitions and a unified terminology of compliance and conformance 

throughout the process life cycle. Moreover, we explore the dangers when the related techniques are used 

incorrectly. In doing so, we aim to improve adoption of these techniques within smart factories by clarifying 

the relation between techniques and their intended goals. 

5.1 Formal Verification 

Validation and verification are well-known evaluation procedures used to investigate whether a software or 

hardware product fulfils its intended purpose (International Organization for Standardization 2017). 

Validation investigates whether the product fulfils the needs of the user, that is, it tries to answer if the 

correct product is being made. Verification, on the other hand, investigates if the product matches with its 

specifications, or whether the product is being made correctly. When applying formal methods of 

mathematics to verification, the procedure is called formal verification. Formal verification entails proving 

or disproving the correctness of a model with respect to a specification using formal methods of 

mathematics. In this case, the model is a representation of the actual system (e.g., based on a 

specification), just like a business process model is a representation and specification of the actual business 

process that is being performed. 

The procedure of verification is an important aspect of the life cycle of processes (van der Aalst, ter 

Hofstede, and Weske 2003). An overview is given in Error! Reference source not found., where we map the 

process artefacts of the life cycle  - represented by the circles - with the verification techniques, 

represented by the arrows connecting different artefacts. For each verification technique, the artefact used 

as the specification is connected to the artefact used to represent the model using an arrow. For example, 

the design properties (specification) are verified against the business process model (model) when checking 

process correctness. For completeness, two dashed arrows representing the validation relations have also 

been included. 
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 Given the process of verification, between artefacts two possible relations can be proven: (i) relations that 

establish conformance, and  (ii) relations that establish compliance. The first defines a relation between a 

specification and an implementation, while the latter defines a relation between two specifications. More 

formally: 

Definition 1 (Conformance) A relation between a specification and an implementation that holds when 

(observed behaviour of) the implementation fulfils all requirements of the specification (when the 

implementation conforms to the specification) (International Organization for Standardization 1998; 

Milosevic and Bond 2016). 

Definition 2 (Compliance) A relation between two specifications, A and B, that holds when specification A 

makes requirements which are all fulfilled by specification B (when B complies with A) (International 

Organization for Standardization 1998). 

  

Figure 14: Verification techniques applied during the life cycle 

of processes. 
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5.2 Techniques for Process Verification 

Business processes are verified towards a number of different goals. Existing verification techniques can be 

classified into those that have the goal of system conformance, process conformance, model conformance, 

model compliance, or regulatory compliance. Note that the strict definition of compliance (Definition 2) 

describes a relation between two specifications and not a relation between a specification and an 

implementation. As a result, the goals of system and process compliance are included under regulatory 

compliance. Each of these goals may have multiple supporting techniques. Such techniques have the same 

goal, but often use different artefacts at different stages of the life cycle of processes. We define the 

following techniques: 

Definition 3 (System conformance checking) The process of verifying conformance of the implementation 

towards the business process model. 

Definition 4 (Process conformance checking) The process of verifying the conformance of the observed 

behaviour of the implementation, as recorded in the event log, towards the business process model. 

Definition 5 (Conformance checking for repair) The process of verifying the conformance of the normative 

behaviour of the business process model towards the observed behaviour of the implementation, as 

recorded in an event log. 

Definition 6 (Correctness checking) The process of verifying compliance of the business process model 

towards the design properties. 

Definition 7 (Regulatory compliance) Doing what has been asked or ordered, as required by rule or law 

(International Organization for Standardization 2017). 

Definition 8 (Regulatory compliance checking) The process of verifying compliance of the business process 

model towards the regulations in order to prove or disprove regulatory compliance of the modelled 

behaviour. 

Definition 9 (Runtime regulatory compliance checking) The process of verifying the conformance of the 

currently observed behaviour, as recorded in the event log, towards the regulations in order to prove or 

disprove regulatory compliance of the currently observed behaviour. 

Definition 10 (Auditing) The process of verifying the conformance of the observed behaviour towards the 

regulations in order to prove or disprove regulatory compliance. 

Within the area of business process management, the term business process conformance is mostly 

referred to in the context of the popular mining technique, while the term business process compliance 

generally refers to the context of regulatory compliance. In the context of verification, however, 

conformance and compliance are defined in the contexts of their relations (i.e., Definition 1 and Definition 

2). When comparing perspectives, the use of the conformance and compliance terms does not match, as 

the relation and the goal of verification are used interchangeably. Table 3 summarizes the verification 

techniques illustrated in Error! Reference source not found.. The table lists each technique together with 

the stage of the life cycle it is applied, the artefacts used as the model and specification, the type of relation 

(i.e., Definition 1 or Definition 2), and the goal of verification. 
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Table 3: Overview of verification techniques. 

Verification technique 
Life cycle 

stage 

Model 

artefact 

Specification 

artefact 
Relation type Verification goal 

System conformance 

checking 
Implement 

Implementat

ion 

Prescriptive 

model 
Conformance 

System 

conformance 

Conformance checking Enact Event log 
Prescriptive 

model 
Conformance 

Process 

Conformance 

Conformance checking Diagnose Event log 
Prescriptive 

model 
Conformance 

Process 

Conformance 

Conformance checking for 

repair 
Diagnose 

Descriptive 

model 
Event log Conformance 

Model 

conformance 

Correctness checking Design Model 
Design 

Properties 
Compliance Model compliance 

Regulatory compliance 

checking 
Design Model Regulations Compliance 

Regulatory 

compliance 

Regulatory compliance 

checking 
Enact Event log Regulations Conformance 

Regulatory 

compliance 

Auditing Diagnose Event log Regulations Conformance 
Regulatory 

compliance 

 

From Table 3, it can be observed that, between all verification techniques, only two relations are 

compliance relations, and both of these techniques use the business process model as the model for 

verification. Secondly, out of the other six techniques that have a conformance relation, only four have a 

conformance related goal. Finally, although three different verification techniques have the goal of 

regulatory compliance, only one has an actual compliance relation, while the others have conformance 

relations. 

