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Abstract

This paper investigates a multi-product stochastic inventory problem in which a cash-constrained online retailer

can adopt order-based loan provided by some Chinese e-commerce platforms to speed up its cash recovery for

deferred revenue. We first build deterministic models for the problem and then develop the corresponding stochastic

programming models to maximize the retailers’ expected profit over the planning horizon. The uncertainty of

customer demand is represented by scenario trees, and a scenario reduction technique is used to solve the problem

when the scenario trees are too large. We conduct numerical tests based on real data crawling from an online store.

The results show that the stochastic model outperforms the deterministic model, especially when the retailer is less

cash-constrained. Moreover, the retailer tends to choose using order-based loan when its initial available cash is

small or facing long receipt delay length.

Keywords: stochastic inventory; scenario tree; cash constraint; order-based loan

1 Introduction

Cash availability is very important to small-to-medium-sized enterprises (SMEs), including start-up companies and

small retailers. They usually lack sufficient capital to absorb large losses, and it is difficult for them to obtain external

financing such as loans or venture capital compared with large companies due to production capacity and sales

scale. Research from the Association of Chartered Certified Accountants (ACCA) and the Institute of Management

Accountants (IMA) (Doove et al., 2014) found that access to growth capital was one of the two main factors affecting
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the businesses of SMEs in the UK over the past two years. A report by research firm CB Insights found that 29% of

start-ups failed because of cash crises (CBInsights, 2018). Moreover, SMEs tend to be the first to feel the effects of

financial crises such as the COVID-19 pandemic (Caniato et al., 2020). On Chinese e-commerce platforms such as

Taobao.com of Alibaba Group and Jd.com of JD Group, there are many small online retailers operated by only a few

people or even a single individual. Generally, the maximum number of products they can purchase depends on their

available cash in the current period, which are similar to nanostores in emerging markets (Boulaksil and van Wijk,

2018).

Many forms of supply chain financing services appear in the market to help SMEs alleviate the cash shortage

problem. Thomas Olsen of Bain, a consulting firm, reckons that the supply chain finance market is expanding by

15–25% per year in the Americas and by 30–50% in Asia (Economist, October 2017). Some Chinese e-commerce

platforms have also started supply chain financing services for their online retailers in recent years. Alibaba Group

opened its own online bank, mybank.cn in 2010, which mainly provides loans for online stores on its three e-

commerce websites: alibaba.com, tmall.com and taobao.com. Its main competitor in China—jd.com—also set up a

supply chain finance department in 2012 and provides similar financing services.

Some Chinese e-commerce platforms provide a financing service called order-based loans that has seldom been

addressed in the literature. The aim of this service is to speed up the retailer’s deferred revenue, which is common

in Chinese online shopping. In the real transactions of Chinese e-commerce platforms, payments from customers

are first obtained by the platform. The platform then transfers the payment to the retailer’s account after customers

confirm the receipt of the order with additional processing time. Therefore, the retailer actually receives the cus-

tomer’s payment after a time lag (usually at least 2 weeks). The transaction process on Taobao.com or Tmall.com is

shown in Figure 1, where Alipay is the online payment system of Alibaba Group. The circled numbers in the figure

represent the sequence of the transaction process.

Figure 1: Transaction Process in Taobao.com/Tmall.com.

Order-based loan is a kind of financing services intended to help speed up retailers’ cash recovery. Once it is

adopted for an order, the platform immediately makes payments to the retailer on behalf of customers after the order
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is marked as delivered. The retailer repays the loan with some interest to the platform after an agreed time limit.

The retailer does not need to wait for its payment, which is a good method to alleviate the retailer’s cash shortage.

The payment delay length is zero when applying order-based loan to an order.

Given the above background, the aim of this paper is to investigate the impacts of order-based loan on an online

retailer’s operational decisions. We make the following contribution to the literature.

• We consider a supply chain financing service: order-based loan in a stochastic inventory problem, which has

been used in business practice but seldom addressed in the inventory literature.

• A stochastic multi-product inventory model is built for the problem. Scenario trees are adopted to represent

the demand uncertainty, and we use a scenario tree reduction method to solve the problem if the tree size is

large.

• By crawling real transaction data from an online store and performing numerical analysis, we find that factors

such as the initial available cash, receipt delay length, overhead cost and demand fluctuations may influence

a retailer’s decision to apply for order-based loans.

2 Literature Review

The literature associated with our work can be classified into two main streams: inventory management with financ-

ing decisions and scenario programming in operational research.

