
Springer Nature 2021 LATEX template

EHHR: An Efficient Evolutionary

Hyper-heuristic based Recommender

Framework for Short-text Classifier Selection

Bushra Almas1*, Hasan Mujtaba1 and Kifayat Ullah Khan1

1,2,3*Department of Computer Science, National University of
Computer and Emerging Sciences, Islamabad, Pakistan.

*Corresponding author. E-mail: i141505@nu.edu.pk;
Contributing authors: hasan.mujtaba@nu.edu.pk;

kifayat.alizai@nu.edu.pk;

Abstract

With various machine learning heuristics, it becomes difficult to choose
an appropriate heuristic to classify short-text emerging from various
social media sources in the form of tweets and reviews. The No Free
Lunch theorem asserts that no heuristic applies to all problems indiscrim-
inately. Regardless of their success, the available classifier recommenda-
tion algorithms only deal with numeric data. To cater to these limita-
tions, an umbrella classifier recommender must determine the best heuris-
tic for short-text data. This paper presents an efficient reminisce-enabled
classifier recommender framework to recommend a heuristic for new
short-text data classification. The proposed framework, ”Efficient Evolu-
tionary Hyper-heuristic based Recommender Framework for Short-text
Classifier Selection (EHHR),” reuses the previous solutions to predict
the performance of various heuristics for an unseen problem. The Hybrid
Adaptive Genetic Algorithm (HAGA) in EHHR facilitates dataset-level
feature optimization and performance prediction. HAGA reveals that the
influential features for recommending the best short-text heuristic are
the average entropy, mean length of the word string, adjective variation,
verb variation II, and average hard examples. The experimental results
show that HAGA is 80% more accurate when compared to the standard
Genetic Algorithm (GA). Additionally, EHHR clusters datasets and rank
heuristics cluster-wise. EHHR clusters 9 out of 10 problems correctly.

1

Springer Nature 2021 LATEX template

2 EHHR

Keywords: Machine Learning; Social Media; Hyper-heuristics; Short-text
Classification; Evolutionary Algorithm.

1 Introduction

Recent efforts in machine learning (ML) focus on automation of the heuristic
selection process by incorporating domain independence [1]. The search tech-
niques for selecting heuristics are generalized by making the search process
independent of the considered domain. However, the heuristic approaches and
other search strategies in solving real-world computational search issues are
challenging in freshly-discovered and new instances of the same problem. Such
problems arise from various parameters, algorithm choices, and the absence
of selection criteria [2]. Hyper-heuristics approaches are generic and domain-
independent to search and solve a problem set rather than a single problem.
These approaches target a heuristic search space instead of a solution search
space. These approaches have been extensively researched in timetabling, bin
packing, data mining, and feature selection [3]. However, their application for
classifier selection in the domain of short-text data has not been paid much
attention. Short-text is an important source of data from online platforms
like microblogs, e-commerce systems, and social networks, in the form of com-
ments, tweets, and reviews [4, 5]. It is called short-text as fewer characters
are used to provide what people think, such as a tweet can have a maximum
of 280 characters. Various industries analyze the social media-generated com-
ments and user feedback by using ML approaches to identify problems, elicit
requirements [6], provide interest-based recommendations [7], improve their
products and services for the end users [8, 9].

Varying backgrounds, language usage, and writing styles of social media
users instigate the lexical, syntactic, and semantic (language morphology) per-
plexity of short-text, thus contributing to the diversity of such data [10]. In
addition, since most words appear only once and there are not enough contexts
to clarify the meaning of ambiguous words, short-text experiences severe data
sparsity problems compared to long text [11, 12]. The key problem with short-
text classification is the brevity of the short-text and the sparsity of the feature
space [13]. Various statistical, Machine Learning (ML), and Deep Learning
(DL)-based heuristics have been developed to classify task-specific short-text
data [14–21]. In accordance with the ”No Free Lunch theory [22, 23],” there
is no single heuristic that works best for all short-text classification prob-
lems. Brute force search of the best classifier for such big short-text data is
expensive yet impractical in terms of time and computational resource uti-
lization [24]. Additionally, selecting an acceptable heuristic for addressing a
short-text classification problem is not simple since the problem’s features are
typically not well understood in advance [25]. In this context, how to auto-
matically recommend the best heuristic is a major concern for classifying a

Springer Nature 2021 LATEX template

EHHR 3

short-text problem at hand, especially for non-experts [26, 27]. However, other
existing research focused on classifier recommendations. However, they only
deal with numeric or categorical data [1, 28, 29]. Some of the meta-learning-
based techniques [30, 31] utilize the human expert opinion for recommending
the best classifier on numeric data. Motivated by these concerns, it is inevitable
to determine the best heuristic for classifying a short-text dataset and con-
serving the computational resources, especially for high volume, sparse, and
diverse short-text datasets.

Fig. 1: Handling of classifier selection problem through Hyper-heuristic. Cri is
classifier’s rank, fi are dataset-level features. Pi is the performance of classifier
Ci. Cr3 is the best-predicted classifier for testing the dataset.

This paper aims to develop a hyper-heuristic framework (see Fig.1) to
recommend the best short-text classifier. Fig.1depicts the working of the clas-
sifier recommender. Classifiers from the classifiers pools are executed on the
training datasets to achieve their relative performances and rank and remi-
nisce them. The hyper-heuristic uses dataset-level features of the test dataset
to predict performance and recommend the best classifier based on the rem-
inisced classifier ranking. The framework is intended to make an intelligent
choice of a machine learning classifier less time-consuming by reusing the per-
formances of heuristics on previously solved problems. Equipped with Feature
Extraction Module (FEM), Heuristic Evaluation Module (HEM), Evolutionary
Module (EM), and Memory Module (MM), the proposed Evolutionary Hyper-
heuristic based Recommender Framework (EHHR) saves and reminisces the
performance of different classifiers for various datasets. The EHHR employs an
evolutionary algorithm called Hybrid Adaptive Genetic Algorithm (HAGA),
which serves as a hyper-heuristic. HAGA contributes to determining the most

Springer Nature 2021 LATEX template

4 EHHR

influential dataset-level features and performance prediction. Based on the pre-
dicted performance, the ranks of classifiers are determined through a clustering
algorithm.

1.1 Contributions of the Study

The contribution of this study is three-fold. It recommends the best-suited
classifier for short-text data from a heuristic space (i.e., a pool of classifiers).
It also determines the best dataset-level features playing an important role in
choosing the best classifier. It minimizes the need for a stochastic search of
classifiers for a dataset and automates the choice of the best classifier. The
following are the major contributions of this paper.

• A novel Hyper-Heuristic Classifier Recommender (EHHR) to automatically
recommend the best heuristic for the short-text classification is proposed.

• A Hybrid Adaptive Genetic Algorithm (HAGA) for determining the most
influential dataset-level features in EHHR, is proposed.

• A new framework is presented to investigate the performance of heuristics
for the large volume, varying sized, balanced, and imbalanced data.

• A reminisce-enabled model has been devised to minimize the need for the
stochastic search for the most suitable classifier for an unseen dataset.

The rest of the paper is organized as follows. The related Work Section presents
the related work to highlight the gaps in the previous studies. The modules and
operations of the proposed technique have been discussed in detail in Section
Proposed Technique. In the Section Materials and Methods, we provide the
details of the experimental setup. The results and Discussion section contains
detailed results and analysis. Section Conclusion concludes the study.

2 Related Work

Heuristic techniques have been widely applied to perform data classification
tasks [32, 33]. A heuristic for one dataset may not be equally effective for
another dataset [34]. Moreover, they are expensive due to their problem-
specific nature [2] and lose their generality due to customization and parameter
tuning. Different studies focused on recommending an appropriate heuristic
(i.e., an appropriate classifier), answered in the context of the numeric form of
data, as discussed ahead.

Pise and Kulkarni [35] used simple, information-theoretic, and statistical
meta-features for algorithm selection. To recommend the best algorithm, the
suggested technique used the K-Nearest Neighbor (KNN) algorithm and the
classifier’s accuracy as the recommendation measure. The experiment indicates
that calculated accuracies match actual accuracies for over 90% of the bench-
mark datasets used. However, the approach suffers from computation overload
due to the inefficient selection of meta-features, which results in calculating
all meta-features. The classifier selection for real-time intrusion detection [36]
necessitates a tedious re-evaluation process resulting from changing classifiers.

Springer Nature 2021 LATEX template

EHHR 5

The study [28] uses real-coding evolutionary to present Automatic Machine
Learning (Auto-ML) based solution for automatically classifier recommenda-
tion. Statistical and structural information-based method of feature vector
generation using KNN [37] only works with binary data sets and cannot
discriminate between the target and other characteristics. Furthermore, cal-
culating itemset frequency for high-dimensional data takes more time and
space. Wang’s classifier recommendation [38] technique is based on extracting
attribute correlations from the data set’s structure but results in high compu-
tational costs for itemset generation. Link prediction through DAR (Data and
Algorithm Relationship) Network [39] suffers from the choice of optimal value
for k (which remained fixed for all datasets). CB-MLR [31] and AMD [30]
need human experts’ involvement in defining application-specific goals and for
empirical evaluation of classifiers’ performance based on quality meta-metrics,
respectively.