Given these observations, it is clear that there exists a grey area between the use of the conformance and 

compliance keywords among the verification relations and goals. The main `offenders' are the techniques 

of regulatory compliance checking during enactment and auditing. These techniques both define 

conformance relations with the goal of checking regulatory compliance. Both these techniques were 

naturally developed out of the realisation that proving a compliance relation between two specifications 

(i.e., model and regulations) could only provide so many preventative guarantees, and that runtime data 

and temporal information is required for definitive and complete results. It is not that these techniques are 

at fault. They very much prove regulatory compliance while defining a conformance relation. The 

conformance relation does not, suddenly, become a compliance relation when one has the goal of verifying 

regulatory compliance, nor does the goal suddenly become verifying regulatory conformance. However, 

even though the compliance and conformance terms are effectively synonyms in everyday language, it 

remains especially important that both research and application have clearly defined lines between 

developed and applied techniques and their related keywords. 
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5.3 A Unified Terminology 

To ameliorate the issue, clear boundaries for the use of the conformance and compliance keywords must 

be established within the context of verification during the life cycle of processes within smart factories. To 

do so, we must first combine the subset of artefacts used and created during the enactment phase of the 

life cycle, into a larger process execution artefact. Given this artefact, it is clear correct boundaries can be 

defined through the use of three keywords instead of two. These keywords are (i) compliance, (ii), 

conformance, and (iii) regulatory compliance. The result is illustrated in Figure 15, and should help the 

correct application of the different verification techniques in smart factories. To explain, when we speak of 

compliance, we are applying verification using a specification from the system requirements and the 

business process model as the model for verification. On the other hand, when we speak of conformance, 

we are applying verification using the business process model with artefacts within the business process 

execution area. Finally, when we speak of regulatory compliance, we are applying verification using the 

regulations as the specification and artefacts within the business process execution area as the model for 

verification. Note that we use compliance (instead of regulatory compliance) to cover the verification of a 

model against regulations. Although this creates an overlap, this is not harmful since it correctly refers to 

compliance on both the relation and the regulatory goal. When verifying the system requirements against a 

more refined set of such requirements, or a business process model against a more refined business 

process model, it is also compliance. 

 

Figure 15: Conformance and compliance during the life cycle of 

processes. 
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From this, it is clear that when using these three terms, it introduces clear boundaries that should be used 

to distinguish between verification techniques. For example, consider an approach that obtains a business 

process model from an event log using a process mining technique and checks system requirements (e.g., 

regulations or user requirements) against the obtained model. That is, it obtains a model that describes the 

business process as it is performed in the real world (i.e., a descriptive model) from observed behaviour of 

the implementation, and checks it against a specification. In this case, the approach would be a regulatory 

compliance approach when it verifies against regulations, a compliance approach when it verifies against 

design properties, and a requirements validation approach when it checks user requirements. 

5.4 The Dangers of Applying Techniques to Other Goals 

The definition of clear boundaries between available techniques and tools is important for both researchers 

and practitioners. For researchers, it is not only important to ensure that the right terminology is used 

when describing their techniques and tools, but also to assist practitioners to select the correct tool for its 

intended purpose. Furthermore, such boundaries allow researchers to properly position their work, 

including the use of examples, selection of relevant related work, and evaluating against relevant work. For 

practitioners, on the other hand, it is important to ensure the validity of the results. That is, to ensure that 

the applied technique or tool verifies what was intended to be verified and be able to rely on the results 

and draw correct conclusions from those results. Consequently, more precise terminology allows to select 

the right portfolio of tools to collectively verify each aspect of the design and its implementation against 

each aspect of the set of system requirements, including user requirements, design properties, and 

regulations. 

The question, however, remains what the dangers are when techniques appear relevant towards other 

goals. To do so, we discuss the relevance of some techniques to the goals set for the other techniques. That 

is, we discuss whether the technique of process conformance checking is relevant to the goal of regulatory 

compliance. Similarly, we discuss whether the technique of regulatory compliance checking is relevant to 

the goal of process conformance, and finally, we discuss whether the technique of process conformance 

checking is always relevant to conformance from a legal point of view. We discuss these questions, 

highlight any advantages or limitations that such applications yield, and present any analysis gaps that such 

applications may permit. 

5.4.1 Applying Process Conformance to Prove Regulatory Compliance 

As the popularity of process mining increased, the idea slowly evolved that proving a conformance relation 

between an event log and a business process model can prove regulatory compliance. As such, the use of 

conformance checking techniques has been suggested as valuable to, for instance, agile compliance 

management and GDPR. Although technically conformance checking can be applied to prove regulatory 

compliance, it should be made clear that this approach is not ideal and can only prove regulatory 

compliance up to some point. 

When using this approach, several strict conditions must be met, while results often lead to non-obvious 

inconclusive outcomes. First, a prescriptive business process model is required to check conformance. 

Second, this prescriptive model must be proven regulatory compliant using design time regulatory 

compliance checking (Definition 8). One should be careful to note that, although design time regulatory 

compliance checking can check prescriptive models, it generally uses descriptive models. Third, the 

conformance checking must report any unfitting behaviour (i.e., any deviations from the prescribed model). 

We must stress here that any unfitting behaviour is not necessarily a violation of regulations. It simply 
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means that a deviation was made from the possible executions described by the prescriptive model. As a 

result, this type of checking effectively denies any form of process flexibility. 

Therefore, regulatory compliance can be proven through conformance checking by proving there is no 

unfitting behaviour. However, it cannot prove that any unfitting behaviour is an actual violation of 

regulations. One would still require additional regulatory compliance checking or auditing to prove this. In 

addition, it can only prove regulatory compliance along the control flow perspective, because the design 

time regulatory compliance checking techniques used to check the prescriptive model only has access to 

design time information and lacks process enactment information, such as data, resources, multiple 

instances etc. In this way, the limitations of the preventative measure of design time regulatory compliance 

checking (Definition 8) is transferred to an approach that in fact has process enactment information. 

Although further model annotations of regulations are possible to consider other perspectives than that of 

the control flow, these approaches edge more towards also doing regulatory compliance checking while 

conformance checking, than just conformance checking — and would still deny any process flexibility. On 

the other hand, conformance checking approaches that enable process flexibility by allowing a certain level 

of unfitting behaviour can never prove regulatory compliance without applying some form of actual 

regulatory compliance checking. As a result, the approach of using conformance to check regulatory 

compliance will always remain sub-optimal and should ideally be avoided. 

5.4.2 Applying Regulatory Compliance to Prove Process Conformance 

The application of regulatory compliance (Definition 8) to prove process conformance may, at first sight, 

seem completely irrelevant. However, it is possible but requires an unconventional approach. Again, it 

should be made clear that this approach is not ideal and can only prove conformance up to some point. 