2.1 Inventory management with financing decisions

Financial flow management is an important part of supply chain management (Cooper et al., 1997). In recent years,

there have already been many works addressing joint inventory management and financing decisions. Here, we only

review some of them for brevity.

Buzacott and Zhang (2004) first considered operational and financial decisions by analyzing a cash-constrained

retailer with asset-based financing provided by a bank. Dada and Hu (2008) built a Stackelberg gaming model in-

volving a bank, manufacturer and cash-constrained retailer. Raghavan and Mishra (2011) considered a problem with

a retailer and manufacturer facing cash constraints. Kouvelis and Zhao (2012) investigated the structure of optimal

trade credit contracts between a supplier and bank. Moussawi-Haidar and Jaber (2013) developed a model consid-

ering delayed payments for a cash-constrained retailer. Tunca and Zhu (2018) discussed the role and efficiency of

buyer intermediation in supplier financing through a game-theoretic approach. Wu et al. (2019) proposed a trade

credit model with asymmetric competing retailers in which one weak retailer was capital-constrained. Jin et al.
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(2019) discussed noncollaborative and collaborative financing. Xu and Fang (2020) investigated a supply chain fi-

nancing system with one supplier and one emission-dependent and capital-constrained manufacturer. Yuan et al.

(2020) integrated supply risk into a cash constraint problem. Zhou et al. (2020) investigated manufacturer guarantor

financing and third-party logistics guarantor financing in a four-party supply chain game.

The abovementioned works mainly built single-period inventory models to analyze problems. In terms of the

multi-period setting, Chao et al. (2008) investigated a multi-period self-financing newsvendor problem and proved

that the optimal ordering pattern is an approximate base stock policy. Gong et al. (2014) further considered short-

term financing. Katehakis et al. (2016) showed that the optimal ordering policy is characterized by a pair of thresh-

old parameters for this problem. Boulaksil and van Wijk (2018) formulated a cash-constrained stochastic inventory

model with consumer loans and supplier credits and obtained managerial insights by simulating numerical cases.

Chen and Zhang (2018) incorporated cash flow constraints into a multi-period lot-sizing problem with trade credit.

Chen and Zhang (2019) extended this problem with credit-based loans. Bi et al. (2020) addressed short-term financ-

ing in an inventory problem with multi-item products. Li et al. (2020) considered a two-stage inventory model with

financing and demand updating using a Bayesian approach. Chen and Rossi (2020) developed an (s,C(x), S ) policy

for a stochastic inventory problem with fixed costs and cash constraints.

2.2 Scenario programming in operational research

In decision making under uncertainty, one method is scenario programming in which the uncertainty is represented

by scenario trees. Høyland and Wallace (2001) presented a method to generate a limited number of scenarios that

satisfy specified statistical properties. Haugen et al. (2001) adopted a progressive hedging algorithm for each sce-

nario to solve a stochastic lot-sizing problem. Heitsch and Römisch (2003) developed two scenario reduction al-

gorithms: new versions of forward and backward type algorithms. Brandimarte (2006) proposed a fix-and-relax

strategy to solve a scenario programming problem with multi-item capacitated lot sizing. Beraldi et al. (2006) also

made use of this method to solve a lot-sizing problem with uncertain processing times. Helber et al. (2013) took

a scenario approach to solve a capacitated lot-sizing problem with random demand and dynamic safety stocks.

Feng and Ryan (2013) used the scenario generation and reduction method for a stochastic power generation expan-

sion planning problem. Hu and Hu (2016) and Hu and Hu (2018) adopted similar methods to solve two-stage and

multi-stage stochastic problems, respectively. Hnaien and Afsar (2017) considered a minmax robust lot-sizing prob-

lem with uncertain lead time. Fattahi et al. (2018) used the forward scenario construction technique and Benders

decomposition algorithm to solve a multi-period supply chain network redesign problem.

To the best of our knowledge, there is no work in the literature that considers order-based loans in a multi-period

stochastic inventory problem, which inspired us to investigate this topic.
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3 Problem description

For convenience, some notations adopted in this paper are listed in Table 1. Other relevant notations will be intro-

duced as needed.

Table 1: Some notations adopted in the paper.

Indices:

t Index of a period, t = 1, . . . , T .

n Index of an item, n = 1, 2, . . . ,N.

Operational parameters:

In,0 Initial inventory for item n.

dn,t Demand for item n in period t, which is uncertain

vn Unit variable ordering cost of the retailer for item n.