The EML (i.e., Ensemble of ML-KNN) is a two-layer-recommendation
technique that uses diverse meta-features and KNN to measure similarity
between predicted and archived problems. However, setting an appropriate K
value requires expert knowledge [26]. Li et al. [29] proposed a meta-learning-
based technique for solving engineering problems in manufacturing systems.
The framework proposed dataset, classifier algorithm, and recommendation
modules to suggest the several algorithms for a dataset. However, the tech-
nique heavily relied on an accurate selection of hit rate and accuracy to avoid
misleading recommendations of an algorithm. Corrales et al. [40] proposed an
algorithm recommender for regression and classification problems using case-
based reasoning. The limitation of the system lies in that the efficiency declines
when there is an increase in search time for similar solved cases.

To make an appropriate classifier recommendation, an important aspect
is to achieve it through domain independence of the problem, which is
mainly realized using hyper-heuristic approaches. Evolutionary techniques
have demonstrated their significance as hyper-heuristic techniques for prob-
lem areas such as bin-packing [41], image segmentation [42], timetabling [43].
Hyper-heuristic (HH) has been used in a variety of fields, especially with classi-
fication problems [44]. The major issue with these approaches is that they only
apply to specific problems and do not store and reuse the previously solved
problems to guide the search of heuristics for the unseen instances. To overcome
this issue, the Deja Vu framework maintains an Acquired Knowledge Mod-
ule(AKM) to store problem definitions, fitness functions, and best-performing
heuristics for each problem [1]. The framework solves the new problem based
on similarity to an existing problem. Though the framework has been tested
with various classification problems, it does not apply to text categorization
problems due to text data’s unstructured nature. Hence, the requirement of a
hyper-heuristic to tackle the classifier recommendation of short-text for both
balanced, imbalanced, and voluminous datasets arises.

The above-mentioned techniques work with numeric and categorical data
(i.e., see appendix A). The meta-learning techniques lack the optimization

Springer Nature 2021 LATEX template

6 EHHR

of features, resulting in computational and memory overhead. Furthermore,
some of them introduce a high reliance on human expertise. To the best of our
knowledge, no classifier recommendation has been presented to date to cater
to the needs of short-text data.

3 Proposed Technique

The proposed Evolutionary Hyper-Heuristic Classifier Recommender (EHHR)
framework intends to determine the ranking of the various heuristics based on
their performance in classifying short-text data. This framework comprises four
segments: Feature Extraction Module (FEM), Heuristic Evaluation Module,
Evolutionary Module, and Memory Module. These segments contain dataset
features, a list of heuristics with their parameter settings, and heuristics’ per-
formance for each dataset. Figure 2 shows the functioning and interaction
of the modules of the EHHR framework. Data originating from various data
sources is preprocessed and then input to the FEM, which calculates the 18
features for each dataset. The heuristic evaluation module of the EHHR frame-
work computes the performance of multiple heuristics for each dataset. The
heuristic space comprises a set of classifiers which are in the Classifier Pool
in Figure1. The evolutionary module of EHHR optimizes and predicts the
most influential dataset features and the average classifier performance. The
heuristic performances help to group datasets into clusters and predict their
ranking. The memory module stores the clusters’ information and heuristics’
ranking along with their best parameter values. This information is reminisced
to recommend the best classifier for a new problem.

Fig. 2: The proposed framework of EHHR for short-text data.

Springer Nature 2021 LATEX template

EHHR 7

Algorithm 1 The proposed FEM and Heuristic Evaluation Module Algo-
rithm.
input: N : set of dataset, H: set of LLH, D set of features
Result: Feature values for datasets, Average macro-F1 value for each dataset

1 begin
2 for each n in N do
3 for each dϵD do
4 Calculate d for n
5 end
6 Record all d values for n in (N ×D) matrix

7 end
8 for each n in N do
9 for each h in H do

10 Solve n using h and record macro− F1nh
11 end
12 Compute AveragemacroF1 by averaging all macro− F1nh
13 end

14 end

3.1 Feature Extraction Module (FEM)

FEM facilitates the computation of the linguistic complexity of a dataset. It
computes different dataset-level features for the problem domain N to com-
pute the linguistic complexity. These features belong to lexical, syntactic, or
word length categories (reference Table 1). Lexical measures help the frame-
work evaluate the lexicon’s worth in text and use lexical sophistication and
lexical variation measures. Syntactic measures are computed through syntac-
tic complexity indices, and the readability scores quantify the complexity of
short-text in terms of reading ease. It produces a feature set matrix (NxD
dimensions) as shown in algorithm 1, where D is dataset-level features, and N
represents a dataset in the problem space. Explanation of the features, taken
from the literature [10, 45–50] is provided in appendix B with respect to types
and token.

Table 1: Features for datasets linguistic complexity analysis in FEM.

Category Reference Feature

Syntactic complexity indices [10] Mean length of Sentence (MLS)
Lexical sophistication [48] LS1

LS2
Lexical variation [48] Lexical word variation

Verb variation-II (VV-2)
Noun variation (NV)
Adjective Variation (AdjV)
Type–token ratio (TTR)
Uber index

Lexical Diversity [46] Measure of Textual Lexical Diversity (MTLD)
Lexical richness [49] Hapax Richness
Lexical readability [45] Flesch-kincaid readability score

Flesch’s reading ease score
Spelling mistakes [50] Percentage of spelling mistakes
Word length [47] Mean Length of Word Strings

Springer Nature 2021 LATEX template

8 EHHR

3.1.1 Proposed Features

Along with the features presented in table 1, we also developed the following
features for our framework.

1. Percentage of Hard examples: Hard examples refer to the instances in the
dataset incorrectly labeled by the classifier [51]. We have taken all the
misclassified examples as the hard examples. For example, if the model
misclassifies 20 examples for a dataset of 100 examples, then the 20 exam-
ples are considered hard examples. The percentage of hard examples(Hp)
is used as a descriptor in EHHR. The ratio of the total number of misclas-
sified examples (Em) by a classifier to the total number of instances in the
training sample (Et) provides Hp (i.e., see Eq. 1).

Hp =
Em

Et
∗ 100 (1)

2. Average Entropy of frequently occurring words: The average entropy of the
most frequent words is computed for each dataset. The average entropy
measures the informational value contributed by the frequently occurring
words in the dataset according to the Eq. 2. wj is a word type in W , n
is the total number of words in the corpus, also known as vocabulary size,
while prob(wj) is the probability of wj in the corpus. prob(wj) is the ratio
of the frequency of wj to the sum of all type frequencies within n. f is the
number of frequent words.

Eavg =
1

f
[−

n∑
j=1

(log prob(wj) ∗ log2 prob(wj))] (2)

3. Average TF-IDF: Average TF-IDF is the mean of TF-IDF values of the
most frequent words. The average values help to quantify the central ten-
dency of the most relevant words in the short-text. If Yi represents the
TF-IDF value of a word xi ϵ X, and f is the number of top frequent words.
Then the average TF-IDF is calculated as presented in Eq. 3:

Average TF − IDF =
1

f
[

f∑
i=1

(Yi)] (3)

3.2 Heuristic Evaluation Module

The heuristic evaluation module unmasks the actual performance of heuris-
tics (i.e., see Figure 3) for problems being considered. The heuristic space of
the proposed framework comprises a pool of state-of-the-art classification algo-
rithms. Each heuristic h from the heuristic search space H is trained on (the
embeddings for) each dataset n from the set of datasets N , and its actual
performance is calculated as shown in algorithm 1 (lines 8-13). The proposed

Springer Nature 2021 LATEX template

EHHR 9

algorithm uses macro f1-score as the performance measure. Generally, the rec-
ommendation frameworks use accuracy as a performance measure. However,
the proposed framework used a macro f1-score, a good predictor for varying
sizes and highly skewed (i.e., imbalanced) datasets. Algorithm 1 computes the
heuristic evaluation vector (Nx1 dimensions).

Fig. 3: The heuristic evaluation process in EHHR resulting in computation of
actual performance in terms of average macro-F1 for each dataset n ϵ N .

The average macro f1-score of all heuristics in H for each dataset is
computed and recorded. The heuristic evaluation is only applied during the
training phase of the framework and is computationally expensive. However,
these computations serve as the basis for the reminiscence (i.e., recalling
the classifier’s past performances) and re-usability of the low-level heuristic’s
previously-stored performances to solve new problems. Furthermore, the mod-
ule saves the best parameter values for all heuristics. For a dataset n ϵ N ,
the f1-score (macroF1nhi

) is computed for each hi. The Eq. 4 presents the
calculation of the average macro f1-score for all heuristics for each dataset.

AveragemacroF1 =
1

z
[

z∑
i=1

(macroF1nhi
)] (4)

In Eq. 4, hi refers to heuristic and n is the dataset. Variable i is used to iterate
through 1 to z, where z is the total number of heuristics in the heuristic space.

