The feasibility of a home-based exercise intervention for the improvement of aerobic function in young cystic fibrosis patients

Owen W. Tomlinson^{1,2}, Alan R. Barker¹, Patrick J. Oades², Craig A. Williams^{1,2}

¹Children's Health & Exercise Research Centre, Sport and Health Sciences, University of Exeter, UK

²Royal Devon & Exeter NHS Foundation Trust Hospital, Wonford, Exeter, UK

Royal Devon and Exeter

NHS Foundation Trust

INTRODUCTION

- Exercise training is seen as an essential tool in the management of cystic fibrosis $(CF)^1$.
- However, no formal exercise guidelines exist and therefore, prescription of exercise training is under-utilised.

CYSTIC FIBROSIS

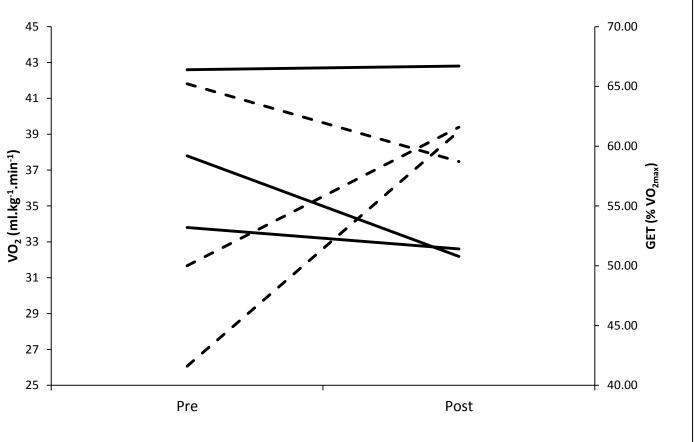
- Cystic fibrosis is a genetically inherited, life-shortening disease.
- There is **no cure**.
- It is caused by a mutation in the CFTR gene which results in abnormal ion and water transport in and out of the cell.
- This results in a thick, sticky mucus that clogs the airways and digestive tract.
- As exercise is not always possible or practical in the clinical environment, utilisation of the home environment is an important consideration.
- Exercise training in the home environment has been shown to have \bullet limited improvements in adult patients² and exercise training has been shown to have some benefits in children³, with the strongest results seen in a clinical setting.
- However, it is unclear what effect a home-based, mixed aerobic and resistance training programme may have in children with mild-tomoderate CF.
- Approximately 10'000 people in the United Kingdom have CF.
- Median survival age is 43.5 years⁴. \bullet

AIM

To assess the **feasibility** of a three-month home-based exercise intervention programme in improving exercise capacity in children with mild-to-moderate CF.

METHODS

Three children (2 females; 11.1 ± 0.6 y; 139.2 ± 7.3 cm; 33.2 ± 0.6 kg) with mild-to-moderate CF (FVC: 81.0 \pm 8.9 %; FEV₁: 89.8 \pm 10.3 %) were recruited from the Royal Devon & Exeter NHS Foundation Trust Hospital. Ethics approval was granted by the local NHS Research Ethics Committee.


Variables of Interest

- Anthropometric measurements included height, mass and BMI.
- Lung function was assessed with a hand held spirometer, with **FVC** and **FEV**₁ values normalised⁵.
- <u>Cardiopulmonary fitness</u> (VO_{2max}) was assessed by a combined ramp incremental and supramaximal cycling test to exhaustion⁶. Gaseous exchange was measured breath-by-breath and values for VO₂, VCO₂, V_E, Heart Rate and RER were obtained. <u>Physical activity</u> was objectively assessed using a triaxial GENEA accelerometer mounted on the wrist over four days (two weekdays). Time spent in **MVPA** (moderate-vigorous activity) and **sedentary time** were collected in absolute and relative terms. Subjective exercise tolerance was recorded by way of ratings of perceived exertion (RPE) and ratings of perceived dyspnoea (RPD).

