
Volumetric kombat: a case study on
developing a VR game with Volumetric
Video
Andrew Hogue
Andrei Boiko

This is an Accepted Manuscript version of the following
conference paper

Hogue, A. & Boiko, A. (2024) 'Volumetric kombat: a case
study on developing a VR game with Volumetric Video'. In:
C. Gittens, A. Hogue & A. Cannavò (eds.), 2023 IEEE
Gaming, Entertainment, and Media Conference (GEM).
IEEE, Piscataway, NJ, pp. 1-6, 2023 IEEE Gaming,
Entertainment, and Media Conference, Bridgetown,
Barbados, 19-22 November 2023.
DOI: https://doi.org/10.1109/GEM59776.2023.10390295

© 2024 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/
republishing this material for advertising or promotional
purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

https://creativecommons.org/licenses/by/4.0/

Volumetric Kombat: a Case Study on Developing a
VR Game with Volumetric Video

Andrew Hogue
Game Development & Interactive Media

Ontario Tech University
andrew.hogue@ontariotechu.ca

Andrei Boiko
School of Design and Informatics

Abertay University
a.boiko@abertay.ac.uk

Abstract—This paper presents a case study on the development
of a Virtual Reality (VR) game using Volumetric Video (VV)
for character animation. We delve into the potential of VV,
a technology that fuses video and depth sensor data, which
has progressively matured since its initial introduction in 1995.
Despite its potential to deliver unmatched realism and dynamic
4D sequences, VV applications are predominantly used in non-
interactive scenarios. We explore the barriers to entry such as
high costs associated with large-scale VV capture systems and
the lack of tools optimized for VV in modern game engines.
By actively using VV to develop a VR game, we examine and
overcome these constraints developing a set of tools that address
these challenges. Drawing lessons from past games, we propose an
open-source data processing workflow for future VV games. This
case study provides insights into the opportunities and challenges
of VV in game development and contributes towards making VV
more accessible for creators and researchers.

Index Terms—Volumetric Video, 4D, XR, VR, Games
I. INTRODUCTION

Virtual Reality (VR) and video games strive for realistic
experiences, necessitating the creation of high quality 3D char-
acters indistinguishable from reality. Recent breakthroughs in
character creation, such as Epic Games’ Metahuman pipeline
[1] and Reallusion’s CharacterCreator1, have significantly ad-
vanced the pursuit of visual realism.

Volumetric Video (VV), a fusion of video and depth sensor
data, provides a new medium for video games and interactive
media. Since the initial concept ‘Virtualized Reality’ [2]
was demonstrated in 1995, VV technology has significantly
evolved now promising highly realistic 4D video animations.
However, these large-scale capture systems are often cost-
prohibitive due to expensive infrastructure, maintenance, soft-
ware, and data processing. Affordable solutions, leveraging
RGB-D cameras, such as the Azure Kinect, and modern GPUs
have begun to democratize VV capture, inviting more research
and experimentation providing a new medium for developers.
Despite VV’s potential for rapid performance capture, cur-
rent applications lean heavily towards a traditional “video”
playback model limiting interactivity. One such application
is historical and cultural re-enactments [3], where visual
accuracy takes precedence.

Addressing this gap, we investigate VV’s limitations by
developing a VR game using VV as the main technology
for character animation. We aim to identify key challenges in
toolsets and data workflows, and develop mitigation strategies.
Drawing lessons from vintage games, we propose an open-

1https://www.reallusion.com/character-creator

source data processing workflow for future VV games. We
explore the implications of VV within modern game engines
that are not inherently optimized for playback of animations
based on 3D mesh sequences, paving the way for more
immersive interactive gaming experiences.

II. CURRENT STATE OF VOLUMETRIC VIDEO
Volumetric video (VV). Staying true to its name, VV

is essentially a ‘video’ – with each frame comprised of a
textured 3D model – situated in a 3D space retaining all
of the advantages (and limitations) of ‘video’ as a medium.
Commercially available VV systems range from the high-
quality Studio Level VV solutions (Figure 2(a)) – built upon
multi-view stereo algorithms requiring 50-100+ cameras –
to lower-quality Indie-Level VV solutions (Figure 2(b-d))–
leveraging multiple RGB-D cameras. Recently, Livescan3D
[4] was shown to be a good base for volumetric scene capture
(albeit point clouds only) [5], however its toolset is not yet
complete enough to use in production.