That is, the approach can only obtain a degree of fitness (i.e., the fraction of behaviour that is in the event 

log but not possible according to the model) and not a degree of precision (i.e.,  the fraction of behaviour 

that is in the model but never observed in the event log). To obtain a degree of fitness of an event log with 

respect to a process model using regulatory compliance, we must first obtain a declarative specification of 

the prescriptive business process model. That is, we must obtain a set of declarative rules (e.g., temporal 

logic expressions) that together describe all possible paths within the business process model. 

One example to automatically obtain such a declarative specification includes obtaining an event structure 

from (sets of) process model(s) and extracting a specification in the form of computation tree logic 

expressions (van Beest et al. 2019). Once a declarative specification is obtained, execution traces of the 

business process (captured by the event log) can be evaluated against the declarative specification using 

formal regulatory compliance verification techniques such as existing model checking tools and packages 

(Groefsema, van Beest, and Aiello 2018; Groefsema, van Beest, and Armas-Cervantes 2017). To obtain a 

degree of fitness for an execution trace, or all execution traces within the event log, we can divide the 

number of satisfied temporal logic expressions by the total number of temporal logic expressions being 

verified. In this way, the degree of fitness decreases as more temporal logic expressions are violated. 

Next to the degree of fitness, results include sets of satisfied and violated temporal logic expressions. 

Consequently, these results will be difficult to interpret by non-experts. As a result, the approach to use 

regulatory compliance to check conformance is non-ideal due to partial and difficult to interpret results, 

and should be avoided. 
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5.4.3 Applying Process Conformance to Prove Legal Conformance 

In a previous section, we gave a short outline how to use what we called process conformance to prove 

regulatory compliance from the process oriented information systems point of view. In this section, we are 

going to look at the issue from a legal point of view. First of all, in legal documents there is often no real 

distinction between compliance and conformance (and, sometimes the two English terms are translated to 

a single term in other languages). The two terms both generically mean to obey to a set of prescriptions. 

For instance, consider the proposal for the European Union's Artificial Intelligence (AI) Act. According to the 

current proposal, AI (and more generally) systems operating in specific sectors have to comply with the Act, 

as the explanatory text recites: 

Those AI systems will have to comply with a set of horizontal mandatory requirements for trustworthy 

AI and follow conformity assessment procedures before those systems can be placed on the Union 

market. 

As we can see, the Act does not differentiate between the model of an AI system and its implementation. 

Furthermore, the Act seems to indicate that compliance refers to the behaviour of day-to-day operations of 

the implementation; on the contrary, systems have to obtain conformity certificates before the system is 

placed on the market or operates in the European Union. Accordingly, conformance certificates are based 

on the evaluation of the systems before the systems are deployed. This poses the question if process and 

system  conformance as understood in the business process community (as discussed in the previous 

sections) offer suitable techniques for providing conformance certificates for AI systems against the 

requirements set by the Act. The answer seems to be negative, since the requirements for conformance 

certificates appears to  be closer to what we called regulatory compliance. Thus, while some of the 

techniques and methodologies developed for business processes appear adequate for the AI Act, the 

terminology used to describe them might not correspond to the terminology used by the legal and business 

communities; therefore, there is risk that process management solutions will not fit for some applications 

or are evaluated with negative results, and effective techniques not to be adopted, limiting the impact of 

the for this important market. 

5.5 Conclusion 

Verification techniques help smart factories to understand their processes, verify correctness against 

requirements and diagnose potential problems. For smart factories to adopt these techniques, it is 

important to use the correct keywords to both determine the verification problem to be addressed, and 

then match the required technical capabilities that can solve the problem. 

In the field, and in the broader research community, the keywords of compliance and conformance have 

often been used interchangeably. However, from a technical point of view, they have been proposed with a 

different meaning. In general, compliance and conformance are two types of verification of systems, 

relating two artefacts. Effective methods for one verification type, however, cannot guarantee a successful 

verification for another. Consequently, there is a need for a uniform set of definitions and unified 

terminology. 

In this section, we first provided comprehensive definitions of the two notions and their related activities. 

We then proposed such a unified terminology to enable adoption of the techniques in smart factories. 

Finally, to avoid potential problems during adoption, we explored the dangers of applying specific 

techniques to goals that they were not intended for. 
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6 Enabling Interoperability using Git 

Traditional software development methodologies are not enough to fulfil business requirements nowadays. 

Adaptation of Agile practices enables flexibility, efficiency, and speed of the Software Development Life 

Cycle (SDLC), which is attracted by software development companies (Dzamashvili Fogelström et al. 2010). 

As per the Agile manifesto (Beck et al. 2001), the twelve principles have defined the integrity of processes 

and practices and Agile Project Management, which applied to Extreme Programming (XP), Scrum, and 

Kanban methodologies. Implementation of "Continuous Integration Continuous Delivery," CICD, pipeline on 

agile has enabled fast delivery of software (Olsson, Alahyari, and Bosch 2012) and increased productivity. In 

the year 2000, Martin Fowler (Fowler 2006) presented the idea of Continuous Integration (CI), and later J. 

Humble and D. Farley (Humble and Farley 2010) extended these ideas into the approach of Continuous 

Delivery (CD) as a concept of a deployment pipeline. The main benefits of CI practices are reducing the risk 

and making software bug free and reliable, which removes the barrier of frequent delivery. Accelerated 

time to market, improved product quality, improved customer satisfaction, reliable release, improved 

productivity, and efficiency are key benefits (Chen 2015), motivating companies to invest in CD (Arachchi 

and Perera 2018). A considerable benefit of having a CICD pipeline is a separation of responsibilities that 

will help team members to focus on their part while the CICD pipeline takes care of integration and 

delivery, which results in rapid releases.  

6.1 Agile Software Development to CICD 

Individuals and interactions over the processes and tools, working software over comprehensive 

documentation, customer collaboration over contract negotiation, and responding to change over 

following a plan are the critical agile values that are motivated to follow the twelve principles defined in the 

Agile manifesto (Beck et al. 2001).  

Manually delivering the software application is one of the hardest things in SDLC. It takes more time, it 

needs experts in the field who can handle operational tasks, mistakes are inevitable, and teams have more 

responsibility. CICD encourages and motivates teams to deliver software frequently due to automated 

builds and deployments. With CICD practices, organizations deploy software updates 10, 100 or even 1000 

times a day (Savor et al. 2016). 

