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Abstract: Accessing the demand-side management potential of the residential heating sector re-
quires sophisticated control capable of predicting buildings’ response to changes in heating and
cooling power, e.g., model-predictive control. However, while studies exploring its impacts both
for individual buildings as well as energy markets exist, building-level control in large-scale energy
system models has not been properly examined. In this work, we demonstrate the feasibility of the
open-source energy system modelling framework Backbone for simplified model-predictive control of
buildings, helping address the above-mentioned research gap. Hourly rolling horizon optimisations
were performed to minimise the costs of flexible heating and cooling electricity consumption for a
modern Finnish detached house and an apartment block with ground-to-water heat pump systems
for the years 2015–2022. Compared to a baseline using a constant electricity price signal, optimisation
with hourly spot electricity market prices resulted in 3.1–17.5% yearly cost savings depending on
the simulated year, agreeing with comparable literature. Furthermore, the length of the optimisation
horizon was not found to have a significant impact on the results beyond 36 h. Overall, the simplified
model-predictive control was observed to behave rationally, lending credence to the integration of
simplified building models within large-scale energy system modelling frameworks.

Keywords: model-predictive control; building energy management; building energy flexibility;
energy system modelling; energy system optimisation

1. Introduction

Electrification of traditionally fossil-fuelled sectors such as transportation and heating
is one of our more promising decarbonisation pathways. Unfortunately, most of our
renewable electricity generation potential originates from variable sources, leaving power
utilities scrambling for flexibility capable of mitigating said variability. This newfound
demand for flexibility has rekindled interest in various demand-side management (DSM)
measures as a potential alternative for investing in additional energy storage or dispatchable
generation capacity.

Buildings are the largest consumers of energy worldwide, responsible for over 30% of
the global final energy consumption [1] and expected to increase by around 30% in another
twenty years [2]. Furthermore, heating, ventilation, and air conditioning (HVAC) systems
maintaining comfortable indoor temperature conditions can account for more than 60% of
a building’s total energy consumption [3]. Thus, the heating and cooling sector holds
significant DSM potential [4], but accessing it requires both sophisticated HVAC systems as
well as control. While rule-based control can be effective in reducing energy consumption
in buildings [5], it is incapable of properly accounting for the building’s future thermal
response. Model-predictive control (MPC) overcomes this issue, making it more suitable
for harnessing the flexibility in buildings [6]. However, whether all this DSM potential will
ever be realised is highly debatable, as factors such as economic and policy uncertainty,
as well as the future development of national energy systems, all affect building owners’
decisions to invest into advanced building HVAC systems.
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On the level of individual buildings, MPC is typically employed for optimal control
of the buildings’ systems, often utilising detailed technical parameters or plentiful real-
time measurements [7,8]. However, studying the impacts of such controls on energy-
market scale makes holistically modelling each building infeasible and requires the use
of dedicated energy system models. Furthermore, obtaining sufficient input data for
detailed building models becomes increasingly more difficult as the scale or the modelled
energy system increases, encouraging more simplified and robust modelling approaches.
While there are studies examining the energy-system impacts of different power-to-heat
measures [4], the integration of building-level and large scale energy system models is still
not well understood.

The remainder of this paper is organised as follows: Section 1.1 summarises the
relevant scientific background, while Section 1.2 highlights the contribution of this paper.
The modelled buildings are detailed in Section 2.1, and the MPC implementation using
the Backbone energy system modelling framework is explained in Section 2.2. Finally, the
optimisation results are presented in Section 3, their implications are explored in Section 4,
and conclusions are drawn in Section 5.

1.1. Background

While some features of MPC can be traced back as far as the 1950s, it did not see indus-
trial applications until the mid-1970s with access to cheaper and more reliable computer-
based control [9]. In modern-day society with near-ubiquitous computers, MPC has
become appealing for smaller-scale applications as well, such as building HVAC con-
trol [7]. Furthermore, MPC has been successfully employed for building HVAC systems
to reduce energy demand and costs, as well as increase the self-consumption of on-site
renewables, all while satisfying the occupants’ comfort [10,11]. The existing literature
on building-level MPC is vast, as evidenced by the recent reviews by Drgoňa et al. [7],
Yao and Shektar [10], and Taheri et al. [11]. Examples of economic MPC studies include a
small residential building with a heat pump system with floor heating depicted using a
third-order resistance-capacitance (RC) model [12], a multi-zone commercial building with
variable air volume cooling systems modelled using EnergyPlus with controls optimised
using MATLAB [13], real-world multi-objective MPC trials for commercial buildings in
Australia [14], a single-family house with multiple local renewable energy systems [15], as
well as a small energy community of four single-family houses [16]. City-scale economic
scheduling studies have also been performed, e.g., for Copenhagen [17] and Helsinki [18],
although focusing more on the district heating system than the buildings themselves. Re-
cent advances in machine learning have also increased interest in data-driven predictive
control for building applications [8].