Studio Level VV solutions include Metastage, Holosys by
4Dviews, 8i, Yoom, Intel Studios (defunct), Microsoft Mixed
Reality Studios (defunct). While these systems generally have
the highest quality output, they also have the highest cost of
all systems creating a significant barrier for artists, indie-game
developers, and researchers interested in experimenting in this
space.

Indie-Level VV (RGB-D) capture systems rely on either the
Microsoft Azure Kinect or Intel Depthsense cameras. Kinect-
based systems can operate up to 10 synchronized camera
streams (Depthkit Studio, Soar Capture Suite) and Depthsense
systems have been shown to work with upwards of 24 cameras
(Evercoast) with specialized hardware for synchronization.
While the output quality is lower than Studio-Level VV, the
hardware infrastructure costs for these systems are much lower
generally. However, due to the scarcity of freely available
software solutions, commercial multi-view RGB-D software
comes at a premium cost. This results in a similar barrier to
entry as Studio-Level VV. However it is possible to experiment
with single-camera solutions affordably to hone the design of
an experience in advance reducing future monthly software
fees.

Machine Learning approaches such as [6]–[8] are showing
promise in creating photorealistic dynamic avatars from single
view video streams. Volu (by Volograms) is the current leader
in this space and is positioning itself as a software-as-a-service
whereby you pay for the data processing that you use and short

Fig. 1: Our Volumetric Video to Game Engine Workflow: (a) Left-right: Single frame capture (SCS) textured mesh (85k tris),
wireframe, texture with poor uv-layout, (b) results from our toolset, left to right: textured mesh (4k tris), remeshed wireframe,
improved UV-layout, dynamic boolean operation example, volume of interest keyframe, Unreal gameplay asset.

sequences (5s) are currently free. This is an economical way
for interactive media developers to experiment with Volumetric
Video.

Proprietary Software Limitations. The largest issue in
the volumetric video space currently is the lack of afford-
able solutions for manipulating/editing captured sequences.
Commercial systems use proprietary formats resulting in data
usable only with proprietary solutions (or ones that have
developed or licensed a decoder for these formats such as
HoloEdit by Arcturus Studios2). While the Volumetric Format
Association is leading an effort to create standards for VV,
these standards and tools have yet to materialize. Standardized
graphics file interchange formats such as FBX, Alembic and
GLTF do not have the out-of-the-box support of VV mesh
sequences without resorting to brittle workarounds. Many
existing systems have the ability to export Mesh sequences
(albeit slighly lower quality) than their proprietary format.
To ensure our workflow is capture-system agnostic, we use
textured Mesh sequences where each frame consists of an
standard mesh-data frame (.OBJ, .mtl, .jpg) since all game
engines and modeling/animation software can import these.
We believe all VV systems should provide, at a minimum,
mesh sequence export.

III. MORTAL KOMBAT AS INSPIRATION
Released in 1992 by Midway, Mortal Kombat (MK) pio-

neered the fighting game genre introducing a unique fusion of
digital characters and hand-drawn graphics [9]. Limited by the
computing power at the time MK was perhaps the first major
title to feature realistic looking controllable characters. Their
groundbreaking approach to asset creation directed costumed
live actors to perform each of the necessary actions (e.g. attack,
defend, step forward, etc) which were recorded, digitized
and post-processed by hand to create a set of 2D sprite
sheets per character. The use of digitized video allowed the
game to feature realistic characters and by carefully choosing
which frames to use and subsequently augment with manually
rotoscoped animation, Mortal Kombat was born. This brought
a level of visual authenticity and fluidity to the characters’
movements, setting Mortal Kombat apart from its contem-
poraries with a sense of realism and a unique aesthetic that
captured players’ attention.