3.3 Evolutionary Module

In the evolutionary module, the proposed Hybrid Adaptive Evolutionary Algo-
rithm (HAGA) is trained to predict the average performance for the given
data. HAGA is an improvement to the general GA applied in a hyper-heuristic
setting. For a population of µ chromosomes, the selection process of HAGA is
the hybridization of tournament selection with elitism. To cater to the problem
of a less diverse population and premature convergence arising due to elitism,

Springer Nature 2021 LATEX template

10 EHHR

some chromosomes are randomly selected for the new population. Further-
more, the adaptive mutation and random crossover in HAGA encourage the
exploration of global optimum and population diversity. In the training phase,
HAGA takes the extracted features (explained in Section Feature Extraction
Module (FEM)) as input data and the actual average performances of the clas-
sifiers for each data as true values. The average macro f1-score (computed in
the heuristic evaluation module) is the true label for training the HAGA.

The chromosomes of the HAGA contain the weights for the input features.
The weights are multiplied by the features and summed up. The output value
presents the predicted average performance. The fitness function of HAGA is
a minimization function that evolves the weights in order to minimize the loss.
The difference between the predicted and actual performance is taken as the
loss. The actual performance is the average performance of each dataset w.r.t.
macro f1-score. Equation 5 computes the average loss for all datasets.

Average Loss =
1

n
((

n∑
i=1

(predictedi − actuali)) (5)

The detailed pseudo-code for the HAGA is given in Algorithm 2. The conver-
gence (very low update in loss) of the HAGA is considered the termination
criteria. The key differences between the basic GA and the proposed HAGA
are given below:

1. Mutation value is adaptive. Mutation rate changes after every x% of
iterations instead of fixed mutation value.

2. Hybrid selection strategy has been applied for selecting chromosomes for
the next generation.

3. The crossover point is not fixed; we select random points for each crossover
to ensure diversity in the population.

Springer Nature 2021 LATEX template

EHHR 11

Algorithm 2 The proposed Hybrid Adaptive Genetic Algorithm (HAGA).

input: Matrix X → N × D: (N : Number of datasets, D: Number of features,
True Values Y → N : (Average performance of each dataset)

15 Result: The trained weights :W , Predicted performance
16 Initialize λ: Mutation Prob

I: Max iterations
µ: Population Size

17 begin
18 Population.initialize(µ)

while i ≤ I do
19 if i ≥(I × 0.x) then
20 λ = mutate(λ)
21 end
22 offspring = Crossover(Population,µ)

offspring = mutation(offspring,λ)
Predicted value = Sum (dot product(D, weights))
Fitness = 1 / (Predicted Value - Actual Value)
Population = selection(offspring,Population,Fitness)
Save best chromosome

23 end

24 end

The output of the HAGA is the weight vector that best minimizes the loss. In
the testing phase, for any given dataset, the features vector (N×1) is multiplied
by the weight vector. It returns the predicted average performance of that
dataset. For any given dataset, the average performance will be predicted using
HAGA rather than the training of the machine learning classifiers.

3.4 Memory Module

The memory module of EHHR stores the results produced by all modules
and clustering algorithms to reminisce them for new datasets. The EHHR
uses a fuzzy C-means clustering algorithm to cluster datasets. The primary
objective of the clustering process is to decrease the dissimilarity between the
data allocated within the same cluster [52]. Clustering is a technique that can
group classifiers with similar performances within the same cluster to minimize
the complexity of predicting one or more classifiers to a user. Fuzzy c-means
(FCM) is a type of clustering technique in which it is possible to cluster values
that lie in two or more clusters with similar degrees of membership without
any difficulty [53]. Hence, this module groups the datasets into clusters based
on their performances.

The memory module stores the obtained clusters of datasets based on
performance, with best-performing heuristics and their parameter settings
obtained during the training phase. Each cluster provides the ranking of
low-level heuristics.

Springer Nature 2021 LATEX template

12 EHHR

3.4.1 Handling an unseen Problem

EHHR helps determine the best classifier for a new problem without stochas-
tically running all heuristics. First, the features presented in Section Feature
Extraction Module (FEM) are extracted for the new dataset. These features
are used to predict the performance with the help of HAGA. The cluster is
assigned to the dataset based on the predicted performance. The best algo-
rithm for the chosen cluster is applied to the new problem. The memory
module is updated with the extracted feature values and the chosen heuristic
of the new dataset (i.e., see Algo 3). The reason for performing clustering is
that it will provide the ranks of algorithms based on the performance of the
classifiers for different datasets. When a new problem is encountered, EHHR
predicts the performance using HAGA instead of running all classifiers. HAGA
reuses the average performances of classifiers on previously solved problems
to predict the performance of an unseen dataset. Later, a cluster is assigned
to this unseen dataset based on predicted average performance for the recom-
mendation of an ML classifier. The time spent collectively executing HAGA
and clustering for an unknown dataset is significantly less than executing and
evaluating individual classifiers on that dataset. It chooses a classifier that is
less time-consuming for a short-text dataset.

Algorithm 3 Handling a new problem.

input: C(1...c): Clusters
W : Weight vector
J : New Dataset

Result: R: Classifiers Ranks
25 begin
26 F= Compute feature vector(J)

predicted performanceJ = HAGA(F ,W)
for each ci in C do

27 if Centerci−1 < predicted performanceJ ≤ Centerci then
28 Ci.add(J)
29 end

30 end

31 end

For cluster assignment to the unseen/test data, the euclidean distance is
calculated between the centroid of the clusters and the predicted performance
of the unseen dataset. The euclidean distance d(ui, ci) (i.e., see Eq. 6) is the
square root of the sum of the squares of the differences between the pre-
dicted performance (ui) of unseen dataset and cluster centroid (ci) in each
dimension [54]. The dataset is assigned the cluster for which the distance is
minimum.

d(ui, ci) =

√
(ui − ci)

2
(6)

Springer Nature 2021 LATEX template

EHHR 13

3.5 Example of EHHR

Figure 4 provides an example of EHHR application on three sample datasets
N1, N2 and N3. Hi shows the heuristics and the classifier algorithms in the
heuristic space. The FEM module computes feature values for the datasets.
The heuristic evaluation module computes the performance of the classifiers
for each dataset. For example, the average performance of H1, H2, H3 is 64 for
N1 dataset. The computed performances and features are used by the HAGA
to predict the average performance for all datasets using feature values. The
next step involves the clustering of the datasets based on performance. In the
test case, HAGA predicts the performance of heuristics using features for a
test dataset. Clusters are assigned to the test dataset (for example, N4) based
on HAGA prediction.

Fig. 4: An example of training and testing in EHHR.

4 Materials and Methods

This section provides the experimentation details for the proposed EHHR
framework.

4.1 Experimental Setup

This section presents the experimental setup and parameter settings for
the framework. Section 4.1.1 explains the dataset used and its experimental
settings. Section 4.1.2 provides embedding and their setup.

Springer Nature 2021 LATEX template

14 EHHR

Table 2: The short-text datasets and their respective percentages of positive-
negative instances.

S # Dataset # of instances Positive % Negative

1 Sentiment140 (S) 1.6 million 50 50
2 Jigsaw toxic comments (J) 312735 7 65
3 Landslide(L) 282152 83 17
4 DrugsCom (D) 215063 75 25
5 Amazon baby reviews (A) 183531 76 14
6 IMDB movie reviews (I) 50000 50 50
7 Google playstore reviews (G) 64295 74 26
8 Coronavirus archive (C) 46162 41 59
9 Reddit data (R) 37249 43 35
10 Women clothing ecommerce (W) 23486 82 18

4.1.1 Benchmark Datasets and Preprocessing:

All the experiments were carried out on ten balanced and imbalanced short-
text datasets. Jigsaw comment and Landslide datasets have been collected
from UCI [55] and the GRAIT-DM project [56], respectively. All the remaining
datasets have been collected from Kaggle [57]. These datasets contain short-
text reviews, tweets, or SMS. Table 2 provides the datasets’ details, including
the size and percentage of positive and negative examples. Sentiment140 and
IMDB datasets contain an equal distribution of positive and negative exam-
ples. Lanslide, Jigsaw comments, DrugsCom, Amazon baby reviews, Google
playstore reviews, and Women clothing datasets depict high skewness in data
distribution.

The datasets were modified and cleaned as a first step in the framework.
Multiclass datasets were mapped to binary classes. The examples with neutral
sentiment labels were removed for the multiclass datasets, such as Google play-
store data. The reviews and rating columns for the datasets, such as DrugCom,
were retrieved. We manually observed the samples to consider them either low
for lower satisfaction levels or high for higher satisfaction. We took a random
sample of 200 examples for binary classification and analyzed the comments.
The rating values in the dataset were in the range of 1-10. By observing the
user comments, it was found that 1-4 rating comments were not good, so we
considered them low ratings (i.e., 0-label). Since the remarks with a rating
of 5-10 seemed favorable, we assigned them a high rating (1-label). The gen-
eral text cleaning tasks included the removal of punctuation marks, HTML
tags, and stopwords. In addition, each dataset was preprocessed using case
conversion and lemmatization procedures.