All of the above-mentioned studies model buildings or cities strictly as “price-takers”,
meaning that any change in their energy consumption is assumed not to affect the operation
of the overarching energy system and the balance of the spot energy markets. While
this is true for current day-ahead spot electricity markets, if DSM by flexible buildings
becomes mainstream and significant numbers of buildings begin shifting their consumption
in unison, markets will be forced to account for the reacting demand in some manner.
Thus, there have been several studies examining the widespread impacts of building-level
flexibility on the energy-market-scale as well [4]. Most noteworthy among them are perhaps
the studies by Hedegaard et al. [19,20], pioneering the integration of simplified building
RC models with the large-scale energy system model Balmorel for studying investments
into flexible residential heat pump systems for wind power integration. Similar approaches
have since been applied for studying peak-net demand increase caused by electrification
of heating via heat pumps in the UK [21], impact of market penetration of electric heating
demand response in Belgium [22] and Finland [23], comparing different flexible heating
technologies in Germany [24], as well as impacts of pan-European multi-flexibility-source
load-shifting [25].
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1.2. Contribution

Despite the wealth of studies on the subject of building-level MPC and its implica-
tions for energy system operations discussed in the previous section, to the authors’ best
knowledge, there has never been an attempt to examine whether the building models
employed within large-scale energy system modelling frameworks can perform reason-
able building-level MPC. While the results of the previous energy-system-scale studies
have not indicated reasons to doubt the used approach, performing building-level sim-
ulations helps further validate it, as well as better understand its limitations. Thus, this
paper aims to address this research gap by demonstrating that Backbone can capture
the key dynamics of such control and briefly investigates the impact of different rolling
horizon optimisation parameters on the results. This is a missing stepping stone toward
system-level studies, where large-scale scenario analysis is supplemented by more detailed
local-level modelling, helping improve the reliability of the results and possibly correct
large-scale models through iterative approaches. Furthermore, the investment optimisation
capabilities present in many large-scale energy system optimisation frameworks facilitate
comparing the economic viability of widespread building-level DSM solutions against
competing flexibility options on national scales.

2. Materials and Methods

A significant share of existing large-scale energy system modelling frameworks are
based on mixed-integer linear programming (MILP), as concurrent solvers can efficiently
handle very large problems [26]. This severely limits applicable building modelling op-
tions, however, as most detailed physics-based white-box models cannot be integrated
directly due to their reliance on non-linear functions [27]. Similarly, data-driven black-
box models typically employ mathematical frameworks that cannot be implemented in a
MILP-compatible manner [8]. Fortunately, simplified grey-box RC-modelling approaches
have been shown to sufficiently capture the temperature dynamics in buildings and can be
integrated directly into MILP problems [28]. Although, while RC models are ideal for large-
scale energy system model integration, detailed white-box models or data-driven black-box
models typically perform better in terms of accuracy, reliability, and adaptability when it
comes to building-level MPC applications with access to detailed technical properties and
measurement data from the building [7,8].

The remainder of this section is organised as follows: Section 2.1 first presents the
modelled buildings as well as a brief overview of the simplified RC model, before Section 2.2
introduces the key aspects of Backbone used for the MPC. Furthermore, the raw data and
the code for processing the data for the case study have been made available through
Zenodo for interested readers [29].

2.1. Modelled Buildings

Residential buildings make up most of existing building stocks, and as such, are of key
interest for building MPC. In terms of the flexibility in space heating demand, the effective
thermal mass of the building is a potentially important factor. Thus, this work included
both a light wooden-framed detached house (DH) and a heavy concrete apartment block
(AB), illustrated in Figure 1 and described in more detail in Tables 1 and 2, respectively.
The modelled buildings were based on the readily made example buildings from the IDA
ESBO v1.13 [30] simulation tool, adhering to the 2012 Finnish regulations [31]. However,
ventilation heat recovery units were disabled for simplicity, as well as to keep the building
models identical to the previous IDA ESBO validations [32].
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DH
AB
Figure 1. Illustrations of the modelled apartment block (AB) and detached house (DH). Note that the
shown IDA ESBO model for AB represents only one half of the entire building and is mirrored over
the partition walls shown in light grey to form the full building.

Table 1. Key properties of the modelled detached house (DH).

Gross floor area 135.56 m2

Number of storeys 1
Room height 2.6 m
Ventilation air change rate 0.55 times per hour
Infiltration air change rate 0.06 times per hour
Window U-value 1.0 W/m2K
Window solar heat gain coefficient 0.55
Window-to-wall ratio 0.20

Structure Description U [W/m2K] Ceff [kJ/m2K]

Roof 13 mm plasterboard finish, 482 mm mineral
wool insulation, asphalt roll roofing. 0.09 21.96

Exterior wall 13 mm plasterboard finish, 237 mm mineral
wool insulation, 20 mm board exterior. 0.17 15.61

Base floor
20 mm autoclaved aerated concrete finish,
200 mm concrete slab, 207 mm expanded
polystyrene insulation.

0.18 487.49

Partition wall Timber frame, 13 mm plasterboard finish on
both sides. — 18.28

Table 2. Key properties of the modelled apartment block (AB).

Gross floor area 1608.19 m2

Number of storeys 4 (counting the basement)
Room height 2.7 m
Ventilation air change rate 0.67 times per hour
Infiltration air change rate 0.04 times per hour
Window U-value 1.0 W/m2K
Window solar heat gain coefficient 0.55
Window-to-wall ratio 0.26

Structure Description U [W/m2K] Ceff [kJ/m2K]

Roof
10 mm mortar finish, 150 mm concrete slab,
486 mm mineral wool insulation, asphalt roll
roofing.

0.09 412.71

Exterior wall
10 mm mortar finish, two 100 mm concrete
slabs sandwiching 252 mm mineral wool insu-
lation.

0.17 263.25

Base floor
20 mm autoclaved aerated concrete finish,
200 mm concrete slab, 207 mm expanded
polystyrene insulation.