2https://arcturus.studio/holoedit

From Mortal Kombat to Volumetric Video
Mortal Kombat was an early version of performance capture

where costumed actor performances were transformed into
usable game assets. In this context, each asset consisted of a
fundamental data representation (i.e. 2D sprite). These sprites
were stored consecutively as frames creating an animation
clip corresponding to a specific action state (e.g. running,
jumping, or attacking). Essentially, animation can be defined
as the continuous playback of one or more of these clips. User
input (such as pressing a button) can initiate or interrupt the
animation at defined moments (or at any time depending on
the action required) to switch to a new state facilitating player
agency and interactivity. This conceptual “playback” model for
animation aligns well with Volumetric Video (VV) at its core,
albeit with a shift in the core data representation. Instead of re-
lying on 2D sprite images, VV employs 3D models as the core
representation per frame. While additional considerations arise
depending on the specific VV capture system, fundamentally
VV can be considered as an independent textured 3D model
per frame and playback of these frames results in an animation
clip. Another consideration for a traditional 2D game is the
metadata required. Types of metadata that are useful for
2D fighting games are the collision boundaries necessary to
determine whether the character was hit (hit-boxes) or hurt
(hurt-boxes). These regions of interest (ROI) at their simplest
are box primitives with an associated label. During gameplay,
when objects collide with an ROI, the label determines the
next action/behaviour (i.e. did the character get hit, or did they
successfully hit another character). We can define 3D Volumes
of Interest (VOI) in a similar manner for our VV animations.
These can be static or dynamic (keyframed) and are stored
separately from each animation.

IV. CASE STUDY: DEVELOPING VOLUMETRIC KOMBAT
Goals. We had three main goals of our case study, namely:

G1: Develop a VR game using VV as the main asset technology
G2: Determine limitations of existing toolsets using VV
G3: Use affordable/open-source solutions where possible

A. Development Platform
Our VR platform was the Meta Quest Pro as at the time

of writing this was the latest hardware model on the most
popular VR development platform. We chose Unreal Engine
5 as the game engine for this project as it was familiar
and allowed rapid prototyping of the animation system and
gameplay mechanics using visual scripting tools.

Fig. 2: Examples of Commercially available Volumetric Video Systems, Studio Level:(a) Metastage, Indie-Level: (b) Evercoast,
(c) Depthkit Studio, (d) Our volumetric video capture system (Soar Capture Suite)

B. Intended Audience and Constraints
This work is aimed at indie/experimental game developers,

experimental artists, researchers, and students. This audience
introduces specific limitations, encompassing time, expertise,
and financial factors. For example, Independent game de-
velopers and artists often have limited financial resources
due to restricted access to venture capital funding and a
scarcity of arts grants. These constraints strongly influenced
our project’s approach, shaping our decisions regarding the
tools and methods employed.
C. Gameplay

Inspired by vintage games such as Mortal Kombat and Mike
Tyson’s Punch Out, we chose the fighting genre and imagined
what this would be like in VR using VV assets. The game
includes standard sparring gameplay mechanics resulting in
the following moveset:
Generic: Idle, KO, Victory, Hit-High, Hit-Low
Attacks: Two-Punch, Knee, Block (High,Low)
Mechanics: The player and the AI opponent (NPC) are
stationary in the middle of the virtual space. Using motion
controllers, the player may punch the NPC or block their
attacks. The NPC will use a random combination of punches
and knee attacks and will have a chance to block the player
attacks. For simplicity both the player and the opponent have
10 energy points and each unblocked attack drains 1 energy
point from the opponent. When all energy is lost, the player
or the NPC are knocked out and the game ends; the last one
standing wins.
D. Development Workflow

Our development workflow was split into the following
stages as shown in Figure 3 and detailed below.
Capture: Actors are provided with a script and direction to
perform a set of actions. Each action is recorded indepen-
dently. The start and end pose of the actor should be the
IDLE pose for each action to simplify the transition between
animation sequences.
Export: Data is exported from the capture application into a
textured mesh sequence (.obj, .mtl, .jpg).
Post-Process: Optionally, process the mesh sequence to filter
noise, retopologize (requiring uv-unwrap and texture bake)
resulting in a final animation clip sequence. Unnecessary
frames are removed (usually at the beginning and the end of
the sequence) to clean up the animation clip.
Animation Tools/Metadata: Additional metadata must be
authored such as the locations of static/dynamic volumes
of interest (VOI), collision volumes, hand locations, head

orientations resulting in a CSV file per sequence containing
VOI data.
Engine: VV clips and metadata is imported into a game engine
and processed semi-automatically to create a VV asset.
E. Capture Technology