6.1.1 CICD Pipeline 

When an organization tries to adopt the CICD pipeline, they may not be able to adopt it at once. First, they 

have to practice CI to adopt CD. When moving from CI to CD and then Continuous Delivery to Continuous 

Deployment, this pipeline has reduced the manual process execution, and finally, the entire process 

becomes automated. The main difference between Continuous Delivery and Continuous deployment is 

automation at production deployment. 

6.1.2 Continuous Integration 

Continuous Integration is a software development practice where team members integrate their work 

regularly and automate build, test, and validation. It helps to find and fix bugs quickly and improve software 

quality. Krusche et al. (Krusche and Alperowitz 2014) used Rugby, which is an agile process model carried 

out by students. Continuous Integration helped improve the code quality by about 50% and helped to find 

and fix broken commits more than 65% faster. About 70% of students have claimed that Continuous 

Integration enabled them to improve the overall development workflow. The main components of 

Continuous Integration are the source repository, version control system, and CI server. More frequent 
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commits to a shared codebase, maintaining a single source repository, automating builds, and automating 

testing are challenges when following CI practices (Stacy et al. 2017). Build automation, Code stability, 

Analytics, CD enablement, faster releases and cost saving, improved productivity and code quality are 

realized benefits when adopting CI practices (Kumbhar, Shailaja, and Anupindi 2018; Stacy et al. 2017). 

6.1.3 Continuous Delivery 

Continuous Delivery is the ability to get all types of changes, including new features, configuration changes, 

bug fixes, and experiments, into production safely and quickly in a sustainable way (Humble and Farley 

2010). Krusche has introduced CD into multi-customer project courses and evaluated its usage, experience, 

and benefits (Krusche and Alperowitz 2014). There is a rapid trend in investment in CD due to its benefits, 

such as improving productivity and efficiency, reliable releases, customer satisfaction, accelerated time to 

market, and making the right product (Chen 2015). 

6.1.4 Continuous Deployment 

Continuous Deployment means the committed changes are production-ready and to be applied in 

production automatically (Ariola and Dunlop 2015; Stacy et al. 2017). Many organizations use a continuous 

deployment automation approach to make their software development life cycle more efficient (Savor et 

al. 2016). Rahman et al. point out that continuous deployment has sped up the processes in agile methods 

noting Facebook, GitHub, Netflix, and Rally Soft as organizations that use continuous deployment efficiently 

on their production deployments (Rahman et al. 2015). 

6.2 Git 

Git is a distributed revision control system available on all mainstream development platforms through a 

free software license. An important difference between Git and its older ancestors is that it elevates the 

revisions of software to first-class citizens. Developers care deeply about software revisions, and Git 

supports this by giving each developer a complete private copy of the software repository and numerous 

ways to manage revisions within its context. The ability to associate a local repository with numerous 

remote ones allows developers and their managers to build various interesting distributed workflows, most 

of which are impossible to run on a traditional centralised version control system. The local repository also 

makes Git responsive, easy to set up, and able to operate without Internet connectivity (Spinellis 2012). 

6.3 Tracking Artefacts with Git 

Git is mainly used for software code. However, it is not the only use case and can also help with other types 

of artefacts. Git can be used to manage them separately and in various combinations for different use 

cases, such as maintaining lab notebooks, presentations, datasets, and manuscripts. The following artefact 

descriptions are derived from an article on how Git can help with reproducibility and transparency (Ram 

2013).  

6.3.1 Manuscripts and Notes 

Version control can operate on any file type, including the ones most commonly used in academia, such as 

Microsoft Word. However, since these file types are binary, Git cannot examine the contents and highlight 

sections that have changed between revisions. In such cases, one would have to rely solely on commit 

messages or scan through file contents. The full power of Git can best be leveraged when working with 

plain-text files. These include data stored in non-proprietary spreadsheet formats (e.g., comma-separated 

files versus XLS), scripts from programming languages, and manuscripts stored in plain text formats (LaTeX 
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and markdown versus Word documents). With such formats, Git tracks versions and highlights which 

sections of a file have changed. In Microsoft Word documents, the track changes feature is often used to 

solicit comments and feedback. Once those comments and changes have either been accepted or rejected, 

any record of their existence disappears forever. When changes are submitted using Git, a permanent 

record of author contributions remains in the version history and is available in every repository copy. 

6.3.2 Datasets 

Git can be a good fit for small datasets. These include manually entered data via spreadsheets, recorded as 

part of observational studies, or retrieved from sensors. With each significant change or addition, commits 

can record a log of those activities (e.g., "Entered data collected between 12/10/2012 and 12/20/2012" or 

"Updated data from temperature loggers for December 2012"). Over time, this process avoids the 

proliferation of files, while the Git history maintains a complete provenance that can be reviewed at any 

time. When errors are discovered, earlier versions of a file can be reverted without affecting other assets in 

the project. 

6.3.3 Statistical Code and Figures 

In addition to software development, Git can also be used for analytical codes. When data are analysed 

programmatically using software such as R or Python, code files start small and often become more 

complex over time. Somewhere along the process, inadvertent errors such as misplaced subscripts and 

incorrectly applied functions can lead to severe errors. When such errors are discovered well into a project, 

comparing versions of statistical scripts can provide a way to quickly trace the source of the problem and 

recover from them. 

Similarly, figures in documentation often undergo multiple revisions before resulting in a final version that 

gets published. Without version control, one would have to deal with multiple copies and use imperfect 

information, such as file creation dates to determine the sequence in which they were generated. Without 

additional information, figuring out why specific versions were created becomes more difficult. When 

figures are managed with Git, the commit messages (e.g., "Updated figure in response to Ethan's 

comments regarding the use of normalized data.”) provide an unambiguous way to track various versions. 

6.3.4 Complete Manuscripts 

When all of the above artefacts are used in a single effort, such as writing a manuscript, Git can collectively 

manage versions in a powerful way for both individual authors and groups of collaborators. This process 

avoids the rapid multiplication of unmanageable files with uninformative names as illustrated by the 

famous cartoon strip Ph.D. Comics (Figure 16). 
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Figure 16: Manual Versioning Meme. 

6.4 GitOps 

In short, GitOps is doing all the best practices of the infrastructure as code correctly. This concept defines 

the infrastructure as code instead of manually creating it to improve reproducibility and replicability. Note 

that infrastructure as code evolved into defining not only infrastructure but also network as code, policy as 

code, configuration as code, and security as code, which are called X as code.  

