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The laboratory scale journal bearing lubrication regimes were analysed with wide band acoustic 
emission (AE) measurements. Data analysis was supported by data-based clustering of AE data. 
The approach can be effectively used to reveal fundamental lubrication modes, i.e., hydrodynamic 
(HL), mixed (ML) and boundary (BL) lubrication as a function of Hersey number. Besides AE the 
other parameters monitored were friction torque, bearing temperature, loading, sliding velocity 
and oil pressure. The materials used in the experiments were case-hardened 18CrNiMo7-6 steel 
and nitrided 42CrMo7 steel. The tests were lubricated with synthetic extreme-pressure gear oil 
(SGN 320) and the bearing temperature was kept constant during the tests. The bearing pressure 
and sliding velocity during tests were varied in the wide range resulting in different lubrication 
situations. The acoustic emission signals power and frequency content was analysed, and essential 
features were extracted for data clustering. For lubrication regime change identification the 
parameters such as signal RMS and coefficient of variation (CV) proved to be important, while 
signal kurtosis showed to be the most sensitive in discovering anomalies. The sensitivity requires 
data filtering to remove erroneous peaks. It is also interesting to notice the changes in AE 
frequency due to different lubrication situation.  In literature different clustering and classification 
methods has been proposed and applied for journal bearing status identification. Here the selected 
unsupervised clustering method was the mean-shift clustering due to fact, that the lubrication 
regimes in the Stribeck curve form an inseparable continuum. The algorithm does not require 
specifying the number of clusters in advance, i.e., the clusters are determined by the algorithm 
with respect to the data. 
 
Le fonctionnement d'un palier lisse en régime de lubrification hydrodynamique (HL) ou 
élastohydrodynamique (EHL) est une condition préalable à un fonctionnement fiable. Le 
basculement vers des régimes de lubrification mixte (ML) ou limite (BL) augmente le frottement et 
le risque de défaillance du palier. La détection du régime de lubrification est donc essentielle pour 
éviter les défaillances des paliers lisses. Les techniques de Machine Learning at de Data Analytics 
permettent une reconnaissance rapide, précise, demandant de ressources informatiques peu 
coûteuse en temps de calcul. Dans cette étude, c'est la méthode "unsupervised mean-shift 
clustering" qui a été appliqué. L'algorithme ne nécessite pas de spécifier le nombre de clusters à 
l'avance car celui-là est déterminé par l'algorithme en fonction des données. Les données utilisées 
pour l'extraction des caractéristiques ont été mesurées à l'aide d'un système d'émission 
acoustique (AE) à large bande. Les autres paramètres contrôlés ont été le frottement, les 
températures, la charge, la vitesse de glissement et la pression de l'huile. Les matériaux utilisés 
étaient de l'acier cémenté 18CrNiMo7-6 et de l'acier nitruré 42CrMo7. Le lubrifiant utilisé était de 
l'huile synthétique EP pour engrenages (SGN 320). La température du palier a été maintenue 
constante. La pression et la vitesse de glissement ont été variées pendant les tests, ce qui a permis 
d'obtenir des résultats pour une large gamme en termes de nombre de Hersey. La puissance et la 
fréquence des signaux d'émission acoustique ont été analysées et les caractéristiques essentielles 
ont été extraites pour le traitement des données. Le kurtosis, le RMS et le coefficient de variation 
des signaux AE ont été représentés en fonction du nombre de Hersey. Le kurtosis a montré la plus 
grande sensibilité pour la détection des anomalies. Une sensibilité élevée nécessite un filtrage des 
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données pour éliminer les pics erronés. Des observations ont également été faites sur le niveau de 
fréquence de l'AE en fonction des différents régimes de lubrification. 
 