The first step was capturing assets. To do so, we utilized
the Soar Capture Suite (SCS) as it was available in our
lab. Our SCS setup employs 7 synchronized Azure Kinect
RGB-D cameras. The cameras are calibrated using a provided
marker configuration and the software fuses the captured data
dynamic VV in real-time. Export options include a proprietary
compressed format (with a Unity-only plugin) or a textured
mesh sequence (OBJ/PNG) per frame and is performed locally
on a PC after capture. Proprietary plugins are not desired
for game development as these plugins assume playback of
a single captured sequence and reduces performance when
switching between VV clips (there is always a delay to change
context for decompression). Multiple clips cannot be used due
to the shared GPU context limiting playback to a single asset
at a time. To get around this limitation, we opted to export
Mesh sequences to reduce the reliance on opaque proprietary
tools, increase flexibility for using these assets, and allow for
the integration into a standard development workflow.
F. The Capture Process

Capturing a sequence with SCS requires you to first perform
a calibration by placing a calibration cube in the scene and
initiating an automatic process (1-2 min). The actor then enters
the scene and recording begins. SCS saves the raw data (30fps
RGB-D data) and the result can be previewed immediately.
Export: The export process from SCS can take some time due
to the UV-unwrapping algorithm used on our PC it takes about
2x the length of the recording with default settings.
G. Post-Processing Workflow

As seen in Figure 1(b), the exported assets exported have
poor topology and a high number of small triangles resulting
in a UV texture that is incoherent. Even with significant
care during capture, small disconnected mesh sections
may appear in the result as noise and should be removed.
Post-processing was done in Blender using our set of custom
python scripts. Blender is free, open-source, has extensive
animation/modeling capabilities, and is highly scriptable using
Python. This enables the use of the many libraries available
for data processing, optimization, and allows future use of
machine learning methods. Figure 3 shows the stages in our
post-processing pipeline in Blender. We found that Blender
does not work easily with mesh sequences, specifically

Fig. 3: Development workflow showing each stage data/function. Blue represents tool stages and green denotes data flow.

with import, retopology, and automating the processing of
sequences of operations.
Import: We tested the available Stop-Motion-OBJ plugin,
but it only loads sequences and cannot modify them easily.
Our scripts let the user define the directory for the original
mesh sequence and each frame is loaded from disk on frame
change events. The user can indicate if the only the processed
results should be viewed/loaded.
Retopology/Remeshing:We found the inexpensive
Quadremesher3 add-on provides superior results to Blenders’
default remesh modifier in most cases. However, the resulting
mesh is not guaranteed to be watertight and may have small
holes and the UVs must then be regenerated.
UV Unwrapping: Blender has two options for unwrapping
that tend to work ’well’ in most cases. Smart-UV projection
attempts to find a planar mapping automatically. Cylindrical
projection maps the mesh vertices to a cylinder with known
planar UVs. We found that if Smart-UV projection fails, the
Cylindrical projection can be used in its place.
Texture Baking: After recomputing the UVs, a new 2k texture
is generated and we start the texture baking process with the
following parameters: Render Engine (Cycles), Device (GPU
Compute), Reflective/Refractive Caustics (OFF), Bake Type
(Diffuse), Contributions (Color), Selected to Active (ON),
Extrusion (0.1m). Once completed, this stage results in a new
texture conforming to the remeshed model.
Volumes of Interest (VOI): To generate important metadata
for gameplay, the user can add VOIs to be used for editing
and keyframe output. A VOI is initialized as a unit bounding
cube and the pose (position/scale/rotation) is keyframed. A
config file saves the initial state of each VOI and users can
select and move the VOI which is auto-keyframed. The user
may save the baked animation to .csv files storing the per
frame pose per VOI. While editing the VOI pose, the selected
VOI remains active as new frames are loaded. We envision
this system allowing developers to easily define dynamic
bounding volumes important for gameplay. For example
(see Figure 1(b) and Figure 4(a)), it may be important to
have a VOI representing the Body, Head, or each Hand/Foot
locations. These can also be used to attach virtual props to
the model frames. The VOI’s can also indicate areas where
the algorithm should improve mesh/texture resolution (e.g.
face).
Boolean Volumes: To remove unwanted areas, the user can

