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Original Article

A Bayesian functional approach to test models of life

course epidemiology over continuous time
Julien Bodelet,1,2,� Cecilia Potente,1,3 Guillaume Blanc,1 Justin Chumbley,1,4 Hira Imeri,1

Scott Hofer,5 Kathleen Mullan Harris,6 Graciela Muniz-Terrera7,8 and Michael Shanahan1

1Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland, 2Department of Laboratory Medicine and
Pathology, Lausanne University Hospital, Lausanne, Switzerland, 3Erasmus School of Health Policy and Management, Erasmus University
Rotterdam, Rotterdam, The Netherlands, 4Biostatistics and Research Decision Sciences, MSD, Zurich, Switzerland, 5Institute On Aging &
Lifelong Health, University of Victoria, Victoria, BC, Canada, 6Carolina Population Center, University of North Carolina at Chapel Hill, Carolina
Population Center, Chapel Hill, NC, USA, 7Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK and 8Ohio University
Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
�Corresponding author. Jacobs Center for Productive Youth Development, University of Zurich, Andreastrasse 15, Zurich CH8050, Switzerland.
E-mail: julien.bodelet@chuv.ch

Abstract
Background: Life course epidemiology examines associations between repeated measures of risk and health outcomes across different
phases of life. Empirical research, however, is often based on discrete-time models that assume that sporadic measurement occasions fully
capture underlying long-term continuous processes of risk.

Methods: We propose (i) the functional relevant life course model (fRLM), which treats repeated, discrete measures of risk as unobserved
continuous processes, and (ii) a testing procedure to assign probabilities that the data correspond to conceptual models of life course epidemiology
(critical period, sensitive period and accumulation models). The performance of the fRLM is evaluated with simulations, and the approach is illustrated
with empirical applications relating body mass index (BMI) to mRNA-seq signatures of chronic kidney disease, inflammation and breast cancer.

Results: Simulations reveal that fRLM identifies the correct life course model with three to five repeated assessments of risk and 400 subjects.
The empirical examples reveal that chronic kidney disease reflects a critical period process and inflammation and breast cancer likely reflect sensitive
period mechanisms.

Conclusions: The proposed fRLM treats repeated measures of risk as continuous processes and, under realistic data scenarios, the method
provides accurate probabilities that the data correspond to commonly studied models of life course epidemiology. fRLM is implemented with
publicly-available software.

Keywords: Life course models, Bayesian statistics, functional data analysis.

Introduction

Life course epidemiology often focuses on exposures to
repeated risks and their consequences for health over many
decades of life.1 Empirical studies are typically guided by
three nested conceptual models: accumulation, which posits
that all exposures to a repeated risk factor meaningfully pre-
dict the outcome; sensitive period, according to which more
than one, but not all, exposures are predictive; and critical
period, meaning that only one exposure matters.2 Although

additional models are recognized,3 methodological research
has focused on analytical strategies to determine which of
these three models best corresponds to the observed data.4–6

The analytical task has been to: (i) estimate the association
between exposure to risk and the outcome at each measure-
ment occasion; and then (ii) decide which conceptual model
is best supported by these estimates.
Madathil and colleagues proposed a relevant life course

model (RLM) for continuously-scaled repeated exposures,

Key Messages

• Models of life course epidemiology typically use discrete-time models whereby a limited number of repeated measures of risk are

assumed to capture continuous exposure to risk.

• We propose a model that uses discrete data to test life course hypotheses over continuous time.

• Simulation studies reveal that the correct life course model can be identified with high probability with three to five repeated

assessments of risk and 400 subjects.

• The method and software are illustrated with examples involving BMI trajectories from adolescence to mid-adulthood predicting mRNA-

seq signatures of chronic health challenges.
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measured in successive waves of a panel study to estimate
weights associated with each measurement occasion and then
select the most apt life course model based on these weights.7

First, for each subject i, the relevant life course exposure is
conceptualized as the product between the continuously-
scaled repeated risk xt and a weight reflecting its relevance at
each of the measurement occasions. The outcome yi is then
assumed to depend linearly on the sum of the relevant
life exposure:

yi ¼ d
XT
t¼1

xi;twt þC
0
iaþ �i: (1)

where wt � 0,
PT

t¼1 wt ¼ 1, are weights, Ci are covariates and
�i random errors. The parameter d represents the effect of the
relevant life exposure