Financial parameters:

C0 Initial cash at the beginning of planning horizon.

Ht Overhead costs in each period (e.g., wages or rents)

L Receipt delay length.

pn Selling price of item n.

vn Unit variable ordering cost of item n.

α Discount rate for unreceived revenues at the end of planning horizon.

BU The amount of order-based loan.

ro Interest rate of order-based loan.

Decision variables:

Qn,t Ordering quantity for item n in period t.

gn,t The quantity of order-based loan used for product n in period t.

Rn,t Retailer’s revenue from item n in period t.

In,t End-of-period inventory level for item n in period t.

Ct End-of-period cash balance in period t.

FC Final cash at period T after discounting unreceived revenues.

Our study is about a cash-constrained online retailer selling multiple products on Tmall.com, which is a Chinese

e-commerce platform owned by the Alibaba Group. In the problem, the retailer has initial cash C0 before making
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operational decisions. There are N products for sale, and its planning horizon length is T . The initial inventory for

product n at the beginning of the planning horizon is In,0. Overhead costs Ht, such as wages or rents, may have to

be paid in each period, which are incurred irrespective of the retailer’s operation activity.

The retailer purchases products from its suppliers, and the unit ordering cost for product n is vn. The retailer

faces uncertain demand from customers. The demand for product n in period t is represented by dn,t. In each period,

the retailer makes decisions about Qn,t, which is the purchasing quantity for product n in period t. Excess stock

is transferred to the next period as inventory, and unmet demand is lost without paying penalty costs. The end-of-

period inventory for product n in period t is In,t. The delivery lead time of products is assumed to be zero. The

inventory flow equation for product n for two consecutive periods is given below, where (x)+ denotes max{x, 0}.

In,t = max{In,t−1 + Qn,t − dn,t, 0} = (In,t−1 + Qn,t − dn,t)
+ (1)

Assume the time lag length of receipt for product n is L. Define Rn,t as the realized revenue from product n in

period t. Rn,t can be expressed by Eq. (2), where L is the receipt delay length and min{In,t−L−1 + Qn,t−L, dn,t−L} is

the realized demand for item n in period t. Based on Eq. (1), Rn,t can also be written as pn(In,t−L−1 + Qn,t−L − In,t−L)

because min{In,t−L−1 + Qn,t−L, dn,t−L} = In,t−L−1 + Qn,t−L − (In,t−L−1 + Qn,t−L − dn,t−L)+. Eq. (2) means that the sales

income from period t will be received in period t + L.

Rn,t =



























pn min{In,t−L−1 + Qn,t−L, dn,t−L} = pn(In,t−L−1 + Qn,t−L − In,t−L) t > L

0 t ≤ L

(2)

Assume that there are no unreceived payments at the beginning of the planning horizon. The cash flow equation

is:

Ct =



























Ct−1 +
∑N

n=1 Rn,t −
∑N

n=1 vnQn,t − Ht t > 0

C0 t = 0

(3)

In Eq. (3), when t > 0, one period’s end-of-period cash balance equals its initial cash in this period (Ct−1) plus

this period’s total revenues (
∑N

n=1 Rn,t), minus this period’s total ordering costs (
∑N

n=1 vnQn,t) and overhead costs (Ht).

At the end of planning horizon T , there are still some unreceived payments. For ease of analysis, we assume that the

retailer discounts those payments to the final period T with discounting factor α. According to the above description,

the final cash FC at the end of period T after discounting unreceived payments is shown by Eq. (4), where CT is the

cash balance at period T before discounting the unreceived payments. The total amount of unreceived payments is
∑N

n=1

∑L
k=1 Rn,T+k.
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FC = CT +

N
∑

n=1

L
∑

k=1

1

(1 + α)k
Rn,T+k (4)

The retailer faces cash constraints in each period, which is common in real transactions for such small retailers.

The cash constraint means that the retailer’s maximum purchasing quantity is bounded by its available cash, which

can be represented by the following formula:

N
∑

n=1

vnQn,t ≤ Ct−1 (5)

4 Mathematical models

In this section, several mathematical models are formulated to address different financing solutions provided by e-

commerce platforms. We first provide the deterministic models and then build the corresponding stochastic models.

4.1 Deterministic model

In the deterministic situation, the uncertain demand for product n in period t is predicted to be the mean value of

its demand distribution, which is represented as dn,t. We build two models below that are distinguished by whether

order-based loan is used.