4.1.2 Word Embedding:

EHHR was evaluated with two different models (EHHRBERT and
EHHRTfIdf) based on word embeddings (BERT and TF-IDF). For

Springer Nature 2021 LATEX template

EHHR 15

EHHRBERT , the word embedding of each dataset was extracted through the
pre-trained model of BERTBASE (Bidirectional Encoder Representations from
Transformers) model [58]. BERTBASE architecture contains 12 encoder layers,
768 hidden layers, and 12 attention heads. The BERT provides embeddings of
each word with 768 dimensions. The bidirectional nature of BERT allowed the
framework to learn the lexicon of words in the short-text corpus. Hence, BERT
provided a deeper understanding of word perspective than sequential models.
The machine learning classifiers were added atop the CLS tokenś transformer
output.EHHRTfIdf was implemented by extracting word embedding Term
Frequency–Inverse Document Frequency (TF-IDF) technique. It is a numeri-
cal statistic designed to represent the significance of a word in a collection or
corpus of documents [59]. BERT takes roughly 5 minutes for a chunk of 5000
examples. The smallest data contain (Reddit) 17k examples; BERT extracted
the embeddings of that data in 17 minutes. The largest data (Sentiment) con-
tains 16m examples. BERT takes 1600 minutes to extract the embedding of
that data. The execution time of ML classifiers depends on the parameter
setting and is data-dependent. The running time of HAGA is 40 minutes.
Clustering takes 0.0064 seconds.

4.1.3 Features Extraction:

The purpose of the FEM is to find out the features presented in Section 3.1
for each dataset. Each dataset was passed to the FEM to extract the features.
Lexically sophisticated features of each short-text dataset were retrieved with
the help of lexical tokens. For calculating lexical variation descriptor, BNC
(British National Corpus) wordlist [60] served as a basis to determine the verb,
noun, and adjective types in tweets, comments, and reviews in the datasets.
The BNC list contains 29 different families of words retrieved from British and
American English to assist vocabulary analysis of the text.

The readability tests were calculated with two variables: average sentence
length and average word length. The IMDB dataset showed the highest reading
ease score, while DrugCom scored the lowest. For calculating the percentage
of hard examples in each dataset, a neural network was set up with 100 hid-
den layer elements, 0.0001 value for regularization parameter, and a constant
learning rate. The top 50 frequently occurring words in each short-text dataset
were retrieved to compute the average entropy of frequent items. The sample
size for calculating the average TFIDF values was also specified as 50 most
frequent words for each dataset.

4.1.4 Heuristics and Parameter Setting

The heuristic space of EHHR used Support Vector Machine (SVM), K Near-
est Neighbour (KNN), Random Forest (RF), Gaussian Naive Bayes (GNB),
Decision Tree (DT), and Neural Network (NN) were chosen as Machine Learn-
ing (ML) heuristic models. To implement and execute these models, we used
Scikit-learn, numpy, and panda python libraries. All datasets were evaluated
for the same parameter settings of ML models. Each dataset was split into

Springer Nature 2021 LATEX template

16 EHHR

Table 3: Heuristic’s parameters and their values.

Heuristic Parameter Value

KNN K 3-13 with step-size =2
DT, RF Depth 4-64
NN Hidden layer sizes (128,64))

solver lbfgs, sgd, adam
activation tanh, relu,logistic

SVM Kernel Linear

70 ratios, 30 for training and testing tasks. The parameters are trained using
the grid search strategy. The details of heuristic-wise parameters are given in
Table 3. KNN classifier is executed for k range between 3 and 31 (i.e., with a
step-size 2). We have used a fully-connected feed-forward NN that takes BERT
or TFIDF embedding as an input. NN is searched with tanh,relu, and logistic
activations, along with lbfgs, sgd, and adam sovlers for weight optimization.
NN shows the best performance for the combination of Rectified Linear Unit
(relu) and Stochastic Gradient Descent (sgd) with 0.001 L2 penalty and 0.001
learning rate for both versions of EHHR. RF and DT are tested with a depth
range from 4 to 64.

5 Results and Discussion

This section presents the results obtained from the experiments and their
discussion.

5.1 Heuristic Space:

As explained in Section 4.1.4, the heuristic space of EHHR used SVM, KNN,
RF, GNB, DT, and NN. Table 4 shows the best parameter values achieved
for each model. For KNN, K=3 turned out to be the best parameter setting
for the majority of the datasets in the case of EHHRBERT and EHHRTfIdf

(i.e., see Table. 4). NN shows the best performance for the combination of
Rectified Linear Unit (relu) and Stochastic Gradient Descent (sgd) with 0.001
L2 penalty and 0.001 learning rate for both versions of EHHR. RF depicts
its best performance for tree depths equal to 16 and 32 for EHHRBERT and
EHHRTfIdf , respectively. The best tree depths for DT are 32 and 64 with
entropy selection measures for EHHRBERT and EHHRTfIdf respectively.

5.1.1 Comparison of EHHR model using TFIDF and BERT
Embeddings :

Table 5 provides heuristic’s macro f1-score (i.e., first row) and micro f1-score
(i.e., second row) achieved for each dataset for the best values of parameters
with EHHRBERT . The average performance of all heuristics for each dataset
is the highest for the Landslide dataset (i.e., equal to 92% for macro f1-score).

Springer Nature 2021 LATEX template

EHHR 17

Table 4: Best parameter values achieved for each heuristic in the heuristic
space.

Heuristic Parameter
Best Value

EHHRBERT EHHRTfIdf

KNN K 3 3
DT Depth 32 64

Criteria Entropy Entropy
RF Depth 16 32

Criteria Entropy Entropy
n-estimators 200 200

NN Hidden layer sizes (128,64) (128,64)
solver sgd sgd
activation relu relu
Learning rate 0.001 0.001

SVM Kernel Linear Linear
C 1 1

TheWomen clothing dataset achieves a 64% average performance, which shows
that it is difficult to predict compared to other datasets. The difference between
the heuristic’s average micro and average macro f1-scores remains below 4%
for Reddit, IMDB, Corona tweets, and Sentiment140 datasets. It is because
the training sample fairly represents the positive and negative classes. The
difference between the heuristic’s average micro and macro f1-score is signifi-
cant for the remaining datasets. The differences arise as the micro and macro
f1-scores are calculated differently. The micro f1-score assigns equal weight to
each sample, and the macro f1-score assigns equal weight to each class. Table 5
also demonstrates the average performance of heuristics in terms of macro
and micro f1-scores for all datasets. Neural Network outperforms other used
heuristics in terms of macro and micro f1-score. The macro f1-score-based per-
formance of NN is in a range of 4-23% better as compared to other heuristics.
The performance of SVM is similar to RF. The micro f1 score for RF is better
than DT, SVM, KNN, and GNB within a range of 2-16%. GNB performance
in macro f1-score is less than all other heuristics for all datasets except the
Sentiment140 dataset.

Table 6 provides the performances of heuristics for datasets with the best
values of parameters using EHHRTF−IDF . The average performance of all the
heuristics on the Landslide dataset is high. The Sentiment140 dataset is proven
to be complex data for most heuristics. The heuristic’s performance on the
Women Clothing dataset is similar to the Sentiment140 dataset. In the case of
TFIDF-based embedding, both datasets are difficult to predict. The difference
between the heuristic’s average micro and average macro f1-scores remains
below 3% for Reddit, IMDB, Corona tweets, Google Playstore, Landslide, and
Sentiment140 datasets. For the remaining datasets, this difference is above 6%.
The performance of the KNN heuristic is acceptable only on Drugs and Jigsaw

Springer Nature 2021 LATEX template

18 EHHR

Table 5: Best performance values achieved for each heuristic in terms of Macro
f1 (first row) and Micro f1-score (second row) for EHHRBERT .

Dataset DT RF SVM NN KNN GNB Average

Reddit
67 77 82 84 73 63 74
68 77 82 84 74 64 75

Women Clothing
59 58 76 73 54 37 60
75 84 83 86 79 37 74

IMDB
61 69 75 79 61 52 66
61 69 75 79 61 62 68

Google Playstore
75 78 75 79 67 52 71
81 80 78 84 76 76 79

Corona tweets
61 67 66 69 62 56 64
62 70 67 70 65 63 66

Jigsaw comments
67 75 72 80 66 44 67
67 93 78 94 90 90 85

Amazon baby dataset
60 63 74 78 56 53 64
78 86 82 84 83 68 80

Drugs
80 85 70 76 60 49 70
84 90 78 84 72 53 77

Landslide
95 97 94 95 87 85 92
95 97 94 97 95 76 92

Sentiment140
57 66 69 72 67 64 66
57 66 69 72 67 58 65

Macro f1-score 68 74 75 79 65
textbf56
Micro f1-score 73 81 79 83 76 65

datasets. In contrast, the performance of GNB is poor on Drugs and Jigsaw-
comments datasets. Macro f1-score of NN is better than other heuristics in a
range of 2-18%. On the other hand, the micro-f1-based performance of SVM
is highest, i.e., in a range of 1-13%.