PT
t¼1 xi;twt. Closely-spaced, discrete time

points and T large, parametric shapes8 and non-parametric
shapes9–11 for wt have previously been considered. In the RLM
framework, the reference weights for the accumulation model
refer to the case where wt ¼ 1=T for all t, the critical period
model to the case where wt ¼ 1 for one period and 0 for the
others, and sensitive models to any other combinations. Second,
Madathil and colleagues select the life course conceptual model
based on the distance between the reference weights and the
mean of the posterior distribution of weights.12–14

Drawing on the RLM, Chumbley and colleagues pro-
posed a different strategy for deciding which life course
model is most descriptive.15 The proposed method tests life
course hypotheses by sequentially partitioning the simplex
to identify the most credible ranking among the weights
[e.g. that w1 < w2 < w3 (a full ranking) or that w1;w2 < w3

(a partial ranking)]. We refer to this method as the sequen-
tial partitioning test (SPT). SPT uses the greatest difference
among the weights as test statistics to define regions of
practical equivalence (ROPEs) for each of the three concep-
tual models.

The posterior probability of each model is then estimated
by the fraction of posterior Markov Chain Monte Carlo
(MCMC) samples falling into the corresponding ROPEs. For
models not falling into the accumulation and critical period
regions, post hoc decompositions then determine the most
likely ranks for a sensitive period model.

Although discrete-time models such as the RLM corre-
spond to the repeated assessments of risk that are often avail-
able in cohort studies, they assume that: (i) the association
between risk and health involves discrete jumps correspond-
ing to the time of measurement; (ii) the risk factors and health

outcomes are measured at the moment corresponding to
these jumps; and (iii) the measurement occasions include all
relevant times of exposure to risk.16 Yet these assumptions
may well be problematic in cases involving continuous pro-
cesses of risk exposure. For example, addictive behaviours
(such as consumption of tobacco or alcohol) are ongoing
physiological assaults. Recently, substantial efforts have been
made in the field of epidemiology to address these issues
through the development of new functional approaches.17–20

In this paper, we propose the functional relevant life course
model (fRLM), an extension of the RLM, which takes into
account that the observed risk data are only discrete measure-
ments of an unobserved process changing continuously over
time. Specifically, the fRLM assumes that the outcome
depends on a weighted integral of the exposure as in:

yi ¼ aþd
ð
XiðtÞxðtÞdtþC

0
iaþ �i; (2)

where XiðtÞ are random functions observed at a finite number
of discrete time locations, xðtÞ is a continuous positive weight
function and t now refers to the exact age. An example of the
fRLM for the different life course conceptual models is pro-
vided in Figure 1, with the relative importance xðtÞ based on
discrete measures of risk. The number of measurements is
allowed to vary across subjects (i.e. subject specific), and the
fRLM is well suited to panel studies that begin with an age-
heterogeneous group. Note that (i) can be also be seen as a
particular case of (ii) when XiðtÞ are step functions. We con-
sider a two-step estimation procedure of the fRLM and we
show how to apply the SPT in order to test the different life
course hypotheses.
This paper is structured as follows. We first describe the

model and present the estimation method. We assess the perfor-
mance of the model in identifying the most descriptive concep-
tual model of life course epidemiology given plausible data
scenarios. Drawing on data from the National Longitudinal
Study of Adolescent and Adult Health (Add Health), we then
consider empirical examples that examine repeated assessments
of body mass index (BMI) between ages 12 and 43, and gene
expression (mRNA-seq) signatures representing the molecular
underpinnings of chronic kidney disease (CKD), inflammation
and breast cancer. The discussion subsequently highlights the
advantages and drawbacks of our methodology. Additional
simulation experiments are considered in the Supplementary
Material (available as Supplementary data at IJE online) to
compare the proposed method with alternative estimation

Figure 1. Simulated examples of continuous life course models representing under the accumulation (grey line), critical (dashed line) and sensitivity

(dotted line) hypotheses

2 International Journal of Epidemiology, 2024, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyad190/7515038 by guest on 25 January 2024

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad190#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad190#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyad190#supplementary-data


procedures. fRLM and SPT are implemented in R with software
available on GitHub.