For example, instead of manually creating servers and networks and all the configuration around them on 

AWS and creating Kubernetes clusters with particular components, define all these as code, i.e., Terraform 

or Ansible code and Kubernetes manifest files. Therefore, we will have many YAML or other definition files 

describing the infrastructure, the platform, and their configurations. 

6.5 Working with X as Code 

DevOps engineers will probably create all the required files locally on their machines. Then, they will try to 

test their codes. Finally, if the test passes successfully, they will execute the codes also from their 

computer. So all these files are stored locally on their computer. Sometimes, they may even create a Git 

repository for their infrastructures' code and store all these files on Git. Consequently, they have a version 

control system for the infrastructure code, and other team members can also fetch the code and 

collaborate.  

However, when they make any changes to the code, they may not have a defined procedure like Pull 

Requests. They may have only a main branch, and everybody commits directly to it. Therefore, there are no 

code reviews and no collaboration on the changes. Moreover, when they commit  X as Code changes into 

the repository, there will be no automated test to detect invalid YAML files, typos, wrong attribute names, 

at an earlier stage. The code changes may break the infrastructure or an environment without proper 

testing.  

Once the changes are done, how do they apply them to the actual infrastructure or a platform? How do 

they execute them? They will do it manually from their machines by executing "kubectl apply" or 

"terraform apply" comands. So to execute the code changes, each team member must access the  
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Kubernetes cluster or AWS infrastructure to apply changes from their local machine. This can make it hard 

to trace who executed what on the remote servers a have a history of changes applied to the 

infrastructure. Therefore, if someone makes any mistake in the code, they will know about these problems 

only once it is applied.  

Consequently, even though we have an Infrastructure as Code, which already has many benefits, our 

process is still mostly manual and inefficient. This is where the concept of GitOps comes to treat the 

Infrastructure as Code the same way as the application code.  

6.6 Working of GitOps 

In GitOps practice, we have a separate repository for the X as code project with a complete DevOps 

pipeline. As the initial setup, X as code is hosted on a Git repository where it is version controlled and 

allows team collaboration. When you make changes, instead of just pushing to the main branch, you go 

through the same pull request process as you do for the application code. Therefore, anyone in the team, 

including junior engineers, can create a pull request to make changes to the code and collaborate with 

other team members on that pull request. For these changes, you will have a CI  pipeline that will validate 

and test the configuration files just like you test application code changes. After testing these commits, 

other team members can approve the final changes. These other team members could be developers, 

security professionals, or senior operations engineers who will review and approve the pull request. So, the 

changes will only be merged back into the main branch after tests and reviews.  

Afterwards, the changes will be deployed to the environment through a CD pipeline, whether changing 

something in the Kubernetes cluster or updating the underlying infrastructure. Consequently, you have an 

automated and more transparent process that produces high-quality infrastructure. This enables multiple 

people to collaborate on the changes, and things get tested rather than one engineer manually doing 

everything from their laptop that others do not see or cannot review. 

6.6.1 Automatically Applying Changes to the Infrastructure 

We have two ways of applying the changes in the main branch to the infrastructure in GitOps practices: 

push- and pull-based deployments. Push-based deployments are what we traditionally know from the 

application pipeline. When an application is built, the pipeline executes a command to deploy the new 

application version into the environment. Jenkins and Gitlab CICD are two example tools that implement 

the push-based deployment mechanism.  

In pull-based deployment, we have an agent installed in the environment, like the Kubernetes cluster, that 

actively pulls the changes from the Git repository. The agent will regularly check the state of the X as Code 

repository and compare it to the actual state of the environment where it is running. If it sees a difference 

in the repository, it will pull and apply these changes to get the environment from the actual state to the 

desired state defined in the repository. Examples of GitOps tools that work with the pull-base model are 

Flux CD and Argo CD, which run inside the Kubernetes cluster and sync the changes from the Git repository 

to the cluster.  

6.6.2 Rollbacks with GitOps 

When you have the version control for your code and the changes in the repository are automatically 

synced to the environment, you can easily roll back your environment to any previous state in your code. 

This is another significant advantage of using GitOps. For example, if changes break the environment and 
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the cluster does not work anymore, the environment can get back to the last working state by executing 

"git revert" to undo the latest changes.  

6.6.3 Advantages of GitOps 

Generally, this means that instead of spreading the X as code in different locations and machines, 

everything is stored centrally in a Git repository and the environment is always synced with what is defined 

in that repository. Therefore, the Git repository becomes the single source of truth for the environment, 

which makes managing the infrastructure or the platform much easier. 

Moreover, an important additional benefit is that GitOps also increases security. There is no need to give 

direct infrastructure access to everyone in the team who wants to apply changes because it is the CD 

pipeline that deploys the changes, not individual team members from their laptops. However, team 

members can propose changes to the infrastructure in the Git repository through pull requests. Once it is 

time to merge that pull request and apply those changes, we can have a narrower group of people who are 

allowed to approve and merge those changes into the main branch. As a result, we have fewer permissions 

to manage and a more secure environment.  

6.7 Conclusion 

The agile manifesto, the de facto standard project management theme for software development, 

encourages rapid delivery. It cannot happen without efficient procedures and automation, such as 

continuous integration and continuous delivery (CICD) pipelines. Git is the core component in modern 

software development for storing almost everything. It enables auditing and collaboration. A recent 

concept that uses Git in the best possible way is GitOps which is an X as code with version control, pull 

requests, and CICD pipelines. It is noteworthy that we applied all these best practices and many more 

features for deploying applications and infrastructure in our latest project, ECiDA1. Its goal is to bring ease 

for developers and data scientists to deploy their applications in any environment without requiring 

knowledge about the underlying infrastructure while focusing more on the logic of their applications.  

 
1 https://www.cs.rug.nl/ds/Research/ECiDA 
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7 Interoperability in IoT using Event Processing – A Trade-Off between 
Quality and Privacy 

The Internet of Things (IoT) is a well-known paradigm that has attracted enormous interest from academia 

and commercial sectors in the last decades. In the IoT environment, billions of devices (e.g., sensors) are 

employed to perform various tasks (e.g., sensing a phenomenon) and produce a huge amount of data. In 

Figure 17, the growing utilisation of IoT devices is demonstrated, confirming the concern of required 

resources to store and analyse their generated data.  