specify a collection of Boolean Volumes to remove from

3https://exoside.com/quadremesher/

the Object. The user can add any object into this collection
and animate them like a VOI. When enabled these objects
are boolean subtracted by automatically adding and applying
a Boolean modifer to the active object with all objects
in the Boolean collection. This allows us to dynamically
remove areas throughout the sequence using any object after
remeshing but before the UV-unwrapping stage. An example
can be seen in Figure 1(b) where a box has been removed
from the mesh.
Automating Processing: We implemented an operator
providing a finite state machine to manage the sequence of
processing stages. We took this approach as Blender does
not include a way to query whether a modal operator has
completed or is still running. We solved this problem by
defining an empty state object to the scene representing the
current processing state. Any modal operator can then query
the name of this state, check whether the data from each
stage has been generated, and update the state as needed.
While not tremendously elegant, it provides a way to process
data effectively and define the various stages/transitions to
process long mesh sequences automatically.
Animation Cleanup: We identify and delete unneeded frames
and execute the animation cleanup script to consolidate
materials as our animation system does not use the default
per-object materials, relying on UE5 dynamic material
instances instead (to for more streamlined customasiation of
the material in-engine). This script removes references to
materials from .obj files, deletes the .mtl files and renames
the files sequentially. The script also stores the renamed files
in sub-directories (“Textures/”, and “Meshes/”) based on the
file type simplifying asset import into Unreal Engine, as
our animation system relies on this directory structure for
animation processing and playback.

H. Game Engine
The animation data is imported into the engine as collections

of static meshes and associated textures, stored in a set of
directories named according to the action state each represents.
The import process is a straightforward drag-and-drop of the
cleaned-up animation directory into Unreal’s Content Browser.

To play VV in UE5, we created a custom VolumetricActor
class responsible for loading, processing, playing and switch-
ing between multiple animation sequences. Using the name of
the directory containg the animation data for a given action,
the developer can specify which animations to load, which
one will play as the default animation and which frame (from
all animations combined) will be used for the actor preview in

Fig. 4: (a) 2D Sprite images from Mortal Kombat (©Midway) (b) Our custom tool panel in Blender for automatic processing
of entire sequences, (c) Animation properties section for an instance of VolumetricActor class in UE5 enabling selection of
animation to be loaded when spawning the actor

Fig. 5: Construction Script flow for Unreal VolumetricActor

editor. These properties can be configured in the editor (Figure
4(c)), or through Blueprint scripts (Figure 5).

The animation system integrated into the VolumetricActor
uses the construction script (Figure 5) to iterate through the
array of animation names (specified in the AnimationsToLoad
property) and load appropriate collections of meshes and
textures from the Asset Registry. Then, using these collections
of assets, the script generates StaticMeshComponents per
mesh and applies a Dynamic Material Instance to it with an
appropriate texture. As it is being processed, each frame is
added to the array of frames and is set to be invisible by default
(the preview frame specified in the Animation Properties is left
visible). A registry of all LoadedAnimations is created using a
Map of AnimationSequence structs. The map uses animation
names (string) as keys and the struct contains start and end
positions (integers) of the animation in the overal collection
of Frames. This map is used in animation playback, allowing
us to select the animation to play using its name.

Playback of the volumetric animations closely resembles
the process of playing Sprite-based animations used in 2D
games. The selected animation is specified using its name
(“CurrentAnimation” variable), and playback is based on the
“tick” event triggered after a specified delay. Each “tick” incre-
ments the current frame value wrapping around to the starting
frame (looping) as needed. The frame value determines which

VV mesh is displayed (static mesh component visibility set
to TRUE) and the previous mesh is hidden (visibility set to
FALSE).

Setting the “Loop” flag to true will continue playing the clip
otherwise it will stop and trigger the custom “Animation Over”
event used to notify any child actors, such as the one used for
game characters, that the animaton has finished playing and
the state of the character should change. For example, when
the character is punched in the face, Hit-High animation is
played and when the “Animation Over” event is detected, the
state reverts to the idle (looping) animation.