Methods

The model

We consider data for which, for each subject indexed by
i 2 f1;2; . . . ;ng, one observes a scalar outcome variable, yi,
along with repeated measurements of a time-varying risk ex-
posure variable, xi;j, observed at different time locations ti;j,
where j 2 f1;2; . . . ;Nig. Note that both the number of mea-
surement occasions Ni and their specific timing ti;j, may vary
across subjects. We assume that the xi;j are discrete measure-
ments of smooth functions of the continuous time, XiðtÞ,
specific to each subject. The functions XiðtÞ are not observed
except at the specified time locations ti;j, where we have
Xiðti;jÞ ¼ xi;j. The time t could be the age of subjects or the
elapsed time after a lifetime event, for example, and lie in a
specific time interval [a, b].

We assume that the data are generated by the following
functional regression model:

yi ¼ d
ðb
a
XiðtÞxðtÞdtþC

0
iaþ�i; (3)

where the functional parameter xðtÞ is a positive twice differen-
tiable function that satisfies

Ð b
a xðtÞdt ¼ 1. The errors �i are

assumed to be independently and identically normally
distributed with mean 0 and variance r2; Ci are p-dimensional
non-functional covariates with a 2 R

p being the corresponding
covariate effects; and d is a scalar parameter that represents the
lifetime effect. The function xðtÞ can be interpreted as a density,
and the relative importance of a given period T can be com-
puted as the integral

Ð
TxðtÞdt.

Estimation method

We provide an estimation procedure with two steps: Step 1,
the prediction of each of the curves XiðtÞ based on the sam-
ples xi;1;xi;2; . . . ;xi;Ni ; and then in Step 2, a Bayesian func-
tional regression is estimated using the curves derived from
Step 1, X̂iðtÞ.

In the first step, for predicting the individual curves, we
make certain assumptions about their prior distribution. The
random functions are assumed to be Gaussian Processes with
different mean and covariance kernels for each subject, in or-
der to allow for variability in the sample curves. The distribu-
tion of a Gaussian Process is fully specified by a mean
function and covariance function (or covariance kernel).
Specifically, we assume that XiðtÞ are Gaussian Processes
with unknown mean E½XiðtÞ� ¼ liðtÞ and covariance function
kiðt; sÞ ¼ CovðXiðtÞ;XiðsÞÞ. The parameterization of ki
involves specific behaviours for the random functions, and
we select the exponential covariance function,
kiðt; sÞ ¼ �2i exp f−ðt−sÞ2=jig, in order to ensure smooth pat-
terns. Here �i and ji are subject-specific hyperparameters
called signal-variance and length-scale, respectively. For each
subject, we assume a non-informative hyperprior for the
hyperparameters and compute the maximum a posteriori
(MAP) estimates. For each subject, the curves are predicted
with the Gaussian Process regression method. Specifically,
given realizations xi;1;xi;2; . . . ;xi;Ni , each curve is predicted at

any time point t, by its conditional expectation, X̂iðtÞ ¼
E½XiðtÞjXiðti;1Þ ¼ xi;1;Xi ðti;2Þ ¼ xi;2; . . . ;Xiðti;NiÞ ¼ xi;Ni �. In
the literature on functional regression, alternative methods
have been proposed for estimating XiðtÞ, such as the func-
tional principal component analysis, used in the principal
analysis by conditional estimation (PACE) method,21 and
mixture of B-splines.22 In the Supplementary Material (avail-
able as Supplementary data at IJE online) we provide simula-
tion experiments to compare the performance of these two
estimation methods.
In the second step, we estimate a Bayesian functional re-

gression on the predicted risk curves X̂iðtÞ, and prior distribu-
tions for the parameters have to be specified. Establishing a
suitable prior for the functional parameter xðtÞ requires care.
Mixtures of (B-)splines are flexible, effective prior distribu-
tions used in non-parametric Bayesian statistics. Specifically,
we model the functional parameter as a linear combination
of B-splines, i.e. xðtÞ ¼ PL

l¼1 bl/lðtÞ. In this framework, xðtÞ
has to be positive with integral being one. To meet these two
constraints, we used /l as density B-splines23 (i.e. rescaled