On the one hand, the results obtained from analysing these data can generate more valuable insights if the 

analytic system attempts to execute its tasks as soon as possible with minimum delay, also called real-time 

analysis. To be more precise, the data should be analysed in less than seconds to make the insights preventive 

or productive. Otherwise, the derived outcome can be actionable or reactive. If we store the data in 

databases and plan to analyse them after some hours, the only option could be the historical analysis. Figure 

18 presents the value of data based on the time spent to be analysed. 

  

Figure 17: The utilization of IoT devices in the environment (Al 

Hayajneh, Bhuiyan, and McAndrew 2020). 

Figure 18: The data value based on the analysis time 

(Nemer 2022). 
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One of the prominent paradigms that provide sufficient means to analyse data in real time is Complex Event 

Processing (CEP). In this concept, the raw data that is more important for the application is transformed into 

the primary event (e.g., a high temperature in readings of a temperature sensor). In this way, a meaningful 

reduction is happening in the generated data. This also reduces the number of computing resources required 

to analyse the data. The produced events form primary event streams that are sent to CEP engines to be 

analysed in real-time. A situation of interest (e.g., detecting shoplifting) can be submitted to the system as a 

continuous query which is interpreted as a complex event. The CEP system presents each complex event by 

a pattern of primary events (e.g., a sequence of entering the shop, picking a product, not paying the fee, 

exiting the shop) and its main goal is to apply the query pattern over streams of primary events that comes 

from the sensing deployment to detect the occurrence of those situations. Once a pattern match is detected 

over the stream, a complex event is generated. 

The CEP paradigm is extended to satisfy the requirements of distributed systems by introducing Distributed 

Complex Event Processing (DCEP) in which a controller is logically centralised but physically distributed as 

shown in Figure 19. The controller is able to perform adaptation in three places: 1) by rewriting the user 

queries; 2) by adjusting the placement of operators on the available computing resources; and 3) by 

reconfiguring the sensing deployment.  

Recently, the interoperability concept has gained more interest since it has the potential to boost the 

performance of systems by sharing data and models. This will eliminate the need to perform a task multiple 

times in different systems and consequently has tangible advantages for all systems involved in 

interoperation. Due to the distributed nature of DCEP systems, such benefits can also be imaginable by 

interconnecting these systems. For example, data sharing can impact the Quality of Service (QoS) demands, 

such as end-to-end latency, by reducing the time for processing data. In other words, if a DCEP system 

previously analysed the data of a person to achieve some specific results (e.g., performing a blood test), its 

outcome can be reused in another system that aims to perform a similar analysis (e.g., a blood test is required 

one week later in a trip). The provided reusability will reduce the required resources and time while 

supporting QoS-aware analysis (e.g., a faster diagnosis results in better treatment). 

Figure 19: The layering presentation of DCEP systems. 
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On the opposite side, each cooperation among systems raises privacy preservation issues. For instance, how 

systems can provide trustable communication links and prevent misuse of their shared data. Although DCEP 

systems have been working on supporting privacy concerns in recent years, some gaps still require further 

research. Considering both quality and privacy with the same importance and establishing a trade-off 

between these two aspects requires different aspects to be considered, including answers to the following 

questions: 

• How to provide an access control mechanism or a trust management system to preserve privacy? 

• What would be a concrete description of quality and privacy requirements? 

• How all involved entities can benefit from interoperability? 

• Which adaptation strategies can be employed to maximise the benefits? 

Providing feasible solutions to these research questions makes the interoperability paradigm more practical 

in IoT applications when using DCEP analytic systems. 

7.1 A Trade-Off between Quality and Privacy 

In this section, in order to provide a trade-off between privacy and quality, we first elaborate on the definition 

of each of these topics separately in DCEP systems and then present the possible solutions to provide 

interoperability. 

7.1.1 Quality 

IoT applications operate on resources and streams of events that are highly dynamic due to the unstable 

nature of the real world and its conditions. Nevertheless, the properties of these data sources should be 

updated continuously to deliver more accurate and error-free data and events to corresponding applications. 

IoT service qualities are vulnerable to the changes happening in the environment. For example, the accuracy 

of a sensor could be impacted by its battery level, environmental weather conditions, and also air 

temperature (Gao et al. 2016). Besides, analysing event streams gathered from the IoT environment brings 

several problems such as the trustworthiness of data sources and their heterogeneity as well as extracting 

up-to-date information from real-time data streams (Kolozali et al. 2019). The literature can be categorised 

into four different groups as follows. 

7.1.1.1 Quality of Data (QoD) 

This category exhibits the research that mainly focuses on designing algorithms to evaluate and increase the 

level of data quality before sending them to the CEP system. When data is collected from the environment, 

due to cyber-physical attacks happening in the wireless medium, it could be possible that the data contain 

anomalies like missing data, redundant data, data failure, data outliers, touched data, etc. Data pre-

processing is a way of enhancing data quality. It means data has to be validated before being analysed. In the 

other words, useless data such as records with missing fields, data outliers, irrelevant data, inconsistent data, 

and duplicate data have to be removed from the data stream since processing them is surely a waste of time.  

7.1.1.2 Quality of Event (QoEv) 

In an event-based system, events (both primary and complex) could be detected with various quality levels. 

The quality of event detection can be achieved by two factors, one is detection delay and the other is the 

detectability of events. Also, specifying the metrics by which such quality specification could be determined 

is of great importance. In fact, to evaluate the aggregated quality of an event, quality metrics such as latency, 

price, energy consumption, bandwidth consumption, availability, completeness, accuracy, and security 

should be taken into consideration (Gao et al. 2014). 
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7.1.1.3 Quality of Service (QoS) 

In IoT applications, service qualities are vulnerable to the changes happening in the environment. For 

example, the accuracy of a sensor could be impacted by its battery level, environmental weather conditions, 

and also air temperature. In order to deal with such problems, it might be beneficial to adapt to the CEP 

system over the environmental changes in terms of quality measures requested by users. It could be possible 

by changing the CEP model adaptively when the system realizes service failures and constraint violations of 

user requirements. Besides, to satisfy user requirements, events and their patterns from various CEP services 

can be reused in another CEP system by employing an event reusability hierarchy. It is exactly the point that 

the interoperability paradigm can be used to benefit more the event processing systems (Sodhro et al. 2020). 