4.1.1 Operating with Self-Owned Cash

For many retailers, if operating without supply chain financing, the cash inflow is mainly initially owned cash and

revenues from sales. The whole linear deterministic model for the situation of operating with self-owned cash

(SO-D) is built below.
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Model SO-D

max FC = CT +

N
∑

n=1

L
∑

k=1

1

(1 + α)k
Rn,T+k (4)

s.t. ∀n, t

(2), (3), (5)

In,t ≤ In,t−1 + Qn,t − dn,t + (1 − δn,t)M (6)

In,t ≥ In,t−1 + Qn,t − dn,t − (1 − δn,t)M (7)

In,t−1 + Qn,t − dn,t ≥ −(1 − δn,t)M (8)

In,t−1 + Qn,t − dn,t ≤ δn,tM (9)

In,t ≤ δn,tM (10)

In,t ≥ 0,Qn,t ≥ 0, δn,t ∈ {0, 1} (11)

The objective function (4) is to maximize the expected final cash after discounting the unreceived payments.

Constraint (2) is the revenue equation, while Constraint (3) is the cash flow equation. Constraint (5) is the cash

constraint. Constraints (6)–(10) are the linear expressions for the inventory flow equation (1). Constraint (11) shows

the nonnegativity/binarity of end-of-period inventory, ordering quantity and δt. The nonnegativity of It is the result

of the lost sales assumption.

4.1.2 Operating with order-based loan

In the presence of order-based loan, when the retailer’s application for order-based loan is approved, the platform

sets a credit limit for the retailer. Assume that the limit of order-based loans is BU . The retailer can use this kind of

loan repeatedly for many orders over a time limit as long as the total payment subject to order-based loans is less

than BU .

The interest rate of the order-based loan is Ro. A new decision variable gn,t represents the quantity of order-based

loans employed for product n in period t. For ease of analysis, assume that the retailer repays an order-based loan

after a receipt delay of length L, and the time limit for the order-based loan is the planning horizon length T . The

deterministic model for order-based loans (OL-D) is given below:

8



Model OL-D

max FC = CT +

N
∑

n=1

L
∑

k=1

1

(1 + α)k
Rn,T+k (4)

s.t. ∀n, t

(3), (5) − (11)

gn,t ≤ In,t−1 + Qn,t − In,t (12)

Rn,t =











































pn(In,t−L−1 + Qn,t−L − In,t−L − gn,t−L − gn,t−L(1 + Ro)L) T < t ≤ T + L

pn(gn,t + In,t−L−1 + Qn,t−L − In,t−L − gn,t−L − gn,t−L(1 + Ro)L) L < t ≤ T

pngn,t t ≤ L

(13)

N
∑

n=1

T
∑

t=1

pngn,t ≤ BU (14)

gn,t ≥ 0 (15)

The differences between Model OL-D and Model SO-D are the constraints related to gn,t. Constraint (12) means

that the order-based loan employed for a product should be less than its realized demand (In,t−1 + Qn,t − In,t) in

this period. Constraint (13) gives the expression for revenue in the presence of order-based loans: when t ≤ L,

the retailer’s revenue from product n is pngn,t since it can use order-based loan gn,t for this product; when t > L,

In,t−L−1 + Qn,t−L − In,t−L − gn,t−L is the quantity of demand that does not use order-based loan in period t − L, and

this portion of revenue comes at period t; and pngn,t−L(1 + Ro)L) is the total principle and interest that the retailer

needs to repay in period t for period t − L’s order-based loans; when t > T , the retailer cannot use order-based loan.

Note that because of receipt delaying, the retailer receives some revenue when t > T . Constraint (14) suggests that

the total employed order-based loan over the planning horizon should be no more than the order-based loan limit.

Constraint (15) ensures the nonnegativity of gn,t.

4.2 Stochastic model

In real transactions, customer demand is uncertain, which is represented by demand scenarios in this paper. The

demand for product n in period t under scenario s is represented by ds
n,t, and the probability of scenario s occurring

is Prs. The set of all scenarios is S . Each scenario consists of the discrete values of all demands over the whole

planning horizon. In the scenario programming model, the decision variables are Qs
n,t, Rs

n,t, I s
n,t, gs

n,t, Cs
n,t, FCs, and

δs
n,t. The stochastic model when the retailer is operating with self-owned cash (SO-S) is formulated below:
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Model SO-S

max
∑

s∈S

Prs FCs =
∑

s∈S

Prs















N
∑

n=1

L
∑

k=1

1

(1 + α)k
Rs

n,T+k















(16)

s.t. ∀n, t, s

I s
n,t ≤ I s

n,t−1 + Qs
n,t − ds

n,t + (1 − δs
n,t)M (17)