0.18 487.49

Partition wall 160 mm concrete slab. — 375.28

Separating floor 20 mm autoclaved aerated concrete finish,
150 mm concrete slab. — 334.34
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The IDA ESBO building models were reduced into simplified RC models with only
three temperature nodes depicting each building, namely the indoor air and furniture
node, and the heavy and light structural mass nodes, illustrated in Figure 2. This nodal
configuration had the most robust performance in terms of uncertainties related to the
structural and solar gain properties in previous IDA ESBO validations [32], and the same
RC models were reused in this work with the addition of a domestic hot water (DHW)
tank temperature node to represent its storage capacity. A summary of the key indicators
used for validating the RC models against IDA ESBO is presented in Table 3. For the sake
of brevity, the RC model validation is not reproduced here, and interested readers are
instead kindly referred to the aforementioned previous work [32]. While more accurate
RC models could undoubtedly be obtained via state-of-the-art calibration routines [33]
and processed for Backbone, these robust models were chosen for this demonstration as
they better represent the intended use case on the energy-system scale, where detailed
measurement or simulation data for proper calibration are often lacking. The indoor air
and DHW tank node temperatures were constrained between 21 and 25 ◦C and 60 and
90 ◦C, respectively, based on the Finnish building code [34,35], governing the available
flexibility in space and water heating demands.
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Figure 2. The resistance–capacitance model for the buildings. C denotes effective thermal masses of
the model nodes, R represents the thermal resistances between the nodes, and Φ indicates the impact
of solar and internal heat gains, as well as radiative sky losses. The interior air (ia) is directly in
contact with ambient air (aa) via ventilation (ven), the windows (win), and the linear thermal bridges
(ltb) through the envelope structures.

Table 3. Summary of the key indicators for the full-year free gross-floor-area-averaged indoor air
temperature comparisons with IDA ESBO performed in [32] for the used RC models.

Indicator Detached House (DH) Apartment Block (AB)

Root-mean-square error [◦C] 0.286 0.378
Maximum overestimation [◦C] 1.23 1.48
Maximum underestimation [◦C] −0.937 −0.671

Time-varying prices make the use of economic MPC more worthwhile, so the buildings
were modelled with ground-to-water heat pump (G2WHP) systems for both space and wa-
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ter heating. For simplicity, the G2WHP was modelled using a simple seasonal performance
factor (SPF) of 2.5, as suggested by Finnish building code calculation guides for G2WHPs
with 60 ◦C hydronic radiator heat distribution systems typical in Finland [36]. Similarly,
the buildings were equipped with ground-source cooling systems with SPF of 30 [36] to
ensure feasible indoor air temperatures during summer. While temperature-dependent
coefficients of performance for the heat pumps could be used to improve the accuracy of the
modelling, they were purposefully avoided in order to permit calculating a more realistic
baseline using Backbone, as explained in Section 3.1. The heating and cooling systems were
assumed to be sized such that they could handle all heating and cooling demand in the
modelled buildings without the need of auxiliary systems.

The G2WHP was also used for pre-heating DHW up to 60 ◦C, but topping up to the
maximum 90 ◦C permitted for the modelled DHW tanks using resistance heaters reduced
the overall SPF to ≈ 1.58. The DHW storage tanks were sized to store roughly two-thirds
of the assumed daily DHW demand with the permitted temperature range, resulting in
250 and 3000 L tanks for the modelled detached house and apartment block, respectively.
The sizing, heat losses, and other relevant technical properties of the DHW tanks were
based on typical values presented in the Finnish building code calculation guides [35]. It is
worth noting that the heat losses from the DHW tanks were assumed to be fully utilisable,
contributing to the internal heat gains. While this is not often the case in reality, it simplifies
the model and is sufficient for the purpose of this paper.

The internal heat gains and DHW demand profiles were based on simple typical
daily profiles in the national calculation guides [35] presented in Figure 3. The internal
heat gains include the assumed effect of inhabitants, appliances, and lighting but were
aggregated into a single total heat gain profile for simplicity. Using identical profiles for
both the modelled detached house (DH) and apartment block (AB) is not ideal, as the
profiles are dependent on the building type in reality. However, the identical profiles are
acceptable for the purpose of this paper. Meanwhile, the ambient temperatures, solar heat
gains, and radiative sky losses were processed using ArchetypeBuildingModel.jl [37] and
PyPSA/atlite [38] based on weather data from the ERA5 global reanalysis dataset [39] for
the coordinates of the Helsinki-Vantaa airport.
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Figure 3. Assumed daily schedules of internal heat gains and as domestic hot water demand [35].

2.2. Backbone MPC Implementation

Backbone is an open-source MILP-based large-scale energy system modelling frame-
work written in GAMS, primarily developed for solving expansion planning, hydro-thermal
scheduling, and unit commitment problems. In order to accommodate such a broad scope
of problems, the temporal, stochastic, and system depictions were designed in a generic
and adaptable manner, allowing users to define radically different problems via input data
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and definitions. Here, only the key aspects of Backbone relevant for building-level MPC
are presented, and readers interested in further details are kindly referred to the paper by
Helistö et al. [40] containing the full model formulation.