B-splines satisfying
Ð b
a /ðtÞdt ¼ 1), and constrain the parame-

ters bl to belong to a simplex (i.e. we restrict them to be posi-
tive and to sum up to one,

PL
l¼1 bl). The Dirichlet

distribution is thus proposed, which is a natural distribution
over the simplex and satisfies these constraints. A non-
informative prior on the coefficient bl would be
Dirð1;1; . . . ;1Þ. Finally, the Bayesian functional regression
can then be estimated by computing the integrals

Zi;l :¼
Ð b
a X̂iðtÞ/lðtÞdt, and using them as regressors in a lin-

ear Bayesian regression model:

yi ¼ d
XL
l¼1

ZilblþC
0
iaþei; (4)

where the bl have Dirichlet priors. The posterior distribution
is obtained through MCMC simulations.

Testing for models of life course epidemiology

The SPT procedure is then used to test which of the models of
life course epidemiology best corresponds to the estimates:
the accumulation, critical or sensitive period models.15

Although the SPT was proposed in the context of the linear
RLM (1), the strategy applies to the fRLM as well. In the con-
text of the fRLM, the user defines specific time periods of in-
terest T1;T2; . . . ;TJ, such that they form a partition of the
unit interval [0, 1]. The specification of the time periods
should be defined in the specific research context but might
include, for example, age-based categories or processes be-
fore, during and after events (e.g. the pubertal transition).
The user-defined time periods do not necessarily depend on
the specifically-timed measurement occasions, which is a dis-
tinct advantage vis-�a-vis the discrete RLM, according to
which the time periods must coincide with the specific
measurements.
The relative importance of the measurement occasions, wj,

for the period Tj is then the integral of the weight function
xðtÞ over the period. That is, wj :¼

Ð
Tj
xðtÞdt. As fTj; j ¼

1;2; . . . ; Jg is a partition, ðw1;w2; . . . ;wJÞ belongs to a sim-
plex. Thus, the SPT can be applied to wj. The distribution of
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wj is obtained by integrating the functions xðtÞ obtained
across the MCMC samples.

Evaluation of the fRLM with simulations

Goals of the simulation

The fRLM and SPT are evaluated over a range of plausible
data scenarios. Specifically, we consider the impact of the fol-
lowing on the ability of the model to recover simulated
ground-truths:

i) the underlying model of life course epidemiology (accu-
mulation, and critical and sensitive period models);

ii) the sample size (n ¼ f100;400g); and
iii) the number of measurement occasions: a sparse scenario,

(whereNi is uniformly distributed over f3;4;5g), a moder-
ately sparse scenario, (Ni is uniformly distributed over
f6;7;8g), and a scenario with completely observed trajec-
tories (denoted by Ni ¼ 1). For the first two scenarios, we
generated random observed time points by ti;j ¼Pj

k¼1 Ui;k=
PNiþ1

k¼1 Ui;k, where ðUi;1; . . . ;Ui;N;Ui;Nþ1Þ are
generated randomly from standard uniform variables
for each simulation scheme and each subject. This allows
us to obtain random time points satisfying 0 <
ti;1 < ti;2 < . . . < ti;Ni < 1.

We expect that with increasing sample size and number of
observed time points, Ni, the performance of the estimates
will improve.

Parameters of the simulation

A functional regression model (3) was simulated with an in-
tercept Ci ¼ 1 and errors from a normal distribution with
variance r2 ¼ 2, and d ¼ 3 and a ¼ 1. The curves XiðtÞ were
generated as Gaussian Processes with mean¼0 and var-
iance¼ 1, and correlation kernel kiðt; sÞ ¼ expð−jiðt−sÞ2Þ,
where ji was randomly generated from an exponential distri-
bution with mean 1.

The data were generated from three different models:

i) an accumulation model where xðtÞ ¼ 1;
ii) a critical period model where xðtÞ ¼ 10

3ð1þe−25ðt−0:7ÞÞ; and
iii) a sensitive period model where

xðtÞ ¼
1:32ð1−3tÞ t � 1=3
0 1=3 < t � 2=3
3:3 sinð2pt−4p=3Þ t > 2=3:

8<
: (5)

For the accumulation model, xðtÞ is simply set to a constant.
For the critical period model we parameterize xðtÞ as a sig-
moid function, which is used to yield a smooth transition be-
tween the non-critical period and the critical period. This
allows xðtÞ to meet the smoothness condition. For the sensi-
tivity model, a general function is selected that is sparse over
the interval ½1=3;2=3�. The three functions are illustrated
in Figure 1b.