V. REVISITING OUR GOALS: DISCUSSION
G1. Develop a VR game using VV as the main asset technol-
ogy: Using indie-level RGB-D VV capture technologies (Soar)
we achieved the goal of creating a simple fighting game demo
that is playable in VR on the Meta Quest Pro.
G2. Determine limitations of existing toolsets using VV: Dur-
ing the development process, we used the most recent freely
available game engine (Unreal 5) and the most widely used
open-source modeling/animation package (Blender). These
toolsets do not have the necessary workflow/tools out of the
box to utilize volumetric video sequences.

Memory usage: Our motion-set consists of 9 actions, 173
total frames resulting in 306MB of animation mesh data
per unique character (Avg 1.7MB/frame for mesh+texture).
Memory consumption remains larger than traditional motion-
capture or key-framed animation, however the potential for
rapidly prototyping realistic actions for non-programmers is
enticing and can inform game design decisions.

Unreal Engine Issues/Limitations: When importing
(OBJ/MTL) meshes exported from Blender, we found that the
material file is incorrectly parsed by Unreal. Notably, when
assigning a texture to the mesh emission parameter, Blender
correctly exports it as “map Ke texturemap.jpg” while Unreal
expects “map Ka texturemap.jpg”. This may be due to the
lack of standards around the emission parameter as the MTL
spec does not specify this at all. A fix for this is to write
a script that fixes the .mtl files for Unreal or remove them
entirely and use an internal system to assign materials, which
has the added benfit of allowing teh develope to manipulate
a single material in-engine that is applied to all animation
frames (which is what we did). Secondly, when importing
OBJ’s Unreal does not automatically re-calculate the normals
per vertex to ensure smooth shading resulting in a faceted flat
shaded model. We include an option to recalculate the normals

for smooth shading of the meshes after remeshing.
Blender Issues/Limitations: Blender can import individual

OBJ models but does not work with mesh sequences by
default. The Stop-Motion-OBJ4 addon adds the ability to
load sequences for viewing but does not allow for editing
of each frame due to the way the add-on caches the data
to optimize viewing. Remeshing is an important part of the
process to improve topology of the VV capture. We used the
QuadRemesher add-on but any add-on can be used to perform
this process. One issue we encountered is that since the initial
input topology was quite poor, the resulting mesh was not
guaranteed to be watertight and some frames contained holes.
Moreover, sometimes the normals were incorrectly computed
resulting in a set of backfacing polygons that needs to be
corrected prior to import into Unreal (otherwise they will
not be drawn). We included a workaround in our toolset that
attempts to fix this but it still occurs in some instances. We also
found that there are significant limitations in how Blender han-
dles automatic UV-unwrapping, specifically using the smart
UV-project operator. The Smart UV project algorithm uses
a provided angular threshold to cut the mesh into sections
that can be mapped to a planar surface. This works well
for simple objects and complex objects with good topology.
We have found that this works well generally but in some
specific instances the algorithm creates significant artifacts
due to the choice of which areas it prioritizes as contiguous
regions. Finally, by default Blender does not compute or export
smoothed normals resulting in a flat shaded output.
G3: Use affordable/open-source solutions where possible:
We used the free and open-source Unreal Engine and Blender
toolsets and developed a set of scripts to empower users to
manipulate VV sequences, generate metadata, and import this
into a game engine effectively. Our scripts automate post-
processing over large numbers of sequences. Remeshing is
performed using an inexpensive add-on QuadRemesher but can
be easily replaced with other remeshers (i.e. InstantMeshes),
we found QuadRemesher provides superior results.

VI. CONCLUSIONS & FUTURE WORK
Our experience with this project revealed several key is-

sues/limitations with current toolsets when working with VV.
First, we found that free or inexpensive tools for manipulating
VV do not readily exist. To address this, we developed a
set of free python scripts for Blender to help us manipulate
and develop a data workflow for processing5. Secondly, we
learned that game engines are not currently well tooled to
support this style of asset. To overcome this, we developed an
animation system in Blueprints (and C++) for UnrealEngine
to support switching models/frames of VV assets, playback,
and changing animations.