At its core, Backbone is a cost minimisation model, where the objective function
depicts the total system costs of generating all the energy required to satisfy the demand in
the modelled system, as well as installing new or replacing old assets. As such, Backbone
is primarily suited for economic MPC of buildings, although other objectives could also be
accommodated either by pricing them in the objective function or by introducing custom
constraints to the problem. In this work, Backbone was configured to perform rolling
horizon economic optimisation depicting MPC, and it is important to understand the
following distinctions going forward:

Time step t refers to the time indices of the model, and ∆t refers to the length of time step
t in hours. In this work, only hourly time resolution was used ∆t = 1 h ∀t.

Optimisation interval refers to the frequency of the rolling horizon optimisation, e.g., a
6 h interval meant that results were saved for the first six hours of each solve, before
moving forward by six hours for the next solve.

Optimisation horizon T refers to the set of time steps t in each solve, e.g., with a 36 h
horizon, optimal control was always solved for the next 36 h before rolling.

The key costs for building-scale MPC typically only include the costs of imported
energy, reducing the simplified MPC optimisation problem to the following:

Find a vector v

that minimises ∑
t∈T

∑
u∈U

[
τ

ts_price
import,t vgen

import,u,t∆t

]
(1)

subject to
penergyStoredPerUnitOfState

n
∆t

(
vstate

n,t − vstate
n,t−∆t

)
= −pselfDischargeLoss

n vstate
n,t − ∑

n′∈Nn

[
pdiffCoeff

n,n’ (vstate
n,t − vstate

n’,t )
]

+ ∑
u∈Un

[
vgen

n,u,t

]
+ τinflux

n,t ∀ n ∈ N, t ∈ T (2)

vgen
import,u,t = pslope

u vgen
n,u,t ∀ u ∈ U, n ∈ Nu, t ∈ T, (3)

and pdownwardLimit
n ≤ vstate

n,t ≤ pupwardLimit
n ∀ n ∈ N, t ∈ T, (4)

0 ≤ vgen
import,u,t ≤ pcapacity

import,u ∀ u ∈ U, n ∈ Nu, t ∈ T, (5)

where p, v, and τ denote different parameters, variables, and time series, respectively,
with their names indicated by the superscript and indices by the subscript. By exploiting
Backbone’s generic design, its energy networks can be parameterised to represent building
RC models as illustrated in Figure 4. The set U contains all heating and cooling equipment
units u, and the set N contains all the temperature nodes shown in the same figure. The
objective function in Equation (1) is relatively straightforward, representing the total cost of
imported electricity for all units u ∈ U and over the entire optimisation horizon t ∈ T, where
ts_price is the electricity price time series in €/Wh, and the gen variable represents the electricity
consumed in W by the heating and cooling units. Please note that Equations (1)–(5) have been
considerably simplified from the full Backbone formulation [40], omitting unused features
such as controlled energy transfer and spill variables, variable and fixed costs related to
units and energy transfer, capacity expansion related investment costs and discount factors,
as well as forecast and scenario indices and their weights.
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Figure 4. Energy system structure for the modelled buildings. Essentially, the MPC minimises
electricity import costs of the heating and cooling systems while maintaining acceptable building
node temperatures under changing weather, heat load, and heat demand conditions.

When implementing simple building RC models within Backbone via the energy
balance constraint in Equation (2), the state variables represent the temperature of the
building nodes in K, the energyCapacity parameter depicts the heat capacity of said nodes in
Wh/K, while the diffCoeff determines the heat transfer coefficients between them in W/K.
The heating equipment are depicted simply using the gen [W] variables, either adding
energy when heating or removing energy when cooling. Here, the subsets Nn and Un
are used to indicate which nodes n′ and units u are connected to the energy balance on
the current node n, as illustrated by Figure 4. Unfortunately, Backbone does not have
dedicated parameters for supporting building-specific interactions such as heat losses into
the ambient air, solar gains, or internal heat gains in Equation (2), requiring them to be pre-
processed to fit into Backbone’s data structure. The ambient temperature interaction can
be separated into its indoor-air and ambient-air-temperature-dependent constituents and
implemented via a combination of the selfDischargeLoss [W/K] parameter and the influx [W]
time series. Similarly, since solar and internal heat gains are assumed independent of the
variables, their effects can be added to the influx time series as well. For readers interested
in further details on the building RC model processing for Backbone, please refer to the
ArchetypeBuildingModel.jl online documentation [37].

The energy conversion constraint in Equation (3) governs the operation of the heating
and cooling units u ∈ U, namely the G2WHP and ground-source cooling, by enforcing
a fixed ratio between the input and output energy of each unit. In Backbone, the slope
parameter represents the heat rate of unit u, which is the inverse of its efficiency, or the
SPF in our case. Here, it is worth noting that space heating and water heating using the
G2WHP are treated as independent units as shown in Figure 4 for simplicity. Furthermore,
since the ground-source cooling system unit is removing heat from the indoor air node, its
slope parameter and thus also its gen variable are negative.

Equation (4) sets the bounds for the state variables between the given lowerLimit [K] and
upperLimit [K] parameter values. While all of the temperature nodes presented in Figure 4
were constrained for computational reasons, the limits for the light and heavy structure
nodes were set loose enough not to impact the operation of the MPC, leaving the interior air
and DHW tank temperature limits discussed in Section 2.1 to govern the flexibility available
to the MPC. Similarly, Equation (5) sets the upper bounds for the electricity import gen
variables via the capacity [W] parameters based on the assumed system sizing discussed in
Section 2.1.