Numerical implementation

For the sparse and moderately sparse scenarios, the curves
are estimated using maximum likelihood estimation for
Gaussian processes. Regarding the choice of L, the selection
of the number of B-splines bases is not crucial, as long as it is

large enough to represent the complexity of the regres-
sion function.24

In this regard, taking into account the model complexity,
the number of splines is set to L ¼ 4;6;7 for accumulation,
critical and sensitive period models, respectively. We used the
following prior distributions for the parameters:

b � Dirð1; . . . ;1Þ
d � Nð0;10Þ
a � Nð0;10Þ
r � logNð0;1Þ

Posterior distributions are obtained with MCMC simulations.
To examine the properties of the fRLM to correctly identify the
underlying life course model, the time interval is divided, for
purposes of illustration, into three periods of equal lengths:
T1 ¼ ½0;1=3�, T2 ¼ ð1=3;2=3�, and T3 ¼ ð2=3;1�. We then
compute the posterior probability of the vector ðw1;w2;w3Þ,
where wj ¼

Ð
Tj
xðtÞdt. The analyst could change these based on

theoretical considerations. Integrals are computed using
Riemann approximations for each MCMC sample.

Results of the simulation

Results of the simulation are reported in Table 1. We also
report a summary of the convergence statistics and diagnos-
tics in the Supplementary Material (available as
Supplementary data at IJE online). The performance of the
estimators is evaluated with the mean squared error between
the estimates and the true underlying values for xðtÞ and d:

msex ¼
ð1
0
ðx̂ðtÞ−xðtÞÞ2dt; msed ¼ jd̂−dj:

Following the SPT procedure, we report the posterior proba-
bility of the life course hypotheses for the omnibus test,
PrðmodeljyÞ. For results indicating a sensitive model, we re-
port the best sequence of nested sub-models of the sensitive
model and their posterior probability.
Table 1 reveals, as expected, that performance of the

fRLM improves with n but also with the average number of
time points Ni. The msex and msed decrease, for each life
course model, from a sample size of 100 and three to five
measurement occasions to a sample of 400 with completely
observed trajectories. The probabilities associated with iden-
tifying the correct life course model suggest that 100 cases are
insufficient, but probabilities exceed.90 in all situations in-
volving 400 cases. The correct identification of the full rank
submodel (i.e. w2 < w1 < w3) is achieved with 400 cases
and three to five measurement occasions (p ¼ 0:992).

Empirical data example

We use data from the National Longitudinal Study of
Adolescent to Adult Health (Add Health), which is a nation-
ally representative longitudinal study of US adolescents in
grades 7–12 in 1994–95 (age range 12–18) who were fol-
lowed into adulthood over five waves of data collection.25

The BMI trajectory was measured from: Wave I
(12–18 years), Wave II (14–20 years), Wave III (18–26 years),
Wave IV (24–32 years) and Wave V (33–43 years). During
Waves II, III, IV and V, field examiners collected height and
weight measurements for each respondent. Self-reported
height and weight were available for Waves I and V

4 International Journal of Epidemiology, 2024, Vol. 00, No. 0
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(measured height and weight were also collected during wave
V). Wave V includes mRNA-seq abundance data from pe-
ripheral blood samples (for details of data collection protocol
and the pre-processing of the data, see Shanahan et al.26).

We examine the association between BMI trajectories and
three gene expression mRNA signatures: chronic kidney dis-
ease (CKD) (70 genes27), inflammation (751 genes28) and,
for women only, breast cancer (BC) (44 genes).29,30 We used
principal component analysis to reduce the dimensionality of
each signature. The first principal component of each signa-
ture was used as the outcome.