1 Introduction 

In industrial systems it is not often possible to monitor all the vital components. The amount and quality of data 
may be restricted due to excessive cost or noisy environment, respectively. Virtual sensing and/or hybrid 
approaches has been suggested instead. Hybrid systems rely on modelling, while virtual sensing techniques aim 
to reduce the number of sensors by using data from available measurements to estimate additional unknown 
quantities of interest indirectly. Data-based clustering of AE data can be effectively used to reveal fundamental 
lubrication modes, i.e., hydrodynamic (HL), mixed (ML) and boundary (BL) lubrication. Acoustic emission (AE) 
means spontaneous elastic mechanical waves which result from abrupt strain changes within material body [1]. 
AE can be measured with a special surface mounted sensor if the energy of waves is high enough to cause surface 
motion with sufficient amplitude. The measured signal contains information about nature, location, and 
characteristics of the source [2, 3, 4].  Sources of AE in frictional contact include elastic interactions, as well as 
plastic deformation in wide respect, strain hardening (apparently including phase changes), fatigue, and different 
wear modes [5]. Abrasive wear increases AE signal amplitude significantly, e.g., 2 – 3 times. This is of course good 
news considering monitoring of lubrication mode and status. Lubrication regimes are usually presented in the 
form of a Stribeck curve [6, 7], i.e., friction as a function of dimensionless Hersey number (equation 1): 
 

 𝐻 =
𝜂𝜔

𝑝
 , (1) 

 
where H represents Hersey number, h is dynamic viscosity (Pas), ω is rotational velocity (m/s) and p is the load 
per line length (N/m). The Stribeck curve (presented in Fig 1) has been studied extensively in numerous papers 
and books, e.g., [6, 7, 8, 9, 10].  
 

 
 
Fig 1 – Schematic presentation of the Stribeck curve. 
 
The smallest Hersey numbers (H) represent the boundary lubrication regime (BL in Fig 1), usually representing a 
coefficient of friction of (very roughly) about 0.1 or higher. The lowest value of the friction coefficient usually 
marks the transition from mixed (ML in Fig 1) to elastohydrodynamic film lubrication (EHL in Fig 1), where the 
fluid film is just thick enough to avoid asperity collisions. Thus, the surface roughness affects the classification 
and is usually applied in terms of lambda (λ) value. A minor increase in friction coefficient in Stribeck curve with 
respect to further increased Hersey number takes place at hydrodynamic lubrication region (HL in Fig 1) due 
to increased viscous losses. For machine components operating in EHL regime the curve may look different with 
a coefficient of friction not increasing in the full film regime due to higher pressures and different thermal 
conditions [6]. Asperity contact is the essential source of AE signals, which is evident in RMS value. Both AE RMS 
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and kurtosis have inverse correlation with oil film thickness [11]. In dry steady state wear the AE signal increases 
with increasing applied load and sliding speed. AE energy is influenced by the friction coefficient, and RMS value 
correlates with friction to some extent. AE RMS increases due to increase of maximum stress and asperity 
deformation as contact becomes more localized. As the oil film thickness increases the maximum stress 
decreases due to more uniform distribution of load. In journal bearings the friction states, i.e., lubrication 
regimes, can be separated by using AE [12]. The features derived from AE signals, were AE RMS, AE entropy, AE 
median frequency and AE kurtosis. The most significant features were kurtosis and median frequency, which 
could readily be applied for a feature space presentation. The sensitivity of extracted features was enhanced by 
applying continuous wavelet transform (CWT) and transforming signals to frequency-time domain. Support 
vector machine (SVM) was used to classify signals further into three different friction classes: mixed friction, mild 
mixed friction, and fluid friction. It was noticed that Stribeck curves having AE RMS as abscissa can be used for 
wear progress and remaining life estimation. Also, the effect of temperature induced viscosity changes, as well 
as speed and load variation on AE have been studied [13]. AE RMS was reported to show good correlation with 
the journal bearing wear volume [13]. It has also been discovered that that AE RMS and AE energy parameters 
can be used for detection of particle contamination in lubricating oil [14]. In comparison of AE-based condition 
monitoring system for roller bearings to vibration-based condition monitoring it has been discovered that the 
former gives earlier warning than the latter. Also, the AE sensitivity to detect condition of lubrication was 
reported [15]. Monitoring accuracy of AE signal kurtosis and RMS value can be enhanced by separating signals 
to frequency bands, since the highest intensities of certain incidents are reported to be found in certain 
frequency bands [16]. The method can be used to reveal several operating wear mechanisms with different 
characteristic frequency. Combined time–frequency analysis based on Morlet wavelet coefficient and fast 
kurtogram (MWC-has been proposed for gear fault detection [17]. Kurtogram is a fourth order spectral analysis 
tool and can be used to detect transient faults contained in signals [18]. Kurtogram has also been demonstrated 
jointly with deep learning [19]. AE features has been applied in developing data driven and machine learning 
methods for journal bearing wear regime distinction [20] as well as wear mode identification [21].  