For the simulations presented in Section 3, Backbone was configured to perform 8736 h
rolling horizon optimisations depicting the MPC of the modelled buildings. Essentially,
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the MPC optimisation problem presented in Equations (1)–(5) was solved for the desired
optimisation horizon T, the resulting optimal values for the state and gen variables were
fixed for the chosen optimisation interval, and the problem was rolled forward by the
interval to be resolved for the next horizon. In order for the rolling horizon optimisation
to obtain results for the last hours of the simulation, the horizon can extend beyond the
current year. Backbone deals with this by recycling data from the beginning of the year to
make up for the missing information, which can result in unrealistic swings in electricity
prices and ambient conditions. Thus, the length of the simulations was limited to 8736 h
to avoid “overshooting” the year when using a 168 h optimisation interval, as well as to
mitigate any potential impacts of the end of the year on the results.

3. Results

In order to demonstrate that the Backbone energy system modelling framework can
capture the essence of simplified building-level MPC, simulations were performed both
using constant and time-varying hourly spot electricity prices for the years 2015–2022 as the
control signal. Multiple recent years were simulated in order to examine the fluctuations in
cost savings between years. The simulations using the constant electricity prices served as
a baseline to compare the spot price simulations against, allowing us to ensure the MPC
behaved logically with the given objective. The main results are presented in Section 3.1,
while Section 3.2 presents further results with longer optimisation intervals and horizons
in order to analyse their impact on the main results.

Electricity spot market prices were obtained from ENTSO-E [41], but in order to arrive
at more realistic consumer prices, electricity taxes of 22.53 €/MWh for Finnish residential
consumers [42] and an assumed profit margin of 2.40 €/MWh were included. For the
baseline simulations, yearly average prices were used as the control signal in the objective
function, but the final cost values were calculated using the resulting hourly electricity
consumption and the hourly spot market prices in order to keep the costs comparable.

Perfect information about future electricity prices and weather conditions were as-
sumed, regardless of the used optimisation horizon. While Backbone could solve rolling
horizon optimisation with a single forecast or even stochastic forecasts, these were omitted
for simplicity and to keep the focus on model performance. All of the simulations were
performed on a laptop with an 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz (4 cores)
processor and 32 GB of RAM, using Cbc [43] to solve the rolling horizon optimisation
problems generated by Backbone.

3.1. MPC Cost Savings

The main MPC simulations employed 12 h rolling horizon optimisation solved every
hour, representing a horizon for which the prices are always known in current day-ahead
markets. Figure 5 presents an overview of the MPC behaviour for the year 2022 when
provided with both constant and hourly spot electricity prices as the control signal. As seen
in Figure 5a, the MPC had no incentive to utilise the available flexibility given constant
electricity prices, thus expending the least amount of effort to maintain permitted node
temperatures. Essentially, the MPC behaved as intended, enabling its use as the baseline
for the spot electricity price simulations. However, it is worth noting that this baseline is
noticeably more energy efficient than what more traditional control schemes could achieve.
Furthermore, the baseline can be calculated in this manner only thanks to the simplifying
assumption of a fixed SPF for the G2WHP systems. Otherwise, Backbone would exploit the
flexibility in heating and cooling demand to shift heat pump consumption towards hours
with better coefficients of performance, making the baseline unreasonable for the intended
comparisons. Meanwhile, Figure 5b using spot electricity prices shows the MPC taking
advantage of the available flexibility, as the DHW tank and interior air node temperatures
can be seen to vary throughout the year. The full-year results are only presented for
the detached house, as there is little visible difference in the overall behaviour of the
apartment block.
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Figure 5. An overview of the full-year detached house simulation results using constant (a) and spot
(b) electricity price control signals for the year 2022. With constant electricity prices (a), the MPC
has no incentive to utilise the available flexibility and focuses on simply maintaining acceptable
temperatures throughout the year. The constant price simulation in (a) is used as the baseline for
comparing the savings achieved by the spot price simulation in (b).

Figure 6 presents a more detailed view of the MPC operation of the spot electricity price
simulations during one week in February 2022. The DHW tank can be seen charging mostly
during the cheaper hours of the night, with some extra heating during comparatively cheap
hours during the day as well. Since both buildings had the same typical DHW demand
profile, the DHW tanks were utilised in near-identical manner, which can also be observed
for the full-year-duration curve presented in Figure 7b. On the other hand, the space heating
system can be seen overheating the interior air only before sharp increases in electricity
prices. Curiously, comparing the space heating system operation for DH and AB in Figure 6,
the DH can be seen to utilise its flexibility slightly more often. Figure 7a similarly shows
a larger difference between the interior air node temperature of the DH compared to the
AB throughout the year, corroborating the previous observation. Interestingly, the AB
also utilised its space cooling flexibility enough to reduce the number of high-temperature
hours inside the building.
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Table 4 presents a summary of the key results from the simulations, focusing on
comparing the performance of the spot electricity price-optimised MPC against the baseline.
The total yearly heating and cooling costs ranged between 417 and 1477 € for the DH and
between 4049 and 14,252 € for the AB depending on the modelled year, with yearly savings
ranging between 17 and 269 € (3.1–15.4%) and 196 and 3020 € (3.6–17.5%) for the DH and
AB, respectively. However, the yearly energy consumption compared to the baseline was
slightly increased by around 1.1–3.0% for the DH and around 1.3–2.8% for the AB due to
the additional heat losses caused by utilising the heat storage capacity in the building. The
DHW tank was found to be responsible for the majority of the cost savings, ranging from
70.4 to 83.4% and 74.1 to 88.0% of the savings for the DH and AB, respectively, depending
on the simulated year.