Tables 5 and 6 show that NN model performs better than other mod-
els for both TFIDF and BERT-based embedding. From the point of view
of datasets, on average, the performances of the heuristics on the Landslide
dataset are better compared to other datasets. In the case of TFIDF, the per-
formance of SVM and RF models is comparable to that of NN. It is because
SVM performs effectively in high-dimensional space (i.e., embedding is high-
dimensional). Moreover, the tree ensembling strategy of RF minimizes the
overfitting and provides improved performance [61, 62]. The difference in per-
formances of heuristics on different datasets strongly supports the theory of
“No Free Lunch” [23]. The theorem asserts that no heuristic consistently per-
forms well across all datasets. Furthermore, there are different skewness levels
for each dataset. Thus, heuristics become biased when training with the imbal-
anced dataset [63]. The average performance of the five heuristics across all
datasets is superior for TFIDF than for BERT. The only exception is the KNN

Springer Nature 2021 LATEX template

EHHR 19

Table 6: Best performance values achieved for each heuristic in terms of Macro
f1 (first row) and Micro f1-score (second row) for EHHRTfIdf .

Dataset DT RF SVM NN KNN GNB Average

Reddit
85 85 87 84 53 81 79
85 85 87 84 57 81 80

Women Clothing
65 70 76 76 63 69 70
78 86 88 86 81 76 83

IMDB
67 80 83 82 65 80 76
67 80 83 82 65 80 76

Google Playstore
80 85 85 89 63 75 80
83 88 89 92 65 78 83

Corona tweets
75 77 75 75 60 71 72
77 79 78 76 66 72 75

Jigsaw comments
65 70 74 77 71 62 70
83 87 92 93 91 76 87

Amazon baby dataset
70 76 80 78 60 70 72
81 86 91 79 83 78 83

Drugs
80 85 73 88 75 68 78
84 90 82 91 83 72 84

Landslide
97 96 94 99 67 89 90
97 96 95 99 67 90 91

Sentiment140
67 68 72 71 67 70 69
68 69 72 71 67 70 70

Macro f1-score 75 79 80 82 64 74
Micro f1-score 80 85 86 85 73 77

algorithm which shows better results with BERT embedding. However, only
the KNN algorithm exhibits better performance with BERT-based embedding.

5.2 Performance of the Evolutionary Module:

The HAGA’s (i.e., see Sec. 3.3) application on datasets helped predict the aver-
age performance of a classifier. The HAGA chromosome is an 18-dimensional
vector, where each gene represents a feature (i.e., from 18 features) of each
dataset (see Table 7). All the features are normalized within a range of 0 and
1 and serve as genes of a chromosome. The number of maximum iterations is
kept very large to ensure that convergence should be achieved before reaching
the maximum iterations. In the worst case (no convergence), the maximum
number of iterations will be served as the termination criteria. The loss value
for each dataset is calculated by subtracting the actual average macro f1-score
from the predicted average macro f1-score (i.e., see Equation 5). The Final Loss
value achieved is 1.9, with a standard deviation of 0.3. Hence, the HAGA can
predict the average macro f1-score with an error margin of 1.5 to 2.3. There-
fore, without training, we can predict the performance with marginal error.
Furthermore, this reduces the time for the choice of the classifier for a problem
and helps overcome the brute force searching of heuristics for a new problem.

Springer Nature 2021 LATEX template

20 EHHR

Table 7: A training sample for the evolutionary module. Average macro-F1
is the average F1 scores of all heuristics for each dataset.

N TTR MLWS UI MTLD HR LS1 LS2 ... AE TFIDF macro-F1

N1 0.36 5.11 26.4 174.9 0.21 0.32 0.48 ... 0.07 0.05 68
N2 0.23 4.07 24 81.1 0.14 0.4 0.58 ... 0.1 0.07 73
N3 0.56 7.82 42 378.8 0.42 0.68 0.67 ... 0.04 0.04 79
...
Nn 0.44 5.01 21.8 104.39 0.24 0.30 0.4 ... 0.08 0.03 56

5.2.1 Influential features predicted by HAGA

The HAGA in the EHHR framework also predicts the importance of the fea-
tures of the dataset. The table 8 shows the importance score for the top five
features. The importance score validates the dataset descriptors presented in
section FEM. The highest importance score achieved by the average entropy
proves it is the most important descriptor of data for solving DT and RF algo-
rithms. The variety in verbs and adjectives has also been among the top five
descriptors. The number of hard examples can facilitate determining the com-
plexity of various datasets and the effect of data complexity on the classifier’s
performance.

Table 8: Top five Important descriptors with their importance scores.

S # feature Importance score

1 Average Entropy 0.24
2 Mean Length of Word String 0.20
3 Adjective Variation 0.19
4 Verb Variation II 0.15
5 Hard Examples 0.05

5.2.2 Convergence of the HAGA

To validate the performance of the HAGA, the experiments were run ten times.
Figure 5 shows the finally converged values for loss achieved for each run. The
difference in converged loss value in ten runs remained within a range of 0.055
to 0.059 in case of BERT-based embedding, resulting in minute difference of
0.004. For TFIDF, the difference range was 0.045 -0.050. The difference in final
loss computed during each run of HAGA in EHHRBERT is less than the final
loss to HAGA in EHHRTFIDF . Figures 6a and 7a show the comparison of
convergence of HAGA between a single run and the average of multiple runs.
The x-axis shows the number of iterations, and the y-axis depicts the loss val-
ues reached in each iteration. The closeness of the two series in both graphs
validates the persistent performance of the proposed technique. Furthermore,
Fig. 6b and Fig. 7b depict the variance on a logarithmic scale among ten differ-
ent runs of HAGA using BERT-based and TFIDF-based EHHR, respectively.

Springer Nature 2021 LATEX template

EHHR 21

We show that the variance between multiple runs is small, which shows the
consistency of the proposed technique.

Fig. 5: Converged loss values for ten runs HAGA.

(a) (b)

Fig. 6: Convergence of the HAGA in EHHRBERT (a) Final Loss for single
run compared to the final loss of average of ten runs (b) Variation in final loss
for ten different runs and the final loss of average of ten runs.

Springer Nature 2021 LATEX template

22 EHHR

(a) (b)

Fig. 7: Convergence of the HAGA in EHHRTFIDF (a) Final Loss for single
run compared to the final loss of average of ten runs (b) Variation in final loss
for ten different runs and the final loss of average of ten runs.

5.2.3 Correlation among Influential Features

The heatmap presented in the Fig. 8 shows the correlation among the five most
influential features. The smaller correlation value between Hp and Eavg shows
the weak linear relationship between the percentage of hard examples and
the average entropy of the frequent words in short-text data. The correlation
between the VV-II and AdjV is 0.52, which confirms that both are positively
correlated and influential in determining the class of a sample in short-text
data. MLWS shows a negative correlation with VV-II and AdjV. The heatmap
analysis depicts that 38% of the variation in AdjV is negatively correlated to
MLWS, and approximately 8% of the decrease in VV-II is associated with an
increase in MLWS. Furthermore, our analysis showed that the two influential
features (MLWS and Average Entropy), with the highest importance values,
have a strong inverse relationship.

Springer Nature 2021 LATEX template

EHHR 23

Fig. 8: Correlation among the top five influential dataset-level features
optimized by HAGA.

5.2.4 Comparison of HAGA with Standard Genetic
Algorithm

In order to validate the performance of HAGA, it is compared with a stan-
dard genetic algorithm. The standard GA is implemented with a single-point
crossover, fixed mutation rate of 0.02, and tournament selection strategy.
Figure 9 illustrates the final loss values achieved for HAGA for EHHRBERT

and EHHRTfIdf and standard GA over 500 iterations. The standard GA is
evaluated for BERT and TfIdf embeddings results. The curves of standard
GA in both cases show notably large differences in final loss values. In both
models, HAGA’s convergence curves remain below the standard GA’s con-
vergence curve, thus resulting in predicting performance close to the actual
performances. Importantly, the overlapping of the curves for HAGA with
EHHRBERT and EHHRTfIdf demonstrates the proposed framework’s con-
sistent performance. Furthermore, due to the adaptive mutation rate, HAGA
explores and exploits a diversified population compared to standard GA.
Table 9 shows the difference between the performance predicted by a standard
GA and the proposed HAGA for both models of EHHR. The predicted per-
formances of HAGA for both models show that HAGA outperforms standard
GA in 8 out of 10 datasets (i.e., see Figure 10).

Springer Nature 2021 LATEX template

24 EHHR

Fig. 9: Comparison of HAGA with Standard GA for Converged Loss
iterations.

Table 9: Comparison of the actual average macro f1-score with the predicted
average macro f1-score of HAGA and standard GA (normalized in the scale of
0-1).