7.1.1.4 Quality of Experience (QoE) 

In order to increase the degree of satisfaction in terms of meeting user requirements, Quality of Experience 

(QoE) has recently become a trend in various subjects of IoT networks. Although in the traditional 

mechanisms of QoE, filling in questionnaires was the common way of ensuring user satisfaction, current 

methods rely on overseeing the interactions of the users with the system by taking advantage of current 

advances in networking and communication technologies that provide the system with observable data 

(Zhou et al. 2019). Finding the correct factors for evaluating the satisfaction of users is largely domain-specific 

and it would be a hard problem to represent a generalized framework for the definitions and evaluation of 

QoE metrics. However, applying the constraints and preferences of the user to the complex event processing 

procedure including planning, placement, and mapping operators to available hosts would lead to 

appropriately meeting the quality of experience of the user. 

7.1.1.5 A Quality Evaluation Summary 

As we can see from the previous four categories, each of the publications in the literature has mainly focused 

on one or two steps of quality evaluations while it seems that for an appropriate query processing as well as 

proper reaction to environment dynamics, the proposed system should consider the feedback that is coming 

from every part of the system, ranging from sensors to users. 

7.1.1.6 Quality Monitoring 

Considering the different levels of quality evaluation explained in the previous sections makes it clear that 

the quality should be monitored at each step. The input data can be assumed to be of insufficient quality if 

not accurate, precise, fresh, or truthful. Events are also evaluated as inadequate quality if they do not hold a 

certain level of confidence, are received out of order, are wrongly detected, or are not detected at all. In 

addition, the insights derived from measured quality have an important role in the adaptation decisions in 

adjusting any of the three adaptation models described in the previous sections. To measure the quality level 

in each step, quality agents should be placed in each layer (i.e., sensing, analytic, and user layer).  

7.1.1.7 Quality Requirement Expression 

One of the important parts of a quality-aware processing system is to what extent it can satisfy the quality 

requirements of users. To better understand the quality expectations of users, an analytic system should 

provide easy-to-use solutions to express the quality demands. This means that those quality metrics that are 

feasible to measure should be considered in the process of quality requirement elicitation. The first step is 

to acquire the user needs by quality expressions which determine a threshold for each specified quality 

metric, e.g., an accuracy level of more than 90 per cent. It might also be possible to extend the traditional 

quality specification by proposing dynamic thresholds which vary based on another factor, e.g., time. This 

way, more complex quality requirements can be expressed by the users. In addition, if the specified quality 

requirements are not feasible to satisfy, the DCEP system needs to rewrite the quality requirement models 

or in some cases adjust the sensing deployment to meet the requirements. 
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7.1.1.8 A Quality Aware DCEP system 

In this section, we demonstrate our proposed solution for quality monitoring in DCEP systems, presented in 

Figure 20. We utilised a publish/subscribe system for communication between different entities. Producers 

generate primary events and consumers submit their situations of interest as queries. 

The Quality Management Agent (QMA) is responsible for evaluating the quality in different places and 

producing quality-related alarms that help the controller maintain the quality at a satisfactory level. In some 

cases, the controller will perform adjustments to the sensing deployment to provide sufficient quality for the 

submitted queries. 

7.1.2 Privacy 

In most IoT applications, people who share their data with the analytic system (i.e., data owner), are not 

aware of possible risks that threaten their data. However, if a person is kept aware of these risks, they worry 

about the violation of data privacy. That is why the users of the system usually refuse to deliver as much 

required data to the system. A possible solution to this problem is to provide a trustable system that satisfies 

the privacy requirements of data owners. The easiest way to establish such a trustable mechanism is to 

employ an access control technique that determines the access level of each entity involved in data sharing 

in the interoperability paradigm.  

However, to provide privacy-aware interoperability, a simple Data Access Control (DAC) mechanism cannot 

satisfy the necessary requirements, because access to data or information derived from it should be granted 

once a data access request is created by the second DCEP system, e.g., in the blood test example, the access 

to the test results should be given to the second hospital at runtime in a dynamic way. Therefore, a DAC 

mechanism needs to be empowered by a dynamic authorisation component. This way, a dynamic access 

control technique can be applied to control the data access for all the entities involved in the DCEP systems. 

Figure 20: The Proposed Solution for Quality-Aware DCEP. 
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7.1.2.1 Attribute-Based Access Control 

Among all types of DAC mechanisms, Attribute-Based Access Control (ABAC) system is more suitable for 

providing interoperability between the DCEP systems due to the comprehensive information this type of DAC 

mechanism can provide for the system which helps to prevent privacy attacks.  

In other words, an ABAC mechanism is a logical DAC technique where the permission to perform data sharing 

is granted based on the attributes associated with multiple entities including the data owner, the shared 

data, the user who requests the access, the type of action this user is supposed to do on the requested data, 

and in some cases, the environment condition in which the data sharing will occur. These attributes will be 

investigated against sharing policies, rules, or relationships that explain which operations are permitted on a 

given set of attributes. Figure 21 presents the methodology behind ABAC systems. 

 

7.1.2.2 Privacy Requirement Expression and Elicitation 

Although the GDPR regulates IoT services in acquiring privacy consent from data owners, it is still difficult to 

achieve consent for data sharing between the data processing system and the data owners. Therefore, for 

the involvement of the users and data owners, considering the following requirements will improve the 

privacy demands elicitation (Stach and Steimle 2019). 

a) Simplicity: The privacy requirement expression should be as simple as possible for both users and 

data owners. 

b) Awareness: Each data owner should be made aware of potential privacy risks for their shared 

data. 

c) Customization: Due to the different privacy demands of individuals, the privacy requirements of 

data owners should be customised based on their perspective on privacy. 

d) Categorisation: This will support the efficient management of privacy requirements in the 

elicitation procedure. 

e) No third parties: Due to the interests of other parties, the elicitation process might be influenced 

by involving third parties. 
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Figure 21: The Layering presentation of DCEP systems. 
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7.1.3  A Quality-Privacy Trade-off 

In this section, we explain our proposed solution to establish a trade-off between quality and privacy. In 

Figure 22, we demonstrate the components involved in establishing the quality-privacy trade-off. 