We estimated Model (3) with Bayesian Hamilton Monte
Carlo Markov Chains. For participant i, the assessments of
BMI are denoted as xti;1 ;xti;2 ; . . . ;xti;Ni

performed at age
ti;1; ti;1; . . . ; ti;Ni . Participants whose weights were missing for
more than three waves were excluded from the analysis, and
we thus have 3 � Ni � 5. The resulting sample sizes were
n ¼ 3708 for CKD and Inflammation and n ¼ 2233 for
Breast cancer. Covariates include biological sex, age at Wave
V, number of hours fasting prior to blood draw, plate, use of
anti-inflammatory medicines in the past 4 weeks, count of
common clinical symptoms in the past 4 weeks (e.g. cold, fe-
ver, flu), count of common infectious and inflammatory dis-
eases in the past 4 weeks (e.g. active infection, seasonal
allergy) with correction for batch using ComBat.31 The BMI
trajectories XiðtÞ were predicted using Gaussian Process re-
gression for each individual. To estimate the functional
model, we used L ¼ 7 density B-splines. The priors were the
same as in the simulations.

For the testing procedure, we selected J ¼ 3 periods for il-
lustrative purposes: T1 ¼ adolescence (age 12–18), T2 ¼
early-adulthood (age 19–29) and T3 ¼ mid-adulthood (age
30–40). The relative estimated importance of each period
was computed by integrating the estimated weights,
wj ¼ jTjj−1

Ð
Tj
x̂ðtÞdt. The ROPEs for the test statistics are se-

lected as ½0;0:2�; ð0:2;0:8Þ; ½0:8;1� for the accumulation,

sensitive and critical models, respectively. The results of the
omnibus test and post hoc decompositions are described in
Tables 2 and 3. We also report a summary of the convergence
statistics and diagnostics in the Supplementary Material
(available as Supplementary data at IJE online).
Table 2 reports the Bayesian omnibus test of the three com-

posite models as the posterior probability of the true compos-
ite model, i.e. PrðmodeljyÞ, where model 2 faccumulation;
critical; sensitiveg. For the sensitive model, Table 3 reports
the probabilities of the finest credible rankings.
For CKD, the omnibus test unambiguously identifies the criti-

cal period variant as the correct model (probability ¼ 0:98).
Figure 2a indicates that Time period 3, middle adulthood, corre-
sponds to the critical period. Nevertheless, because of the design
of the study, this conclusion is tentative because middle-
adulthood may not be critical (i.e. an age period of heightened
vulnerability), but rather it reflects recency, meaning that the
last measurement occasion, no matter what age range it might
cover, would produce the same result.

Table 2. Omnibus test for posterior probability of the correct life

course model

Signature Accumulation Sensitive Critical

Chronic kidney disease 0 0.020 0.980
Inflammation 0.090 0.910 0.0005
Breast cancer 0.079 0.680 0.241

Table 3. Best sequence of partial rankings for the sensitive models for

Inflammation and Breast cancer

Signature Ranking Probability

Inflammation w3 < w1 < w2 0.570
w3;w1 < w2 0.917

Breast cancer w1 < w2 < w3 0.781
w1;w2 < w3 0.936

Table 1. Performance metrics for the functional relevant life course model (fRLM) over 100 replications, median and median absolute deviation (MAD)

n Setup msex msed PrðmodeljyÞ Prðw2 < w1 < w3jyÞ
Accumulation model
100 3–5 0.051 (0.044) 0.116 (0.106) 0.514 (0.150)

6–8 0.041 (0.031) 0.073 (0.070) 0.666 (0.168)
1 0.041 (0.030) 0.072 (0.063) 0.669 (0.156)

400 3–5 0.034 (0.030) 0.092 (0.056) 0.940 (0.061)
6–8 0.020 (0.016) 0.044 (0.038) 0.992 (0.010)
1 0.015 (0.013) 0.038 (0.035) 0.995 (0.006)

Critical model
100 3–5 0.194 (0.153) 0.076 (0.067) 0.674 (0.216)

6–8 0.186 (0.130) 0.063 (0.042) 0.760 (0.176)
1 0.174 (0.117) 0.068 (0.043) 0.752 (0.172)

400 3–5 0.125 (0.107) 0.069 (0.042) 0.921 (0.085)
6–8 0.070 (0.039) 0.027 (0.027) 0.973 (0.030)
1 0.064 (0.030) 0.032 (0.026) 0.974 (0.029)

Sensitive model
100 3–5 0.192 (0.151) 0.158 (0.101) 0.724 (0.292) 0.749 (0.212)