Dataset
Average macro f1-score

EHHRBERT EHHRTfIdf Standard GA
Actual HAGA Actual HAGA

Reddit 0.74 0.67 0.79 0.68 0.49
Women Clothing 0.60 0.69 0.70 0.77 0.61
IMDB 0.66 0.68 0.76 0.75 0.54
Google Playstore 0.71 0.67 0.80 0.72 0.44
Corona 0.64 0.64 0.72 0.80 0.60
Jigsaw toxic comments 0.67 0.67 0.70 0.71 0.50
Amazon baby dataset 0.64 0.60 0.72 0.68 0.45
Drugs 0.70 0.67 0.78 0.73 0.48
Landslide 0.92 0.79 0.90 0.84 0.57
Sentiment140 0.66 0.66 0.69 0.67 0.48

Springer Nature 2021 LATEX template

EHHR 25

Fig. 10: Comparison of actual average macro f1-score for each dataset to the
predicted average macro f1-score of HAGA and Standard GA.

5.3 Data Clustering:

After applying the fuzzy C-means clustering, two clusters have been identified.
In the case of EHHRBERT , the clusters are generated with an average macro
f1-score greater than 68% (i.e., for cluster 1) and less than or equal to 68%
(i.e., cluster 2). Tables 10a and 10b show the heuristic’ ranking for each cluster
for EHHRBERT . Tables 11a and 11b display the heuristic’ ranking for each
cluster for EHHRTfIdf . In the case of EHHRTfIdf , the clusters are obtained
with cluster centers at 78.79% and 70.62%. The ranks are computed based on
the macro f1-score performance. ”Actual” is the cluster assigned to the dataset
based on actual performance, while ”Predicted” refers to the cluster assigned
to the dataset based on the predicted performance obtained by the proposed
model. The clusters obtained from the predicted performance are similar to
those obtained from actual performances in both versions of EHHR, except
for the IMDB dataset. These results verify that EHHR performance remains
equally good when different embedding is used.

The research findings indicate that EHHR performs similarly for different
word embedding and can effectively anticipate the best-performing short-text
classification heuristic. An important advantage of the EHHR is that it uses a
high-level strategy with little or no technical knowledge of low-level heuristics.
In contrast to expert opinion-dependent techniques [30, 31], EHHR predicts the
best heuristic for short-text classification automatically, thus minimizing the
need for human involvement. Unlike the techniques proposed in [26, 29], EHHR
does not heavily rely on an accurate selection of features and parameters for
evaluation. As EHHR uses the previously solved problems to guide the search

Springer Nature 2021 LATEX template

26 EHHR

Table 10: Cluster-wise heuristic ranks for EHHRBERT .

(a) Cluster 1.

Rank Algorithm

1 NN
1 RF
2 SVM
2 DT
4 KNN
5 GNB

(b) Cluster 2.

Rank Algorithm

1 NN
2 SVM
3 RF
4 DT
4 KNN
5 GNB

Table 11: Cluster-wise heuristic ranks for EHHRTfIdf .

(a) Cluster 1.

Rank Algorithm

1 NN
2 RF
3 DT
4 SVM
5 GNB
6 KNN

(b) Cluster 2.

Rank Algorithm

1 NN
1 SVM
2 RF
3 DT
3 GNB
4 KNN

Table 12: Dataset clusters based on actual and predicted performance.

Dataset
EHHRBERT EHHRTfIdf

Actual Predicted Actual Predicted

Reddit 1 1 1 1
Women Clothing 2 2 2 2
IMDB 1 2 2 1
Google Playstore 1 1 1 1
Corona 2 2 2 2
Jigsaw toxic comments 2 2 2 2
Amazon baby dataset 2 2 2 2
Drugs 1 1 1 1
Landslide 1 1 1 1
Sentiment140 2 2 2 2

for the best heuristic for short-text, enabling the heuristic prediction to be less
time-consuming. However, the heuristic evaluation module needs to execute
all heuristics for classifying short-text data only once.

Springer Nature 2021 LATEX template

EHHR 27

6 Conclusion and Future Work

Choosing a classification heuristic is important when applying a classifier
to a new dataset or new instances of an existing dataset. Additionally, the
heuristics’ performance varies per problem. The existing research provides the
solution to the abovementioned problem for numeric data. However, a clas-
sifier recommendation mechanism that exists for short-text data is lacking.
The paper overcomes this limitation for short-text datasets with the help of
hyper-heuristic. It presents a framework with feature extraction, heuristic eval-
uation, evolutionary and memory modules to calculate and obtain heuristic
performances. Furthermore, the memory module stores and reuses the pre-
viously solved short-text classification problems. The proposed Evolutionary
Hyper-heuristic-based Recommender framework EHHR is evaluated using six
different machine learning heuristics and macro f1-score as the performance
measure. The Neural network is the best heuristic, achieving 79% and 82%
performances with BERT and TFIDF embedding, respectively. The Hybrid
Adaptive Genetic Algorithm (HAGA) enables EHHR to identify the most sig-
nificant dataset-level traits and achieves an 80% accuracy rate in performance
prediction. HAGA reveals that average entropy, mean length of the word string,
adjective variation, verb variation II, and average hard examples are the top
five influential features for predicting average performance. The datasets are
clustered based on the average performance. The EHHR with TFIDF and
BERT-based embedding predict consistently correct clusters for 9 out of 10
datasets based on the predicted performance by HAGA.

In the future, we want to add and evaluate more short-text datasets from
different domains such as biology and software engineering to our framework.
It will aid in broadening the scope of EHHR’s applicability to other domains.

Declarations

• Funding: The authors declare that no funds or grants were received during
this research.

• Conflict of interest: The authors declare no conflict of interest.
• Consent to participate: Not Applicable
• Availability of data and materials: The datasets analysed during the current
study are available from the corresponding author on reasonable request.

• Code availability: Available
• Authors’ contributions: All authors contributed to the study conception.
Methodology design, data collection, analysis and visualization were per-
formed by Bushra Almas. The first draft of the manuscript was written by
Bushra Almas and Hasan Mujtaba and Kifayat Ullah Khan commented on
previous versions of the manuscript. All authors read and approved the final
manuscript.

Springer Nature 2021 LATEX template

28 EHHR

Table A1: Comparison of EHHR with state-of-the-art.

Technique
Data

Domain Methodology Reminisce

Type Size Category

EHHR T H, M B,I Short-text HH Y
[35] N, C S I Multiple Mtl Y
[64] N, C S I Multiple Mtl Y
[36] N M I Network IDS Empirical N
[28] N, C S I Imageaudio Mtl N
[1] N C S, M I Multiple HH Y
[37] N, C S, M I Multiple Mtl Y
[38] N, C S I Mtl Y
[39] N, C S, M I Multiple Mtl Y
[31] N, C S I Multiple Mtl Y
[65] N S I Multiple HH N
[66] N, C S, M I Multiple Mtl Y
[67] N, C S I Multiple Mtl N
[30] N,C S I Multiple Mtl N
[68] N M I IoT Mtl Y
[26] N M I Multiple Mtl Y
[29] N,C S,M I Multiple Mtl Y

Appendix A Comparison of EHHR with
state-of-the-art

The dataset types can either be Numeric(N) or Categorical(C) or Text (T).
”Category” is either Balanced (B) or Imbalanced (I). The ”Methodology” used
to perform each techniques is categorized as Meta-learning (Mtl) or Hyper-
Heuristic (HH) as shown in Table A1.

Appendix B Explanation of Features in FEM

The symbols used in formulae are: the number of word types(W), sophisti-
cated words (Wp), lexical words (Wlx, sophisticated lexical words (Wplx, verbs
(Wvb), sophisticated verbs (Wsvb, nouns (Wnoun , adjectives (Wadj for word
types; and, the number of word tokens (X), lexical words (Xlx), sophisticated
lexical words (Xslx), verbs (Xverb) considering the word tokens. Sophisticated
refers to the advanced, content-bearing terms that are not commonly used in
writing [69].

B.1 Syntactic complexity Indices

EHHR considers Mean length of Sentence (MLS) in order to measure the
syntactic complexity of dataset. Mean Length of Sentence (MLS): As the focus
of this study is short-text datasets, the production length at sentence-level is
considered as one of the feature to be utilized in the framework. It is computed
(i.e., see Eq. B1) as the ratio of count of words (i.e. tokens) to the sentence
count in the corpus to (S).

MLS =
X

S
(B1)

Springer Nature 2021 LATEX template

EHHR 29

B.2 Lexical sophistication

The percentage of unconventional words in the data refers to the Lexical
sophistication. Lexical sophistication 1 and 2 are computed for datasets in
EHHR.

1. LS1: LS1 is calculated as the ratio between the measure of Wslx (sophisti-
cated lexical words) to Wlx (i.e., total lexical words, Eq B2).

LS1 =
Wp

W
(B2)

2. LS2: The proportion of the count of sophisticated word types(Xs) to count
of word types (X) as presented in Eq B3.

LS2 =
Xslx

Xlx
(B3)

B.3 Lexical variation

For computing the extent of vocabulary usage is calculated with the help of
lexical variation of words, verbs, nouns and adjective in the dataset.

1. Lexical word variation (LWV): Lexical Word Variation (Eq. B4) is obtained
by calculating the percentage of lexical word type count to total lexical
words count.

LWV =
Wlx

Xlx
(B4)

2. Verb variation-II (VV-2): It is calculated as the ratio between the count of
verb types count to the total verbs count in a short-text (Eq. B5).