Figure 6. Example spot price optimisation results for week 7 in 2022 for the DH (a) and AB (b),
respectively. The domestic hot water tank and interior air and furniture node temperatures are
charged when electricity prices are low to reduce electricity consumption during more expensive
hours, reducing costs.

The yearly fluctuations in the DHW share of savings were at least partially due to
the yearly variations in space heating demand presented in Tables 5 and 6, driven by the
heating degree days (HDD), as shown in Figure 8. During colder years with more HDDs,
the space heating demand increases, which in turn seemed to allow more flexibility from
the space heating system. Meanwhile, the flexibility available from the DHW demand was
essentially identical between the years, resulting in the DHW share of savings fluctuating
between the years. Fluctuating electricity prices also play a part in determining the DHW
share of savings, but due to the complex dependencies between electricity prices, weather
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conditions, and the properties of space and water heating flexibility, their impacts are
extremely difficult to analyse.

Figure 7. Duration curves for interior air and furniture temperature (a) and domestic hot water tank
temperature (b) in 2022. Both AB and DH can be seen to have higher indoor air and DHW tank
temperatures throughout most of the year with spot prices, as heat is stored into the building during
cheaper hours. Note that in (b), the AB constant prices overlap with the DH constant prices, as neither
had any incentive to charge the DHW tank temperature in the constant price baseline.

Table 4. Key yearly results for 2015–2022, hourly optimisation interval, and 12 h horizon.

Detached house (DH) 2015 2016 2017 2018 2019 2020 2021 2022

Baseline consumption [kWh] 8775 9782 9451 9732 9353 8518 9988 9418
MPC consumption [kWh] 8901 9902 9552 9836 9478 8691 10,188 9699

— Increase [kWh] 126 120 101 104 125 173 200 280
— Relative increase [%] 1.4 1.2 1.1 1.1 1.3 2.0 2.0 3.0

Baseline cost [€] 494 581 553 700 666 464 1106 1746
MPC cost [€] 462 557 536 678 638 417 997 1477
— Savings [€] 32 24 17 22 28 47 109 269

— Relative savings [%] 6.6 4.0 3.1 3.2 4.1 10.1 9.9 15.4
— DHW share of savings [%] 83.4 75.4 71.6 70.4 76.6 81.6 75.9 83.4

Apartment block (AB)

Baseline consumption [kWh] 84,814 94,639 90,863 94,270 90,174 82,618 95,968 90,281
MPC consumption [kWh] 86,332 96,055 92,101 95,459 91,655 84,478 97,919 92,772

— Increase [kWh] 1517 1416 1238 1189 1481 1859 1951 2491
— Relative increase [%] 1.8 1.5 1.4 1.3 1.6 2.3 2.0 2.8

Baseline cost [€] 4804 5648 5349 6827 6454 4568 10,709 17,272
MPC cost [€] 4433 5381 5153 6578 6137 4049 9462 14,252
— Savings [€] 371 267 196 249 317 519 1247 3020

— Relative savings [%] 7.7 4.7 3.7 3.6 4.9 11.4 11.6 17.5
— DHW share of savings [%] 86 78.7 74.8 74.1 78.8 87.5 78.5 88.0
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Table 5. Detailed yearly results per m2 for the detached house (DH).

Consumption [kWh/m2] 2015 2016 2017 2018 2019 2020 2021 2022

Heating Baseline 32.05 39.41 37.06 38.85 36.18 30.07 40.75 36.62
MPC 31.43 38.78 36.46 38.31 35.54 29.49 40.28 36.38

Cooling Baseline 0.31 0.40 0.26 0.61 0.46 0.41 0.56 0.50
MPC 0.32 0.42 0.27 0.62 0.47 0.43 0.58 0.54

DHW Baseline 32.38 32.35 32.39 32.34 32.36 32.36 32.37 32.36
MPC 33.91 33.85 33.73 33.62 33.90 34.19 34.29 34.63

Costs [€/m2]

Heating Baseline 1.78 2.34 2.13 2.73 2.56 1.57 4.69 6.29
MPC 1.74 2.30 2.10 2.68 2.51 1.50 4.50 5.97

Cooling Baseline 0.02 0.02 0.02 0.05 0.03 0.03 0.06 0.13
MPC 0.02 0.03 0.02 0.05 0.03 0.03 0.06 0.13

DHW Baseline 1.84 1.92 1.93 2.38 2.31 1.83 3.41 6.45
MPC 1.64 1.79 1.84 2.27 2.16 1.54 2.80 4.80

Table 6. Detailed yearly results per m2 for the apartment block (AB).

Consumption [kWh/m2] 2015 2016 2017 2018 2019 2020 2021 2022

Heating Baseline 20.09 26.11 23.88 25.71 23.29 18.64 26.81 23.31
MPC 19.51 25.51 23.34 25.18 22.68 17.98 26.11 22.56

Cooling Baseline 0.34 0.44 0.29 0.62 0.47 0.43 0.54 0.50
MPC 0.36 0.46 0.30 0.63 0.49 0.45 0.56 0.55

DHW Baseline 32.31 32.30 32.33 32.29 32.31 32.30 32.32 32.32
MPC 33.81 33.77 33.63 33.54 33.82 34.10 34.22 34.58

Costs [€/m2]

Heating Baseline 1.13 1.57 1.38 1.82 1.67 0.99 3.20 4.16
MPC 1.09 1.53 1.35 1.78 1.62 0.95 3.03 3.95