RESULTS

Cardiopulmonary Fitness:

- Changes in absolute and relative VO_{2max} were observed between pre- (mean ± SD;
- 1.27 ± 0.13 L·min⁻¹; 38.07 ± 4.41 ml·kg⁻ ^{1.}min⁻¹) and post-training (1.19 \pm 0.16; 35.86 ± 6.01).
- The gas exchange threshold increased in absolute terms (0.66 \pm 0.12 to 0.72 \pm

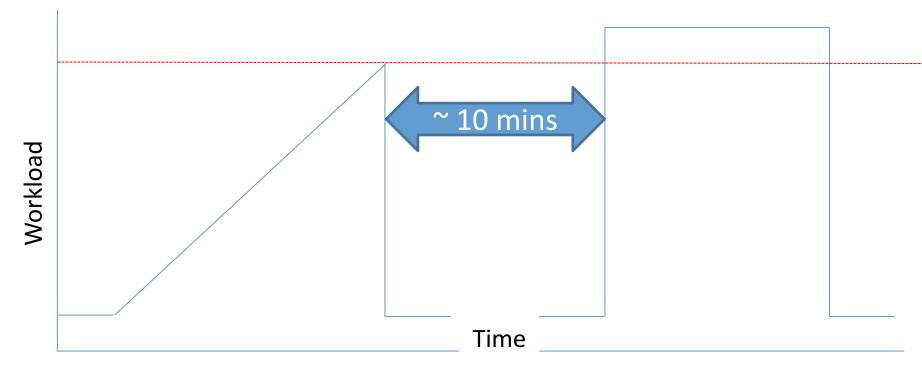


Fig 1. Cardiopulmonary exercise test protocol, as described by Barker *et* al. (2011)

Training Programme

Each patient was assigned a mixed aerobic (AER) and resistance (RES) programme, to take place over a three month period. Participants were allowed free choice in activity selection, but were required to work within a specified HR training zone, based upon initial exercise capacity tests.

- Weeks 1-4: AER; 2/week for 45 minutes at 80% GET. RES; None.
- Weeks 5-6: AER; 3/week for 45 minutes at 40%∆. RES; chest, arms, back 10 reps x 2 with theraband
- Weeks 7-8: AER; 3/week for 60 minutes at 40%Δ. RES; chest, arms, back 10 reps x2 with theraband
- Weeks 9-12: AER; 3/week for 60 minutes at 60% A. RES; chest, arms, back 20 reps x 2 with theraband Researchers maintained contact with patients on a weekly basis to assess progress and ensure

0.11 L[·]min⁻¹) and as a percentage of VO_{2max} (52.3 ± 6.9 to 60.5 ± 0.9 %).

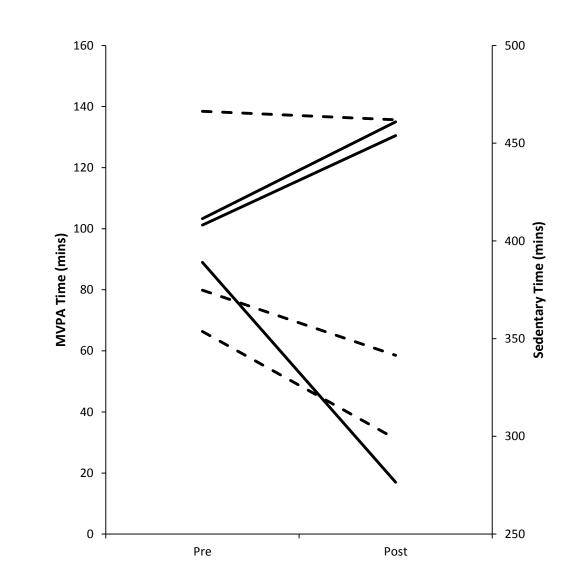


Fig 3. Changes to moderate to vigorous physical activity (solid line) and sedentary time (dashed line) for each participant.