I s
n,t ≥ I s

n,t−1 + Qs
n,t − ds

n,t − (1 − δs
n,t)M (18)

I s
n,t−1 + Qs

n,t − ds
n,t ≥ −(1 − δs

n,t)M (19)

I s
n,t−1 + Qs

n,t − ds
n,t ≤ δ

s
n,tM (20)

I s
n,t ≤ δ

s
n,tM (21)

Rs
n,t =



























pn(I s
n,t−L−1

+ Qs
n,t−L
− I s

n,t−L
) t > L

0 t ≤ L

(22)

Cs
t =



























Cs
t−1
+
∑N

n=1 Rs
n,t −
∑N

n=1 vnQs
n,t − Ht t > 0

C0 t = 0

(23)

N
∑

n=1

vnQs
n,t ≤ Cs

t−1 (24)

∑

s′∈J(s,t)

Prs′ Qs
n,t = Qs

n,t

∑

s′∈J(s,t)

Prs′ (25)

∑

s′∈J(s,t)

Prs′ I s
n,t = I s

n,t

∑

s′∈J(s,t)

Prs′ (26)

∑

s′∈J(s,t)

Prs′ δ
s
n,t = δ

s
t

∑

s′∈J(s,t)

Prs′ (27)

I s
n,t ≥ 0,Qs

n,t ≥ 0, δs
n,t ∈ {0, 1} (28)

The objective function (16) is to maximize the expected final cash for all scenarios after discounting the unre-

ceived payments. Constraints (17)–(24) and (28) are the scenario-specific expressions for the constraints in Model

SO-D. Constraints (25)–(27) are the non-anticipativity constraints in the scenario programming model, where Js,t

represents the sets of scenarios that share the same history as scenario s before period t. Non-anticipativity means

that all the scenarios with the same history before a given period should result in the same values of decision vari-

ables until that period. There are no non-anticipativity constraints for Rs
n,t and Cs

n,t because they are basically the

expressions of I s
n,t, Qs

n,t and δs
n,t.

In a similar way, the stochastic model when the retailer is operating with order-based loan (OL-S) is formulated
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below:

Model OL-S

max
∑

s∈S

Prs FCs =
∑

s∈S

Prs















N
∑

n=1

L
∑

k=1

1

(1 + α)k
Rs

n,T+k















(16)

s.t. ∀n, t, s

(17) − (21), (23) − (28)

gs
n,t ≤ ds

n,t − ws
n,t (29)

Rs
n,t =











































pn(I s
n,t−L−1

+ Qs
n,t−L
− I s

n,t−L
− gs

n,t−L
− gs

n,t−L
(1 + Ro)L) T < t ≤ T + L

pn(gs
n,t + I s

n,t−L−1
+ Qs

n,t−L
− I s

n,t−L
− gs

n,t−L
− gs

n,t−L
(1 + Ro)L) L < t ≤ T

pngs
n,t t ≤ L

(30)

N
∑

n=1

T
∑

t=1

pngs
n,t ≤ BU (31)

∑

s′∈J(s,t)

Prs′ gs
n,t = gs

n,t

∑

s′∈J(s,t)

Prs′ (32)

gs
n,t ≥ 0 (33)

5 Data source and scenario settings

In this section, we describe the data used in the numerical cases and the techniques employed for scenario generation

and reduction in the study.

5.1 Data source

A case study is derived from an online store that sells computer peripherals such as keyboards, mice, headsets,

etc. on the Chinese e-commerce platforms Tmall.com and Jd.com. Since it is difficult to obtain internal sales data

from retailers, we crawl customer comments from the retailer’ online stores. Assume that 10% of customers leave

comments after buying the products and that there is an approximately one week delay between the date they order

and the date they comment, so we can estimate the associated demand. Note that although this seems to be a rought

estimate for customers’ demand, the scenario generation and reduction methods adopted in this paper can be applied

to more exact demand values (e.g. Feng and Ryan, 2013; Hu and Hu, 2018).