Cooling Baseline 0.02 0.03 0.02 0.05 0.04 0.03 0.06 0.13
MPC 0.02 0.03 0.02 0.05 0.04 0.03 0.06 0.12

DHW Baseline 1.84 1.92 1.93 2.38 2.31 1.83 3.41 6.45
MPC 1.64 1.79 1.84 2.26 2.16 1.54 2.80 4.80

0.7

0.75

0.8

0.85

0.9

2900

3100

3300

3500

3700

3900

2015 2016 2017 2018 2019 2020 2021 2022

D
H

W
 s

h
ar

e 
o

f 
sa

vi
n

gs
 (

So
S)

H
ea
�

n
g 

d
eg

re
e 

d
ay

s 
(H

D
D

)

Hea�ng degree days and DHW savings

Helsinki HDD DH DHW SoS AB DHW SoS

Figure 8. Heating degree days (HDD) in Helsinki [44] compared to the domestic hot water (DHW)
share of savings (SoS).



Buildings 2023, 13, 3089 14 of 19

3.2. Impact of Forecast Horizon

Since the results in Section 3.1 used a rather conservative forecast horizon length of 12 h,
impacts of increasing it were analysed a bit further. Table 7 presents the relative increase
in the achieved cost savings compared to the hourly 12 h horizon cost-optimised MPC
with respect to varying the optimisation interval and horizon. Increasing the optimisation
horizon to 24 h resulted in a 0.1–1.3% and 0.2–4.6% improvement in yearly savings for
the DH and AB, respectively, while increasing it further to 36 h resulted in corresponding
0.1–1.7% and 0.2–7.3% improvements, depending on the simulated year. Even when
using a horizon of 8760 h, essentially optimising the full year at one go with perfect
information, savings could only be improved by 0.2–3.0% for the DH and by 0.9–9.8% for
the AB. Furthermore, using an optimisation horizon of 336 h achieved essentially identical
performance, indicating that the buildings either could not effectively store heat for longer
than two weeks at most, or that the MPC rarely saw value in such long-term storage.
Ultimately, considering that the most yearly savings for the DH and AB were able to
achieve were 269 € and 3020 € in 2022, respectively, even the 3.0% and 9.8% increases are
not overly significant. It is also worth noting that, in reality, uncertainty in future electricity
prices and weather conditions would reduce these additional savings even further.

Table 7. Increases in yearly savings by optimisation interval and horizon relative to the hourly 12 h
horizon results presented in Table 4.

Detached House (DH) Apartment Block (AB)
Interval [h] 1 1 168 8736 Interval [h] 1 1 168 8736
Horizon [h] 24 36 336 8760 Horizon [h] 24 36 336 8760

2022 [%] 1.3 1.7 2.9 3.0 2022 [%] 4.6 7.3 9.8 9.8
2021 [%] 0.8 1.2 2.1 2.1 2021 [%] 3.6 5.9 8.4 8.4
2020 [%] 0.9 1.0 1.7 1.7 2020 [%] 2.7 4.4 6.3 6.5
2019 [%] 0.4 0.4 0.5 0.5 2019 [%] 0.6 0.7 1.5 1.5
2018 [%] 0.2 0.2 0.3 0.3 2018 [%] 0.4 0.6 1.5 1.5
2017 [%] 0.1 0.1 0.2 0.2 2017 [%] 0.2 0.2 0.9 0.9
2016 [%] 0.3 0.3 0.5 0.5 2016 [%] 0.5 0.9 2.2 2.2
2015 [%] 0.6 0.6 0.8 0.8 2015 [%] 0.7 1.1 2.6 2.6

The execution time for the results presented in Table 4 using an hourly 12 h rolling
horizon optimisation was around 23 min regardless of the year, with each solve taking less
than a second on average. Similarly, for the four optimisation interval and horizon settings
presented in Table 7, the execution times from left to right were roughly 24 min, 25 min, 25 s,
and 50 s. In principle, Backbone could thus be used for real-time high-level economic MPC,
although the presented simplified model lacks the necessary accuracy for actual control
applications. Furthermore, while the speed of the full-year simulations could be improved
by increasing the optimisation interval, solving optimal control only once a week or year is
only possible with perfect information.

4. Discussion

The purpose of this paper was to demonstrate that the large-scale energy system
model Backbone captures the essence of simple building-level MPC, facilitating studying
the impacts of such MPC on the energy-system scale. Overall, the building-level MPC
implemented using the Backbone energy system modelling framework behaved rationally.
Given hourly spot electricity price as the control signal, the MPC could be seen to exploit
the available flexibility throughout the year in Figure 5, and consumption was observed
shifting to hours of cheaper electricity in Figure 6.

In order to ensure the reliability of the desired behaviour, simulations were performed
for years between 2015 and 2022, with the results presented in Table 4. The observed relative
cost savings compared to the chosen baseline agree with the existing literature [11,45], again
lending credence to the applicability of Backbone for capturing impacts of building-level
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MPC operations. Furthermore, the increasing volatility of electricity prices in the recent
years resulted in increased cost savings from flexibility.