Considering the previous sections, our proposed architecture includes solutions to support both quality and 

privacy. For the former, the DCEP system evaluates the quality of the sensed data and generated primary 

and complex events, as well as monitors the status of the sensing deployment. For the latter, an ABAC 

mechanism is employed to support a privacy-aware communication and data-sharing scheme between the 

quality-aware DCEP systems. In the proposed ABAC approach, not only are the privacy demands of the data 

owner considered using the Privacy Requirement Elicitation component, but also the acquired attributes 

from different entities are continuously monitored to perform the authorisation process always according to 

the up-to-date information. It should be noted that the Access Policy Database is also kept up-to-date since 

it has a key role in the authorisation decisions. 

7.2 Conclusion 

In this section, we provided an overview of the potential options for applying interoperability on DCEP 

systems. We discussed the advantages and disadvantages of employing this paradigm while taking into 

account a trade-off between quality and privacy. We detailed the fact that although by providing 

interoperability, DCEP systems might benefit from improving the QoS-related metrics, the potential risks 

might compromise the privacy of shared data. In the end, by employing an Attributed Based Access Control 

mechanism among Quality-Aware DCEP Systems, we proposed an architecture and discussed its potential 

that has the capabilities to overcome the disadvantages of applying interoperability on DCEP systems.  
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Figure 22: The Proposed Architecture for Quality-Privacy Trade-off. 
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8 Conclusion 

Virtual factories are abstractions of real factories that allow for the simulation and analysis of various 

production processes and systems and can be used for a variety of purposes, including production planning, 

process optimisation, training, and prototyping. Virtual factories rely on a combination of advanced digital 

technologies, such as Artificial Intelligence, the Internet of Things, and big data analytics, to optimise 

manufacturing processes in order to increase productivity and quality. The realisation of virtual factories 

requires interoperability at many different levels, including data, models, services, assets and processes, to 

ensure a straightforward compatibility between the machines, products, processes, related products and 

services, as well as any descriptions of those that comprise these virtual environments. This deliverable 

discussed several challenges related to interoperability within the context of virtual factories and smart 

manufacturing. 

Section 2 explored Manufacturing Execution Systems for building an industrial software layer for virtual 

factories. These systems can effectively manage the distributed manufacturing resources of the virtual 

factory by integration with the virtual manufacturing assets discovery, combination, and management 

services. Moreover, by combining the production plan information of ERP/MES, it can be used to evaluate 

the performance of the VF production lines, to continuously optimise and improve the performance of VF 

production lines, and to realise manufacturing business innovation. Another important function of MES is 

to provide related management functions for quality management, for which CMM is generally one of the 

main methods. The CMM measurement report (format and content) provided by the CMM software is 

usually fixed. If the required data used for quality analysis cannot be obtained directly from the report, it 

should be solved in other ways, e.g., manual calculation, which may introduce calculation errors. By 

collecting real-time measurement raw data from the CMM software, it provides more abundant inspection 

data for quality analysis. 

Section 3 set out a conceptual basis and a set of requirements for interoperable digital twin simulation, 

concluding with a strong motivation for supporting interoperable simulation of digital twin configurations 

through the use of federated simulation. The interface required for federated simulation is small, maps 

almost directly upon the commonly used Discrete Event Simulation model and allows other simulation 

approaches to be supported easily while providing minimal restrictions upon simulators themselves. The 

framework presents a common ground to enable the interoperability of simulations in the context of 

Industry 4.0 processes. The assumptions made and restrictions posed are minimal, and the base 

communication constructs used for simulation provide a sound starting point for simulation frameworks to 

add support for federated digital twin simulation. 

Section 4 considered the use of automatic service composition in the context of smart manufacturing. 

Composition techniques offer many possibilities in smart manufacturing. The intuition is that, like a Web 

service, a digital twin, which is a fundamental concept in smart manufacturing, can be described as a 

stateful automaton and, as a consequence, digital twins can be combined following approaches that have 

been proposed to combine Web services aiming at a specific goal. Digital twins are considered key 

components in smart manufacturing. They bridge the virtual and real world with the goal of modelling, 

understanding, predicting, and optimising their corresponding real assets. Such powerful features can be 

exploited in order to optimise the manufacturing process. Web service composition and Markov Decision 

Processes (MDPs) can be combined together to automatically propose an assignment of devices to 

manufacturing tasks. A stochastic service composition was described, in which the services are also allowed 

to have stochastic behaviour and rewards on the state transitions. This assignment takes into account the 

uncertainty typical of the manufacturing scenario, thus overcoming the limitations of approaches based on 
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classical planning. Obtained policies are proven to be optimal with respect to cost and quality and are 

continuously updated in order to adapt to an always-evolving scenario. 

Section 5 discussed how verification techniques help smart factories to understand their processes, verify 

correctness against requirements and diagnose potential problems. For smart factories to adopt these 

techniques, it is important to use the correct keywords to both determine the verification problem to be 

addressed and then match the required technical capabilities that can solve the problem. In the field, as 

well as in the broader research community, the keywords of compliance and conformance have often been 

used interchangeably. In general, compliance and conformance are two types of verification of systems, 

relating two artefacts. Effective methods for one verification type, however, cannot guarantee a successful 

verification for another. Therefore, we provided comprehensive definitions of the two notions and their 

related activities. We then proposed a unified terminology to enable the adoption of the techniques in 

smart factories. Finally, to avoid potential problems during adoption, we explored the dangers of applying 

specific techniques to goals for which they were not intended. 

Section 6 considered interoperability at the development level. Rapid delivery cannot be accomplished 

without efficient procedures and automation, such as continuous integration and continuous delivery 

(CICD) pipelines. . A considerable benefit of having a CICD pipeline is a separation of responsibilities that 

will help team members to focus on their part while the CICD pipeline takes care of integration and 

delivery, which results in rapid releases. Git is the core component in modern software development for 

storing almost everything. It enables auditing and collaboration. A recent concept that uses Git in the best 

possible way is GitOps, which is an X as code with version control, pull requests, and CICD pipelines. 

Section 7 provided an overview of the potential options for applying interoperability on DCEP systems. We 

discussed the advantages and disadvantages of employing this paradigm while taking into account a trade-

off between quality and privacy. We detailed the fact that although by providing interoperability, DCEP 

systems might benefit from improving the QoS-related metrics, the potential risks might compromise the 

privacy of shared data. In the end, by employing an Attributed Based Access Control mechanism among 

Quality-Aware DCEP Systems, we proposed an architecture and discussed its potential capabilities to 

overcome the disadvantages of applying interoperability on DCEP systems. 
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