For ease of analysis, two weeks is deemed a period in the planning horizon. Because demand typically booms in

some months, such as the Single’s Day shopping event in November and the semester-opening promotion events in
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March and September, we classify the planning horizon into two situations: booming-demand periods and normal-

demand periods. We fit distribution parameters using a maximum likelihood approach. The empirical study revealed

that a log-normal distribution generally provides a good fit for our demand samples. The resulting fitted values of the

three main products (keyboard, mouse, headset) are shown in Table 2; the respective p-values from Kolmogorov-

Smirnov tests are also reported in the table. Since all the p-values are above 0.05, we hold that the demand fits

a log-normal distribution at the 95% confidence level. Because the length of order-based loans provided by the

e-commerce platform usually is at most 3 months (6 two-week periods), the length of the planning horizon in our

problem is 6 periods.

Table 2: Fitted log-normal distribution for the three products.

Product

Log-normal distribution

normal-demand periods booming-demand periods

µ σ p-value µ σ p-value

keyboard 3.66 0.60 0.38 5.79 0.26 0.58

mouse 4.13 0.66 0.62 5.91 0.33 0.66

headset 3.54 0.46 0.18 4.96 0.18 0.96

5.2 Scenario generation

A limited number of scenarios can be generated to satisfy the specified statistical properties of stochastic distribu-

tions. This paper adopts the moment matching method to generate scenarios. The main idea behind this method is to

minimize the distances between the specified statistical properties of the generated scenarios (Høyland and Wallace,

2001).

We briefly summarize the moment matching technique proposed by Høyland and Wallace (2001). Recall that

the probability of scenario s is Prs and that the set of all scenarios is S . Let ψ represent the specified stochastic

property of the demand distribution andΨ be the set of all specified properties. Let Vψ be the value for the stochastic

property ψ and f (s, Prs) be the mathematical expression for Vψ. In the moment matching method, the decision

variables are scenario realizations s and the corresponding possibility Prs. For example, to generate scenarios for

stochastic demand with a normal distribution, the stochastic property ψ can be the mean or variance. Vψ is the given

value for mean or variance. Expression f (s, Prs) is
∑

s∈S s Prs for the mean and
∑

s∈S Prs(s −
∑

s∈S s Prs)
2 for the

variance. Let hψ be the weight for property ψ. The mathematical model for the moment matching method is as

follows:
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min
s,Prs

∑

ψ∈Ψ

hψ( f (s, Prs) − Vψ)2 (34)

∑

s∈S

Prs = 1 (35)

Prs ≥ 0, ∀s (36)

The objective function (34) minimizes the overall weighted squared distance between the given values of spec-

ified statistical properties and the corresponding values of mathematical expressions. Constraint (35) states that the

sum of all demand realization probabilities should be equal to 1. Constraint (36) concerns the nonnegativity of the

probability.

To control the size of the scenario tree and avoid possible pitfalls of the moment matching method such as

overspecification and underspecification, Høyland and Wallace (2001) gave a simple formula to find the smallest

number of scenarios needed:

(D + 1)y − 1 ∼ the number of specifications (37)

The symbol “∼” denotes “close to”; D indicates the dimension of each scenario node vector, and y represents

the number of branches from each node. For example, with regard to our three-product, six-period problem, D is 18

for a problem with 3 products and 6 periods. By specifying three moments, the mean, variance and skewness, the

number of specifications is 18× 3 = 54. Therefore, by the above formula, we choose to create 3 realizations in each

period because (18 + 1) × 3 − 1 ≥ 54.

The fmincon function in MATLAB is adopted to solve this nonlinear optimization model (34)–(36). Multiple

starting points are tested, and we select the solution with the smallest objective value sufficiently close to zero. To

examine how uncertainty can affect decision making, 3 scenario trees are constructed. The size of each scenario tree

is 36. A summary of the demand scenarios for the first period in each scenario tree is shown in Table 3. Recall that

since demand is independent in each period, demand realizations and corresponding possibilities are the same for

each period. For example, in the first period of scenario tree 1, the probability of demand realizations of 133, 246,

and 87 for the three products is 0.1. In the latter periods, the probability of the same realizations is still 0.1.

5.3 Scenario reduction

In each scenario tree, there are 36 scenarios. With a larger planning horizon or more products, the problem may

become computationally intractable. For example, if using weekly demand, the length of the planning horizon

will be 12, and there will be 312 scenarios. Therefore, we also make use of the scenario reduction method pro-
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Table 3: Three scenario trees for demands.