Compared to the DH, the AB achieved slightly better yearly cost savings, likely due to
its larger DHW tank. The DHW tank was found to be responsible for roughly three-quarters
of the cost savings, despite accounting for only slightly more than half of the total yearly
electricity demand as seen in Tables 5 and 6. The duration curves in Figure 7 illustrate that
space heating and cooling flexibility was employed on relatively few hours when compared
to the DHW tank due to not being economical. Calculating crude estimates for the flexibility
of the interior air and DHW tank nodes by multiplying their thermal masses with their
permitted temperature ranges suggests that the DHW should account for around 82% of the
available flexibility in both buildings, around the same order of magnitude as the achieved
savings. While there is considerable thermal mass contained in the structure nodes, their
contribution to the space heating flexibility in this case seems minimal. However, this
could potentially be improved by using, e.g., underfloor heating, where heat can be more
effectively stored in the structural mass of the building. Regardless, the above discussion is
highly dependent on the assumed DHW tank sizing and technical properties, and more
detailed models for the DHW tank and space heating are recommended in order to properly
compare their flexibility.

Curiously, the space heating systems achieved larger shares of the generated savings
for the DH than the AB, despite AB being more massive and energy efficient as evidenced
by Tables 1, 2, 5 and 6. Similarly, Figure 8 indicates that the space heating systems achieved
a larger share of the yearly savings during colder years with more heating demand, despite
the increased heat losses from utilising the headroom in the indoor air temperature. It
would seem that even though improved energy efficiency should allow for more efficient
heat storage for the building interior, the accompanying reduction in the volume of shifted
heating demand reduces the total generated savings compared to the DHW tank. However,
this is again dependent on the technical properties of the modelled heating systems, and
far-reaching conclusions should be left up to future research using more detailed building
simulation models.

For practical MPC of buildings, the models used need to be able to run as often as there
are meaningful updates to the input data. In the NordPool power exchange for example,
the market is cleared once a day between 12:00 and 13:00 CET, determining the area prices
for the next day. As a result, depending on the time of day, an MPC has anywhere between
12 and 36 h of known future electricity prices. However, while the electricity prices might
update only once every 24 h, ambient conditions and occupancy in the building in question
are in a constant flux, requiring more frequent evaluation of the predicted optimal control.
The results using different optimisation intervals and horizons presented in Table 7 reflect
this fact, with the results using an hourly interval simulating as close to real-time operation
as possible with the used hourly time series data.

Looking at the results presented in Table 7, Backbone was able to achieve greater
savings when the length of the optimisation horizon was increased. The magnitude of the
improvements for the AB in particular were somewhat surprising in 2020–2022, although
perfect information was used for simplicity. Typically, the existing literature on building-
level economic MPC tends to focus on horizons between 12 and 36 h as determined by
existing electricity market structures [10,46], but for buildings with large DHW tanks and
considerable thermal mass, it seems that such horizons might not be sufficient for capturing
all the benefits of the inherent thermal storage capacity. That said, the additional savings
achieved with horizons beyond 36 h were practically negligible. Furthermore, in reality,
as the length of the optimisation horizon increases, it becomes increasingly difficult to
obtain good quality forecasts on future electricity prices, weather conditions, and occupant
behaviour. Without good quality forecasts, the MPC risks making mistakes, reducing the
amount of achieved savings. While employing either robust or stochastic optimisation
could help mitigate the forecast-related risks, these methods also impact the expected
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savings. Lastly, increasing the length of the optimisation horizon inevitably also increases
the computational time to solve each interval.

5. Conclusions

Overall, the performance of the building-level MPC implemented using the Backbone
energy system optimisation framework was deemed reasonable. Given no incentive to
utilise the flexibility in the space heating/cooling and water heating demands by providing
the model with constant electricity prices, the model simply took minimum action necessary
to maintain the required indoor air and DHW tank temperatures. On the other hand,
minimising electricity costs against hourly spot prices resulted in utilising the thermal
storage capacity inherent in the DHW tanks and building thermal mass to shift consumption
to hours of cheap electricity. Furthermore, the resulting cost savings around 3.1–17.5%
agree with comparable values found in the literature [11,45] and could be seen to increase
in the recent years of 2020–2022 at least partly due to increased volatility in electricity
prices. The impact of the used forecast horizon was deemed quite insignificant beyond the
maximum day-ahead market horizon of 36 h ahead of time.

The DHW tanks were found responsible for roughly three-quarters of the cost savings,
despite only accounting for slightly over half of the yearly electricity consumption. How-
ever, the simplified modelling approach used in this work could distort the results one way
or the other, and more detailed models should be employed for a conclusive comparison.
Furthermore, the flexibility of space heating could potentially be improved with different
heat distribution systems or by temporarily falling to a set-back temperature if the situation
allows. Regardless, DHW tanks seem capable of offering considerable flexibility with
comparatively low practical complexity.

While this work focused on cost savings on the level of individual buildings for
demonstration and validation purposes, the used approach has been designed primarily
for energy-system scales required to quantify the system-level cost savings related to, e.g.,
variable renewable energy integration and peak load reduction. Based on the presented
results, integrating simplified building MPC into large-scale energy system modelling
frameworks such as Backbone seems to be a reasonable approach for studying the impacts
of widespread building-scale DSM on the operation of the overarching energy system.
However, further research is required to compare building-level energy flexibility on an
equal footing with grid-scale solutions in capacity expansion models.
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Abbreviations
The following abbreviations are used in this manuscript:

AB Apartment block
DH Detached house
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DHW Domestic hot water
DSM Demand-side management
G2WHP Ground-to-water heat pump
HDD Heating degree day
HVAC Heating, ventilation, and air conditioning
MILP Mixed-integer linear programming
MPC Model-predictive control
RC Resistance–capacitance
SPF Seasonal performance factor
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