6–8 0.170 (0.145) 0.063 (0.061) 0.851 (0.172) 0.883 (0.129)
1 0.165 (0.126) 0.072 (0.050) 0.857 (0.176) 0.879 (0.132)

400 3–5 0.148 (0.069) 0.121 (0.057) 0.935 (0.090) 0.992 (0.012)
6–8 0.128 (0.065) 0.043 (0.033) 0.972 (0.037) 0.999 (0.001)
1 0.116 (0.076) 0.030 (0.029) 0.980 (0.027) 1.000 (0.000)

The sample size is denoted by n. Setup indicates the number of measurement occasions for the simulation scenario: 3–5 for f3; 4; 5g, 6–8 for f6; 7; 8g and1
for completely observed trajectories. The mean squared errors for x and d are computed asmsex ¼ Ð 1

0 ðx̂ðtÞ−xðtÞÞ2dt andmsed ¼ jd̂−dj, respectively.
Following the sequential partitioning test (SPT) procedure, PrðmodeljyÞ denotes the posterior probability of the ground-truth life course hypothesis
(accumulation, critical or sensitive). For results indicating a sensitive model, Prðw1 < w2 < w3jyÞ denotes the posterior probability of w1 < w2 < w3 where
wj ¼

Ð
Tj
x̂ðtÞdt and T1 ¼ ½0; 1=3�, T2 ¼ ½1=3; 2=3�, T3 ¼ ½2=3; 1� is a partition of (0, 1).
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The omnibus test for inflammation points to a sensitive pe-
riod model (probability ¼ 0:91). The post hoc decomposition
(Table 3) also reveals an unambiguous conclusion: that BMI
in Time periods 1 and 2 is a more powerful predictor of in-
flammation than BMI in Time period 3 (probability
¼ 0:917). This conclusion is further supported by Figure 2b.
Inflammation in middle adulthood is thus predicted by BMI
in adolescence and early adulthood.

Table 2 reveals uncertainty, however, about the correct
model for breast cancer, although the most warranted model
is, once again, sensitive period (p ¼ 0:68). The post hoc de-
composition shows that effect of BMI is greatest at Time 3
and the partial ranking of 1;2j3 is most supported (probabil-
ity ¼ 0:936). The plotted x̂ðtÞ in Figure 2c may suggest a crit-
ical period for Time 3, but the accompanying ternary plot

shows considerable dispersion of the posterior distribution of
weights beyond the ROPE. Thus, the breast cancer signature
reflects BMI in middle adulthood, but the effects associated
with adolescence and young adulthood are not negligible.
Finally, Figure 3 illustrates the patterns of BMI observed

for four people and reveals considerable diversity in BMI tra-
jectories: two individuals experienced precipitous increases in
BMI, but the other two people experienced positive and nega-
tive fluctuations. The relative importance of BMI for inflam-
mation is shown in Figure 2b, and Figure 3b shows the
relevant exposure, which is the product of the BMI trajecto-
ries and x̂ðtÞ in (3). The relevant exposure shows relatively
similar patterns, i.e. a bimodal configuration. However some
people exhibit much higher relevant risk than others, depend-
ing on the shape of their BMI trajectories.

Figure 2. Estimation results for chronic kidney disease (CKD), inflammation and breast cancer gene signatures. Upper panels show the estimated relative

importance x̂ðtÞ (black lines), confidence bands (grey regions) and separation of time periods (dashed lines). Lower panels show the posterior distribution

of the weightswj ¼ jTj j−1
Ð
Tj
xðtÞdt as well as the regions of practical equivalenc(ROPEs) for the accumulation model (red region) and critical model

(blue region)

Figure 3. For four randomly selected subjects, predicted pattern of the body mass index (BMI),X̂ iðtÞ, and estimated relevant life course exposure,

X̂ iðtÞ � x̂ðtÞ, for the Inflammation gene signature
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Discussion

We propose the functional relevant life course model (fRLM),
which considers discrete, sparse measurements as unobserved
processes occurring in continuous time. This analytical goal is
appropriate when the risk factors being studied reflect continu-
ous processes (e.g. substance use, poverty or income trajectories,
blood glucose). The fRLM defines the total lifetime exposure to
risk as an integral (2) according to which exposures are assumed
to be unobserved smooth functions. Because t refers to the exact
age of the person, the fRLM is best suited to panel studies that
begin with an age-heterogeneous group, although the model
can also be applied to birth cohort studies. We also test life
course hypotheses by applying Chumbley et al.’s SPT proce-
dure15 to our framework.