Normal-demand periods Booming-demand periods

Probability Product 1 Product 2 Product 3 Probability Product 1 Product 2 Product 3

Tree 1

0.1 133 246 87 0.286 291 597 123

0.598 30 58 39 0.318 468 322 124

0.302 49 57 20 0.396 268 293 177

Tree 2

0.102 134 246 88 0.185 345 341 156

0.694 32 59 37 0.556 269 302 123

0.204 54 56 17 0.259 481 611 184

Tree 3

0.103 134 246 87 0.266 481 608 134

0.476 28 58 24 0.34 317 311 181

0.421 46 58 43 0.394 259 309 121

posed by Heitsch and Römisch (2003) to reduce the computational complexity. With regard to the two reduction

methods: fast forward selection method (FFS) and backward selection method (BS), we make use of FFS be-

cause it outperforms BS when the number of selected scenarios is no more than 25% of the number of original

scenarios(Heitsch and Römisch, 2003; Hu and Hu, 2018).

The main idea behind FFS is described as follows: in the first step, select the scenario with the smallest total

weighted distance; then, update the distances and select the scenario among the remaining unselected scenarios; and

after selecting enough scenarios as required, add the probabilities of unselected scenarios to the probability of their

closest selected scenarios. The pseudocode of FFS is given by Algorithm 1 in the appendix.

6 Numerical analysis

In this section, we first discuss the stability test results of the scenario generation and reduction method, then make

comparisons between deterministic models and stochastic models, and finally investigate the impacts of different

initial cash, overhead cost, receipt delay length, and demand fluctuations on the retailer’s choice of using order-based

loans.

Selling prices and unit purchasing costs for the three products are listed in Table 4. Assume that the initial cash

balance of the retailer is 20,000. The discount rate α is 1%, and the interest rate r0 for order-based loan is 1.5%.

The selling prices and unit purchasing costs of the three products are listed in Table 4. Other parameter values are as

follows: receipt delay length L is 2; order-loan limit Bu is 10,000; overhead cost Ht is 2000 in each period; and the

demand patterns are [0, 0, 0, 0, 1, 1], where 0 means normal demand in this period and 1 means booming demand.
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Table 4: Selling prices and purchasing costs of the three products.

keyboard mouse headset

Selling price 189 144 239

Unit purchasing cost 120 70 150

6.1 Stability test

We first investigate the relationship between sample size and objective value in Figure 2. The aims of the test is

to balance the scenario size and computational complexity by finding a good scenario sample size such that the

objective value is stable.
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(b) Order-based loan.

Figure 2: Scenario sample size stability test.

The scenario sample sizes are generated from 20 to 180 in steps of 20. As Figure 2 shows, there is a slightly

decreasing trend in the objective value as the scenario sample size increases. When the scenario size is 120 or 140,

the objective value tends to be stable for all the scenario trees in the two situations. Therefore, we decide to select

140 as the scenario sample size. In addition, the objective values have very small fluctuations across different sample

sizes.

Next, we analyze the in-sample stability and out-of-sample stability of the scenario tree. In-sample stability

means that the objective values should not vary substantially across different scenario trees of the same size, while

out-of-sample stability indicates that the solutions from one scenario tree should exhibit close objective values in

another scenario tree. Table 5 lists the details of the stability test for the two scenario models. For instance, 46092

in row 1 and column 2 means that substituing the solution from Tree 1 into Tree 2 gets the value 46092.
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Table 5: Stability test.

Model SO-S (no loan) Model OL-S (loan)

Tree 1 Tree 2 Tree 3 Tree 1 Tree 2 Tree 3

Tree 1 46067 46092 46061 46200 46223 46193

Tree 2 46116 46173 46024 46246 46306 46202

Tree 3 46117 46126 46131 46247 46258 46263

As Table 5 shows, since the gaps between different solutions in different scenario trees are all less than 5%, we

claim that the stability test for these scenario generation results is valid.

6.2 Comparison between deterministic model and stochastic model

By fixing other parameter values and allowing one parameter to vary, we attempt to determine whether it is worth

considering demand uncertainty in different parameter settings. The parameter variations are given by Table 6.

Table 6: Parameter value variations.

Parameter Value variations

Initial cash C0 10,000 15,000 20.000 25,000 40,000

Receipt delay length L 0 1 2 3 4

Overhead Cost Ht 0 1,000 2,000 3,000 4,000

Let DV represent the expected value for the solution of the deterministic model in the stochastic model, SV rep-

resent the final value of the stochastic model and PV represent the final value if the retailer has perfect knowledge of

the stochastic demand. The expected value of perfect information (EVPI) measures how much one wants to pay for

perfect information, and the value of the stochastic solution (VSS) implies the difference between the deterministic

model and stochastic model. Apparently, EVPI = PV - SV and VSS = SV - DV. A summary of the comparisons

between the deterministic model and stochastic model is illustrated in Figure 3.