V V − 2 =
Wvb

Xlx
(B5)

3. Noun variation (NV): The ratio of nouns usage in writer’s comments to the
lexical words in corpus(Eq. B6).

NV =
Wnoun

Xlx
(B6)

4. Adjective Variation (AdjV): It is the ratio of adjectives used in writer’s
comments to the lexical words in corpus (Eq. B7). It is important to note
that the use of adjectives make a short-text positive or negative.

AdjV =
Wadj

Xlx
(B7)

5. Type-token ratio (TTR): Type–token ratio (TTR) is obtained by dividing
the number of word types by the number of words present in the text

Springer Nature 2021 LATEX template

30 EHHR

(Eq. B8). Types are the unique lexical elements used in a corpus.

TTR =
W

X
(B8)

6. Uber index: It is a transformation of TTR (Eq. B9).

Uber Index =
Log2X

Log(X/W)
(B9)

B.4 Lexical Diversity

Lexical diversity (LD) measures the vocabulary range adopted in the corpus.
Measure of Textual Lexical Diversity (MTLD): MTLD helps to valuate the lex-
ical diversity of the short-text irrelevant to corpus length. It is ”the mean length
of sequential word strings in a text that maintain a given TTR value” [70].

B.5 Lexical richness

It is the assessment of text richness with the help of lexical diversity measures.
Another measure of lexical richness you may use is Hapax richness, defined
as the number of words that occur only once divided by the number of total
words. To calculate this, simply use a logical operation on the document-
feature matrix to return a logical value for each term that occurs once and
then sum up the rows to get a count. Last but not least, calculate it as a
proportion of the overall number of words (ntokens) for better interpretation
within your overall corpora.

Hapax Richness: It determine the proportion once occurring words(R1) in
the corpus.

Hapax Richness =
R1

X
(B10)

B.6 Lexical readability

The readability of a corpus is quantified keeping in view the length of sentence
and words. Two formulae are used in the proposed framework considering mean
of number of words in a sentence(i.e. sentence length Ls) and average syllables
per word (word length Lw). The Ls is computed by dividing the number of
words by the number of sentences in a corpus. Lw is generated as a result of
dividing the number of syllables to the number of words. The coefficients of
the reading ease scale involve the systematic selection of word samples from
data [71].

1. Flesch-kincaid readability score: The measure is computed using word and
sentence length (i.e., see Eq. B11).

206.835− 1.015(Ls)− 84.6(LW) (B11)

Springer Nature 2021 LATEX template

EHHR 31

2. Flesch’s reading ease score: This measure (Eq. B12) quantifies a text within
the range of 1 (lowest readability of text) and 100 (highest readability).

0.39(Ls) + 11.8(LW)− 15.59 (B12)

B.7 Data quality

Spelling mistakes: Proportion of the misspelled words (M) in the corpus
(Eq. B13) is determined to assess the quality of the short-text in the framework.

Spelling mistakes =
M

X
(B13)

B.8 Word length

Mean Length of Word Strings: It (Eq. B14) is the average syllables per word
(word length Lw).

Lw =
Total syllables

X
(B14)

References

[1] Majeed, H., Naz, S.: Deja vu: a hyper heuristic framework with record
and recall (2r) modules. Cluster Computing 22(3), 7165–7179 (2019)

[2] Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,
Qu, R.: Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society 64(12), 1695–1724 (2013)

[3] Montazeri, M.: Hhfs: Hyper-heuristic feature selection. Intelligent Data
Analysis 20(4), 953–974 (2016)

[4] Song, G., Ye, Y., Du, X., Huang, X., Bie, S.: Short text classification: A
survey. Journal of multimedia 9(5), 635 (2014)

[5] Grida, M., Soliman, H., Hassan, M.: Short text mining: State of the art
and research opportunities. Journal of Computer Science 15(10), 1450–
1460 (2019). https://doi.org/10.3844/jcssp.2019.1450.1460

[6] Lafi, M., Hawashin, B., AlZu’bi, S.: Eliciting requirements from stake-
holders’ responses using natural language processing. Computer Modeling
in Engineering & Sciences 127(1), 99–116 (2021)

[7] Hawashin, B., Mansour, A., Fotouhi, F., AlZu’bi, S., Kanan, T.: A novel
recommender system using interest extracting agents and user feedback.
In: 2021 International Conference on Information Technology (ICIT), pp.
674–678 (2021). IEEE

https://doi.org/10.3844/jcssp.2019.1450.1460

Springer Nature 2021 LATEX template

32 EHHR

[8] Lin, W., Xu, H., Li, J., Wu, Z., Hu, Z., Chang, V., Wang, J.Z.: Deep-
profiling: a deep neural network model for scholarly web user profiling.
Cluster Computing, 1–14 (2021)

[9] Sengupta, E., Nagpal, R., Mehrotra, D., Srivastava, G.: Problock: a novel
approach for fake news detection. Cluster Computing 24(4), 3779–3795
(2021)

[10] Lu, X.: Automatic analysis of syntactic complexity in second language
writing. International journal of corpus linguistics 15(4), 474–496 (2010)

[11] Nimala, K., Jebakumar, R.: A robust user sentiment biterm topic mixture
model based on user aggregation strategy to avoid data sparsity for short
text. Journal of Medical Systems 43(4), 1–13 (2019)

[12] Yao, D., Bi, J., Huang, J., Zhu, J.: A word distributed representation
based framework for large-scale short text classification. In: 2015 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2015).
IEEE

[13] Alsmadi, I., Gan, K.H.: Review of short-text classification. International
Journal of Web Information Systems (2019)

[14] Zhang, H., Zhong, G.: Improving short text classification by learning vec-
tor representations of both words and hidden topics. Knowledge-Based
Systems 102, 76–86 (2016)

[15] Ali, M., Khalid, S., Rana, M.I., Azhar, F.: A probabilistic framework
for short text classification. In: 2018 IEEE 8th Annual Computing and
Communication Workshop and Conference (CCWC), pp. 742–747 (2018).
https://doi.org/10.1109/CCWC.2018.8301712

[16] Zeng, J., Li, J., Song, Y., Gao, C., Lyu, M.R., King, I.: Topic memory
networks for short text classification. arXiv preprint arXiv:1809.03664
(2018)

[17] Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classifi-
cation with knowledge powered attention. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 6252–6259 (2019)

[18] Xu, J., Cai, Y., Wu, X., Lei, X., Huang, Q., Leung, H.-f., Li, Q.: Incor-
porating context-relevant concepts into convolutional neural networks for
short text classification. Neurocomputing 386, 42–53 (2020)

[19] Alsmadi, I.M., Gan, K.H.: Short text classification using feature enrich-
ment from credible texts. International Journal of Web Engineering and
Technology 15(1), 59–80 (2020)

https://doi.org/10.1109/CCWC.2018.8301712

Springer Nature 2021 LATEX template

EHHR 33

[20] Chen, W., Xu, Z., Zheng, X., Yu, Q., Luo, Y.: Research on sentiment
classification of online travel review text. Applied Sciences 10(15) (2020).
https://doi.org/10.3390/app10155275

[21] Niu, Y., Zhang, H., Li, J.: A nested chinese restaurant topic model for
short texts with document embeddings. Applied Sciences 11(18) (2021).
https://doi.org/10.3390/app11188708

[22] Adam, S.P., Alexandropoulos, S.-A.N., Pardalos, P.M., Vrahatis, M.N.:
No free lunch theorem: A review. Approximation and optimization, 57–82
(2019)

[23] Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for search.
Technical report, Technical Report SFI-TR-95-02-010, Santa Fe Institute
(1995)

[24] Zuo, Y., Wang, Y., Laili, Y., Liao, T.W., Tao, F.: An evolutionary
algorithm recommendation method with a case study in flow shop schedul-
ing. The International Journal of Advanced Manufacturing Technology
109(3), 781–796 (2020)

[25] Fan, Q., Jin, Y., Wang, W., Yan, X.: A performance-driven multi-
algorithm selection strategy for energy consumption optimization of
sea-rail intermodal transportation. Swarm and evolutionary computation
44, 1–17 (2019)

[26] Zhu, X., Ying, C., Wang, J., Li, J., Lai, X., Wang, G.: Ensemble of ml-knn
for classification algorithm recommendation. Knowledge-Based Systems
221, 106933 (2021)

[27] Ahmed, F., Ferdows, R., Islam, M.R., Kamal, A.R.M.: Autocl: A visual
interactive system for automatic deep learning classifier recommendation
based on models performance. arXiv preprint arXiv:2202.11928 (2022)

[28] de Sá, A.G., Pappa, G.L., Freitas, A.A.: Towards a method for automat-
ically selecting and configuring multi-label classification algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 1125–1132 (2017)

[29] Li, L., Wang, Y., Xu, Y., Lin, K.-Y.: Meta-learning based industrial intel-
ligence of feature nearest algorithm selection framework for classification
problems. Journal of Manufacturing Systems 62, 767–776 (2022)