Despite our challenges, our work reveals opportunities to
enhance the VV workflow for interactive experiences:
VV Capture tools: There is an opportunity to develop a set of
free and open-source tools for VV capture. Livescan3D pro-

4https://github.com/neverhood311/Stop-motion-OBJ
5Available at https://github.com/BuildingVolumes/volumetricpipeline

vides a method for calibrating RGB-D cameras and provides
point clouds or raw image sequences, but does not produce a
mesh. A complete VV capture tool should be considered top
priority to improve accessibility and remove further barriers
to explore this medium.
Mesh Sequence Processing Tools: Our toolset provides a
starting point for developing a VV workflow with a limited
functionality and can be improved. We believe future work
should include:
Non-Rigid Registration: techniques for tracking deformable
meshes [10] would reduce memory consumption in the re-
sulting mesh sequence.
Face tracking: tracking faces in the sequence may enable
improved VOI tracking and texturing. VOI Tracking: Au-
tomatic tracking of VOI using 3D optical flow techniques.
Users should be able to set the initial VOI (i.e. head) and
automatically track it throughout the sequence.
Auto-rigging: Automatic skeletal rig estimation throughout the
sequence [11] would improve metadata generation.

We believe that the development of such tools will signifi-
cantly advance the field and open up new possibilities for the
use of VV for interactive media and game development.

ACKNOWLEDGMENT
We gratefully acknowledge the support of NSERC Dis-

covery, ERASMUS+, OntarioTech, Abertay University and
Patrick Hung and Ruth Falconer for this collaboration.

REFERENCES
[1] Z. Fang, L. Cai, and G. Wang, “MetaHuman Creator The starting

point of the metaverse,” in 2021 International Symposium on Computer
Technology and Information Science (ISCTIS), Jun. 2021, pp. 154–157.

[2] T. Kanade, P. J. Narayanan, and P. Rander, “Virtualized reality: concepts
and early results,” in Proceedings IEEE Workshop on Representation of
Visual Scenes (In Conjunction with ICCV’95), Jun. 1995, pp. 69–76.

[3] N. O’Dwyer and N. Johnson, “Exploring volumetric video and narrative
through Samuel Beckett’s Play,” International Journal of Performance
Arts and Digital Media, vol. 15, no. 1, pp. 53–69, Jan. 2019.

[4] M. Kowalski, J. Naruniec, and M. Daniluk, “Live Scan3D: A Fast
and Inexpensive 3D Data Acquisition System for Multiple Kinect v2
Sensors,” in Intl. Conf. on 3D Vision, Oct. 2015, pp. 318–325.

[5] A. Hogue, C. Poremba, Veronika Szkudlarek, Nick Fox-Gieg, A.
Quevedo, Colin Orian, and Jakob Anderson, “A Visual Programming
Interface for Experimenting with Volumetric Video,” in IEEE GEM
(Games Entertainment Media), Nov. 2022.

[6] Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges,
“Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via
Self-supervised Scene Decomposition,” in Computer Vision and Pattern
Recognition (CVPR), Jun. 2023.

[7] Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and Michael
J. Black, “ECON: Explicit Clothed humans Obtained from Normals,”
in Proc. IEEE/CVF Conf on Computer Vision and Pattern Recognition
(CVPR), Jun. 2022.

[8] Zhe Li, Zerong Zheng, Hongwen Zhang, Chaonan Ji, and Yebin Liu,
“AvatarCap: Animatable Avatar Conditioned Monocular Human Volu-
metric Capture,” in Euro Conf on Computer Vision (ECCV), Oct. 2022.

[9] D. Church, Mortal Kombat: Games of Death. University of Michigan
Press, Jan. 2022.

[10] A. Bozic, Pablo R. Palafox, M. Zollhöfer, A. Dai, J. Thies, and
M. Nießner, “Neural Non-Rigid Tracking,” in Advances in Neural
Information Processing Systems (NeurIPS), vol. 33. Curran Associates,
Inc., Jun. 2020, pp. 18 727–18 737.

[11] J. Kim, H. Son, J. Bae, Y.-M. Kim, and Y. M. Kim, “Auto-rigging
3D Bipedal Characters in Arbitrary Poses,” in Eurographics. The
Eurographics Association, Jan. 2021.

	Blank Page