In Figure 3, VSS grows with increasing initial cash but decreases with increasing overhead cost and receipt delay

length. Since a larger overhead cost or receipt delay length would make the retailer more cash-constrained during

operation, this means that the stochastic model has a greater advantage when the retailer is less cash-constrained.

With regard to EVPI, it grows as the initial cash increases and decreases as the overhead cost increases. However,

as the receipt delay length increases, the EVPI does not show a clear monotonous pattern. Moreover, both the VSS

and EVPI values when using order-based loans are larger than those when not using loans. Therefore, it is much
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Figure 3: Comparison between the stochastic model and deterministic model.
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better to use the stochastic model when using order-based loans.

6.3 Analysis for using order-based loan

We also want to know which factors affect the retailer’s choice of using order-based loans, namely, in which param-

eter settings the order-based loan model (Model OL-S) achieves higher expected profit than the model of not using

loan (SO-S). This is shown by Figure 4, where the y axis is the expected profit gap between using order-based loan

and not using loan. We also compare several demand patterns in Figure 4(d). The four demand patterns are [0, 0,

0, 0, 0, 0], [0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0], and [1, 1, 1, 1, 1, 1]. Recall that 0 represents normal demand for this

period, while 1 represents booming demand.
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Figure 4: Profit gaps with respect to whether order-based loans are used.

The above figures show that the retailer would prefer using order-based loans when the receipt delay length is
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long or its initial cash is small. When the overhead cost is large, using order-based loans tends to yield more profits

than not using them. However, when the overhead cost is too large, there is no advantage in using order-based loans

because the retailer cannot make profits. With regard to demand patterns, it seems that it is better for the retailer to

use order-based loans when there expected demand is high.

7 Conclusions

Many small online retailers encounter cash shortages during operation, and some Chinese e-commerce platforms

have provided financing services to help retailers alleviate this problem. In this paper, we discuss order-based loans

by building a multi-period multi-product model with demand uncertainty. Scenario programming and reduction

techniques are used to solve this problem. Numerical examples show that the retailer tends to use order-based loans

when the receipt delay length is long or initial cash is small. When the overhead cost in each period is large but not

too large to make the retailer unprofitable, the retailer would also prefer using order-based loans. Future research

may consider several directions: one possible direction is to consider demand substitution in which one product can

be substituted by others if it is out of stock; a second possible direction is to investigate other supply chain financing

behaviors in a multi-period stochastic problem.
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Appendix A FFS algorithm for scenario reduction

si and s j represent scenario i and scenario j (i, j ∈ S ). d
[k]

i, j
is the distance of si and s j in step k and WD

[k]

i
is the

overall weighted distance of scenario i in step k. The target number of selected scenarios is K. In step k, the set of

selected scenarios is represented by Ω[k] while the set of unselected scenarios is represented by J[k]. L(i) represents

the set of scenarios whose closest scenario is scenario i (i ∈ Ω[K]) in the final step.

Algorithm 1: Fast Forward Algorithm (FFS)

Data: the set of all scenarios S , target number of selected scenarios K.

Result: the selected K scenarios.

1 Initialize: k ← 1, J[1] ← S , Ω[1] ← ∅;

2 while k < K do

3 if k = 1 then

4 d
[1]

i, j
is the Euclidean distance of scenario i and j, ∀i, j ∈ J[1];

5 WD
[1]
i
←
∑

s j∈J[1] Pr(s j)d
[1]
j,i
,∀i ∈ J[1];

6 l← arg min WD
[1]

i
;

7 J[1] ← J[1] \ sl, Ω
[1] ← Ω[1] ∪ sl;

8 else

9 d
[k]

j,i
← min{d

[k−1]

j,i
, d

[k−1]

j,l
},∀i, j ∈ J[k];

10 WD
[k]

i
←
∑

s j∈J[k] Pr(s j)d
[k]

j,i
,∀i ∈ J[k];

11 l← arg min WD
[k]

i
;

12 J[k] ← J[k] \ sl, Ω
[k] ← Ω[k] ∪ sl;

13 end

14 k ← k + 1;

15 end

16 Pr(i)← Pr(i) +
∑

j∈L(i) Pr( j),∀i ∈ Ω[K], ∀ j ∈ J[K], where L(i) = {s j | arg mini∈Ω[K], j∈J[K]{d
[K]
i, j
} = i}.
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