Exercise Tolerance:

- RPE showed little change in ramp (6 \pm 2 -6 ± 2) or supramaximal ($6 \pm 2 - 5 \pm 2$) 2) exercise.
- RPD decreased in both ramp (4 \pm 3 3 \pm 2) and supramaximal (4 \pm 2 – 3 \pm 1) exercise.
- Considered alongside changes in relative peak power (2.82 \pm 0.42 – 2.92 \pm 0.26 W^kg⁻¹), increased tolerance is suggested.

Fig 2. Changes in maximal cardiopulmonary fitness (solid line) and the gas exchange threshold (dashed line) for each participant.

Physical Activity:

- The duration of sedentary time decreased by 30.9 ± 25.4 minutes following training $(-1.15 \pm 13.10 \%)$.
- Light activity increased by 8.3 \pm 82.1 minutes $(+2.18 \pm 4.48 \%)$.
- MVPA decreased by 3.7 ± 59.2 minutes $(-1.33 \pm 8.35 \%)$.
- Data may be skewed by individual responses and differences in non-wear time of accelerometer.

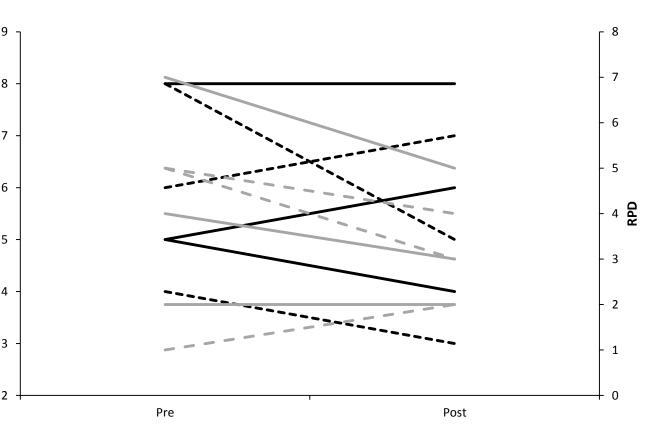


Fig 4. Changes to maximal RPE (black) and RPD (grey) for ramp (solid line) and supramaximal (dashed line) exercise during a

CONCLUSIONS

The results of this feasibility study suggest:

- Home-based exercise is a feasible modality of exercise training in children
- A mixed aerobic and resistance programme can improve exercise capacity, exercise tolerance and physical activity
- Compliance is difficult to ensure and may explain large variances in results \bullet

The current methods and results will be utilised to inform future randomised control trials in CF

REFERENCES

1. Stevens, D., et al., A survey of exercise testing and training in UK cystic fibrosis clinics. Journal of Cystic Fibrosis, 2010. 9(5): p. 302-306.

2. Rovedder, P.M.E., et al., *Exercise programme in patients with cystic fibrosis: A randomized* controlled trial. Respiratory Medicine, 2014. 108(8): p. 1134-1140.

3. van Doorn, N., Exercise programs for children with cystic fibrosis: a systematic review of randomized controlled trials. Disability and Rehabilitation, 2010. **32**(1): p. 41-9.

4. Cystic Fibrosis Trust, UK Cystic Fibrosis Registry Annual data report 2012. 2013.

Available at http://www.cysticfibrosis.org.uk/media/598466/annual-data-report-2013-jul14.pdf

5. Quanjer, P. H., et al., Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. European Respiratory Journal, 2012. 40(6): p. 1324-1343.

6. Barker, A.R., et al., Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. British Journal of Sports Medicine, 2011. 45(6): p. 498-503.

Contact: Professor Craig Williams (C.A.Williams@exeter.ac.uk) or **Owen Tomlinson (O.W.Tomlinson@exeter.ac.uk)**

The authors would like to thank all patients and their families for their time and dedication to the project. Additional acknowledgements go to the Multi-Disciplinary CF Team at the Royal Devon & Exeter Hospital for their assistance in recruitment and patient contact.