Simulations show that the performance of the fRLM
improves with the number of repeated measurement occasions
as expected, and the method is able to identify the correct life
course model when n ¼ 400 at least, even for very sparse
designs with three repeated measurements per person. Finally,
the method is illustrated with three instructive empirical exam-
ples that examine the relationship between BMI trajectories
from adolescence to middle adulthood, and mRNA-seq expres-
sion signatures for chronic kidney disease, inflammation and
breast cancer.

Note that the proposed model extends the RLM but also
differs from approaches9–11 that consider non-parametric es-
timation of the weights by regarding the observations as real-
izations of a continuous underlying process.

The closest model may be in the context of survival analy-
sis,19 where a functional regression with a weight function
satisfies

Ð
xðtÞdt ¼ 1 but this is allowed to be negative. The

implementation is frequentist and is performed by first esti-
mating bðtÞ ¼ dxðtÞ and then identifying xðtÞ by rescaling.
The advantage of the present Bayesian implementation of the
fRLM model is that it flexibly constrains parameters (i.e. the
weight function is constrained to belong to a set of distribu-
tions by defining the appropriate prior distribution on the B-
splines coefficients, the Dirichlet prior distribution). Prior
models also consider densely, regularly spaced time points,
whereas the fRLM allows for sparse and irregularly spaced
time points. In this way the time index t need not correspond
to the timing of measurement occasions, and is allowed to
represent meaningful milestones based on the exact age of the
subjects. Also, the model uses all available data and thus
avoids limitations of methods for missing data. Finally, as
discussed in the Supplementary Material, other methods can
be used to estimate the fRLM.21,22

Franklin and their colleagues’ review of suicidal behaviours
notes several requisites for a successful empirical study of
risk,32 which represent strategic opportunities to extend the
fRLM. First, the fRLM can accommodate multiple risk fac-
tors as a straightforward additive functional linear model,
and interactions among different risks are also possible.
Second, repeated assessments can also be modelled in dy-
namic terms, implemented with, for example, a function-on-
function regression. Third, improvements in efficiency can be
made by considering other processes (e.g. log-Gaussian pro-
cess for positive data). Fourth, empirical studies of risk offer
the promise of an increasingly personalized approach to
health by providing people with a risk score, but such scores
do not reflect the changing nature of risk across life [e.g. the
Framingham risk score33 and the CAIDE (Cardiovascular

Risk Factors, Aging, and Incidence of Dementia) score to pre-
dict dementia34]. The fRLM offers a method by which risk
scores could reflect the changing nature of risk across the life
course by, for example, reflecting the estimated relevant life
course exposure, X̂iðtÞx̂ðtÞ.
Nevertheless, the fRLM has several limitations. First, the

risk exposure is modelled as a Gaussian Process, which
excludes modelling of data with binary or discretely-scaled
risk exposures. Thus, the health outcome and repeated risk
factor must be continuously scaled, which rules out, for ex-
ample, the study of caseness defined by clinical cut-offs.
Second, the fRLM can not test chain-of-risk models (e.g. a
Markov autoregressive model with an earlier risk factor pre-
dicting its later value, which in turn predicts the outcome).
Chain-of-risk models are intrinsically discrete-time, however,
in contrast to the fRLM’s depiction of risk as a continuous
process. Finally, although we develop a broad framework for
continuous risk exposure, some efficiency could be gained by
setting priors that are more specific to the risk. For example,
BMI is always positive, so it may improve the inference to set
a positive prior distribution.
Despite these limitations, the fRLM offers a method by

which discrete data can be used to model the experience of
risk across many decades of life as a continuous process.
Particularly in the context of life course epidemiology, many
risks are chronic and thus the focus on continuous process is
likely more realistic than discrete-time models.
A package including all the functions to perform the analy-

ses is included on GitHub at the following address: [https://
github.com/jbodelet/fRLM]. We also provide the simulations
for reproducibility.
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