2 Measurement arrangements and results 

Laboratory scale journal bearing tests were carried out with the journal bearing test rig (Fig 2). The journal 
bearing consisted of a shaft made of tempered gas nitrided 42CrMo7 steel, while the bearing was made of case 
hardened 18CrNiMo7-6 steel. The journal inner diameter was 30 mm, while the width of the bearing was 20 mm. 
The surface roughness of the shafts and the bearing prior to tests was Ra 0.2 - 0.3 µm. The friction force was 
measured during the tests with a force sensor positioned above the torque arm transferring the friction torque 
from the bearing case. The friction generated by the seals was determined experimentally prior to actual 
measurements and the effect was subtracted from the measured friction force values, thereby reaching the 
friction coefficient. The journal bearing tests were lubricated with the synthetic extreme pressure gear oil of ISO 
Viscosity Grade SGN 320. During testing the lubricant temperature was maintained at 65 ± 2 °C. The temperature 
was measured from the bearing near the contact surface. The kinematic viscosity of the lubricant is 109.2 mm2/s 
at 65 oC. The specific gravity of the oil is 867.6 kg/m3. A single test run consisted of operating the bearing test rig 
under a constant load and varying the rotation speed to reach different lubrication situations. Various test runs 
were performed under different loads ranging between 0.5 kN and 13 kN. At moderate loads the lubrication 
status remained in the HL range. Notable lubrication regime changes occurred only at loads of 10.0 kN, 11.0 kN, 
and 13.0 kN, which were then included in the data-based clustering. During the journal bearing tests AE signal 
was measured with a Kistler 8152C AE wide frequency spectra sensor (50 – 900 kHz). The sensor has channels 
for pure AE signal and the RMS of the AE. Due to its large size, the sensor was attached on top of the bearing 
housing. Before each test the sensor sensitivity was verified by pencil-lead breaking [22]. The feature values for 
the data-based clustering were extracted from the measured AE and friction signals over a window of 0.1 seconds 
without overlapping. The friction is presented as Stribeck curve relative to Hersey number in Fig 3. The calculated 
acoustic emission parameters (rms, coefficient of variation and kurtosis) are presented similarly as functions of 
Hersey number. When calculating the Hersey number values, the temperature, and thus, the dynamic viscosity 
of the lubricant was assumed constant. Therefore, the Hersey number values used were dependent on the load 
and the rotation speed only. 
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Fig 2 – Journal bearing test bench at VTT. 

 

 

Fig 3 – Friction and extracted parameters (features) from AE signals. 

Choosing only time-domain based features extraction methods ensures the high computational efficiency of the 
feature extraction process. Frequency content of the signals were not applied for clustering, although the change 
in lubrication regime is clearly visible in median normalized frequency of AE as well (Fig 4). In the present study 
the frequency content does not increase the information content, since only the lubrication regime change was 
of interest. 
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Fig 4 – Median normalized frequency response to lubrication regime change. 