[30] Ali, R., Lee, S., Chung, T.C.: Accurate multi-criteria decision mak-
ing methodology for recommending machine learning algorithm. Expert
Systems with Applications 71, 257–278 (2017)

https://doi.org/10.3390/app10155275
https://doi.org/10.3390/app11188708

Springer Nature 2021 LATEX template

34 EHHR

[31] Ali, R., Khatak, A.M., Chow, F., Lee, S.: A case-based meta-learning
and reasoning framework for classifiers selection. In: Proceedings of the
12th International Conference on Ubiquitous Information Management
and Communication, pp. 1–6 (2018)

[32] Kanan, T., AbedAlghafer, A., Kanaan, G.G., AlShalabi, R., Elbes, M.,
AlZubi, S.: Arabic text categorization: A comparison survey. In: 2021
International Conference on Information Technology (ICIT), pp. 739–742
(2021). IEEE

[33] Kanan, T., Hawashin, B., Alzubi, S., Almaita, E., Alkhatib, A., Maria,
K.A., Elbes, M.: Improving arabic text classification using p-stemmer.
Recent Advances in Computer Science and Communications (Formerly:
Recent Patents on Computer Science) 15(3), 404–411 (2022)

[34] Sterkenburg, T.F., Grünwald, P.D.: The no-free-lunch theorems of super-
vised learning. Synthese, 1–37 (2021)

[35] Pise, N., Kulkarni, P.: Algorithm selection for classification problems. In:
2016 SAI Computing Conference (SAI), pp. 203–211 (2016). IEEE

[36] Nguyen, H.A., Choi, D.: Application of data mining to network intrusion
detection: classifier selection model. In: Asia-Pacific Network Operations
and Management Symposium, pp. 399–408 (2008). Springer

[37] Song, Q., Wang, G., Wang, C.: Automatic recommendation of classifi-
cation algorithms based on data set characteristics. Pattern recognition
45(7), 2672–2689 (2012)

[38] Wang, G., Song, Q., Zhu, X.: An improved data characterization method
and its application in classification algorithm recommendation. Applied
Intelligence 43(4), 892–912 (2015)

[39] Zhu, X., Yang, X., Ying, C., Wang, G.: A new classification algorithm
recommendation method based on link prediction. Knowledge-Based
Systems 159, 171–185 (2018)

[40] Corrales, D.C., Ledezma, A., Corrales, J.C.: A case-based reasoning sys-
tem for recommendation of data cleaning algorithms in classification and
regression tasks. Applied soft computing 90, 106180 (2020)

[41] López-Camacho, E., Terashima-Marin, H., Ross, P., Ochoa, G.: A uni-
fied hyper-heuristic framework for solving bin packing problems. Expert
Systems with Applications 41(15), 6876–6889 (2014)

[42] Abd Elaziz, M., Ewees, A.A., Oliva, D.: Hyper-heuristic method for multi-
level thresholding image segmentation. Expert Systems with Applications

Springer Nature 2021 LATEX template

EHHR 35

146, 113201 (2020)

[43] Raghavjee, R., Pillay, N.: A genetic algorithm selection perturbative
hyper-heuristic for solving the school timetabling problem. ORiON 31(1),
39–60 (2015)

[44] Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Automatic design of a hyper-
heuristic framework with gene expression programming for combinatorial
optimization problems. IEEE Transactions on Evolutionary Computation
19(3), 309–325 (2015)

[45] Campaign, P.E.: How to write in plain english. Plain English Campaign
(2004)

[46] McCarthy, P.M.: An assessment of the range and usefulness of lexical
diversity measures and the potential of the measure of textual, lexical
diversity (mtld). PhD thesis, The University of Memphis (2005)

[47] Grzybek, P.: History and methodology of word length studies. In: Con-
tributions to the Science of Text and Language, pp. 15–90. Springer, ???
(2007)

[48] Lu, X.: The relationship of lexical richness to the quality of esl learners’
oral narratives. The Modern Language Journal 96(2), 190–208 (2012)

[49] Tanaka-Ishii, K., Aihara, S.: Computational constancy measures of
texts—yule’s k and rényi’s entropy. Computational Linguistics 41(3),
481–502 (2015)

[50] Singh, S., Singh, S.: Systematic review of spell-checkers for highly
inflectional languages. Artificial Intelligence Review, 1–42 (2019)

[51] Dalal, N., Triggs, B.: Histograms of oriented gradients for human detec-
tion. In: 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005). IEEE

[52] Gupta, A., Shivhare, H., Sharma, S.: Recommender system using fuzzy
c-means clustering and genetic algorithm based weighted similarity mea-
sure. In: 2015 International Conference on Computer, Communication
and Control (IC4), pp. 1–8 (2015). IEEE

[53] Kapoor, A., Singhal, A.: A comparative study of k-means, k-means++
and fuzzy c-means clustering algorithms. In: 2017 3rd International Con-
ference on Computational Intelligence & Communication Technology
(CICT), pp. 1–6 (2017). IEEE

[54] Singh, A., Yadav, A., Rana, A.: K-means with three different distance

Springer Nature 2021 LATEX template

36 EHHR

metrics. International Journal of Computer Applications 67(10) (2013)

[55] https://archive.ics.uci.edu/ml/index.php

[56] Musaev, A., Wang, D., Xie, J., Pu, C.: Rex: Rapid ensemble classification
system for landslide detection using social media. In: 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
pp. 1240–1249 (2017). IEEE

[57] Your machine learning and Data Science Community. https://www.
kaggle.com/

[58] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018)

[59] Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, ??? (2011)

[60] Nasseri, M., Lu, X.: Lexical Complexity Analyzer for Academic
Writing (LCA-AW, v 2.1 (2019). https://github.com/Maryam-Nasseri/
LCA-AW-Lexical-Complexity-Analyzer-for-Academic-Writing

[61] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.:
Scikit-learn: Machine learning in python. the Journal of machine Learning
research 12, 2825–2830 (2011)

[62] Sarker, I.H.: Machine learning: Algorithms, real-world applications and
research directions. SN Computer Science 2(3), 1–21 (2021)

[63] Zheng, W., Jin, M.: The effects of class imbalance and training data size
on classifier learning: an empirical study. SN Computer Science 1(2), 1–13
(2020)

[64] Gore, S., Pise, N.: Dynamic algorithm selection for data mining classifi-
cation. International Journal of Scientific & Engineering Research 4(12),
2029–2033 (2013)

[65] de Sá, A.G., Pappa, G.L.: A hyper-heuristic evolutionary algorithm for
learning bayesian network classifiers. In: Ibero-American Conference on
Artificial Intelligence, pp. 430–442 (2014). Springer

[66] Wang, G., Song, Q., Zhang, X., Zhang, K.: A generic multilabel
learning-based classification algorithm recommendation method. ACM
Transactions on Knowledge Discovery from Data (TKDD) 9(1), 1–30
(2014)

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
https://www.kaggle.com/
https://github.com/Maryam-Nasseri/LCA-AW-Lexical-Complexity-Analyzer-for-Academic-Writing
https://github.com/Maryam-Nasseri/LCA-AW-Lexical-Complexity-Analyzer-for-Academic-Writing

Springer Nature 2021 LATEX template

EHHR 37

[67] Romero, C., Olmo, J.L., Ventura, S.: A meta-learning approach for rec-
ommending a subset of white-box classification algorithms for moodle
datasets. In: Educational Data Mining 2013 (2013)

[68] Hossain, M.A., Ferdousi, R., Hossain, S.A., Alhamid, M.F., El Saddik, A.:
A novel framework for recommending data mining algorithm in dynamic
iot environment. IEEE Access 8, 157333–157345 (2020)

[69] Tidball, F., Treffers-Daller, J.: Analysing lexical richness in french learner
language: What frequency lists and teacher judgements can tell us about
basic and advanced words. Journal of French language studies 18(3), 299–
313 (2008)

[70] McCarthy, P.M., Jarvis, S.: Mtld, vocd-d, and hd-d: A validation study
of sophisticated approaches to lexical diversity assessment. Behavior
research methods 42(2), 381–392 (2010)

[71] Hartley, J.: Is time up for the flesch measure of reading ease? Scientomet-
rics 107(3), 1523–1526 (2016)

	Introduction
	Contributions of the Study

	Related Work
	Proposed Technique
	Feature Extraction Module (FEM)
	Proposed Features

	Heuristic Evaluation Module
	Evolutionary Module
	Memory Module
	Handling an unseen Problem

	Example of EHHR

	Materials and Methods
	Experimental Setup
	Benchmark Datasets and Preprocessing:
	Word Embedding:
	Features Extraction:
	Heuristics and Parameter Setting

	Results and Discussion
	Heuristic Space:
	Comparison of EHHR model using TFIDF and BERT Embeddings :

	Performance of the Evolutionary Module:
	Influential features predicted by HAGA
	Convergence of the HAGA
	Correlation among Influential Features
	Comparison of HAGA with Standard Genetic Algorithm

	Data Clustering:

	Conclusion and Future Work
	Comparison of EHHR with state-of-the-art
	Explanation of Features in FEM
	Syntactic complexity Indices
	 Lexical sophistication
	Lexical variation
	Lexical Diversity
	Lexical richness
	Lexical readability
	Data quality
	Word length