3 Data-based clustering 

If the data samples were to comprise examples of the input data with their corresponding known fundamental 
lubrication modes and regimes, the unknown modes for new data samples could be found by using supervised 
learning methods. However, because there are no direct boundaries between the different lubrication regimes 
along the Stribeck curve (Fig 1), the input data does not contain corresponding labels for the lubrication regimes. 
Thus, unsupervised learning needs to be used first to discover the groups, i.e., clusters, of similar examples within 
the data. The objective of the clustering is to maximize the similarity within each cluster and minimize the 
similarity between other clusters. 
Thus, in general, the objective of the data-based lubrication regime identification is to learn the underlying 
relations of the given feature vectors by means of unsupervised clustering. Ideally the clustering provides the 
boundaries of the lubrication regimes and the possible outliers. Therefore, the clustering algorithm’s capability 
of finding the correct number of different possible lubrication regimes is important. Such an algorithm would 
enable the automatization of the clustering process of the lubrication regimes which could be thereafter utilized 
in the next phase, i.e., in the real-time identification of the lubrication status. The clustering method chosen for 
this study is called mean-shift clustering. The main concept of the mean-shift clustering can be stated as a set of 
iterative shifts of each input data point to the regional mean. In this study, the mean itself is based on the 
bandwidth of neighborhood of each data point, and the bandwidth is defined with the predefined quantile of all 
pairwise distances. Mathematically the mean shift procedure is obtained by successive computation of the mean 
shift vector 𝐦ℎ(𝐱𝑡) at iteration 𝑡 and updating the candidate centroid 𝐱𝑡 within the neighborhood as 𝐱𝑡+1 =
𝐱𝑡 + 𝐦ℎ(𝐱𝑡) until converged to a point where the gradient of the density function inside the mean shift vector 
is zero. The detailed procedure of the mean-shift clustering method is given e.g., in [23]. It was selected due to 
fact that the lubrication regimes in the Stribeck curve comprise a rather inseparable continuum of regimes. Thus, 
the mean-shift clustering is an effective tool to resolve the separation task with the minimum information given. 
Mean-shift clustering was tested using various combinations of the following features: Friction coefficient, AE 
RMS, AE coefficient of variation, AE kurtosis, and Hersey number. The clustering results are presented in Fig 5 
using all features, in Fig 6 using AE coefficient of variation and AE kurtosis with Hersey number, and in Fig 7 using 
only AE coefficient of variation and AE kurtosis. All clustering results presented in Fig 5 – Fig 7 include three 
clusters, but the desired clustering result can be seen only in Fig 6. The distribution of the three clusters in Fig 6 
represent roughly the ML (Cluster 1 in Fig 6), EHL (Cluster 2 in Fig 6), and HL (Cluster 3 in Fig 6) regimes in the 
Stribeck curve. 
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Fig 5 – Clustering results using all features. 

 

Fig 6 – Clustering results using AE coefficient of variation, AE kurtosis, and Hersey number as features. 
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Fig 7 – Clustering results using AE coefficient of variation and AE kurtosis as features. 

4 Summary 

The goal of the study was to use machine learning as computationally light method to support near real-time 
monitoring of the journal bearing lubrication status. The shape of the Stribeck curve reveals that the regime 
identification problem is problematic and nonlinear. The minimum requirement for the creation of the data-
based model is that there is measurement data available for each lubrication regime. Laboratory scale journal 
bearing tests were carried by measuring friction and wide band AE signals. Loading and sliding velocity were 
varied in a wide range during tests resulting in different lubrication situations, the most interesting changes 
appearing at loads 10 kN, 11 kN and 13 kN. Different combinations of feature vectors were studied for the model 
development and tested using the mean-shift clustering algorithm. The mean-shift algorithm does not require 
specifying the number of clusters in advance, i.e., the clusters are determined by the algorithm with respect to 
the data. The best clustering results, that is the results most comparable to the Stribeck curve, were achieved by 
using AE kurtosis, coefficient of variation, and Hersey number as features. Using more features, such as the 
friction coefficient, does not necessarily improve the result in the present configuration. Thus, it can be 
concluded that AE kurtosis is an important feature for lubrication status detection in journal bearings. Among 
the compared features the kurtosis appears to be the most sensitive parameter to signal changes. The sensitivity 
of kurtosis requires considerations of data filtering since random variations due to electromagnetic and 
mechanical interferences are emphasized due to the nature of kurtosis. 
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