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Comprehensive allostatic load risk 
index is associated with increased 
frontal and left parietal white 
matter hyperintensities in mid‑life 
cognitively healthy adults
Ingrid Buller‑Peralta 1*, Sarah Gregory 1, Audrey Low 2, Maria‑Eleni Dounavi 2, 
Katie Bridgeman 1, Georgios Ntailianis 1, Brian Lawlor 3,4, Lorina Naci 3,4, Ivan Koychev 5, 
Paresh Malhotra 6, John T. O’Brien 2, Craig W. Ritchie 1,7 & Graciela Muniz‑Terrera 1,8

To date, there is a considerable heterogeneity of methods to score Allostatic Load (AL). Here we 
propose a comprehensive algorithm (ALCS) that integrates commonly used approaches to generate 
AL risk categories and assess associations to brain structure deterioration. In a cohort of cognitively 
normal mid‑life adults (n = 620, age 51.3 ± 5.48 years), we developed a comprehensive composite for 
AL scoring incorporating gender and age differences, high quartile approach, clinical reference values, 
and current medications, to then generate AL risk categories. Compared to the empirical approach 
(ALES), ALCS showed better model fit criteria and a strong association with age and sex. ALSC 
categories were regressed against brain and white matter hyperintensity (WMH) volumes. Higher AL 
risk categories were associated with increased total, periventricular, frontal, and left parietal WMH 
volumes, also showing better fit compared to ALES. When cardiovascular biomarkers were removed 
from the ALSC algorithm, only left‑frontal WMHV remained associated with AL, revealing a strong 
vascular burden influencing the index. Our results agree with previous evidence and suggest that 
sustained stress exposure enhances brain deterioration in mid‑life adults. Showing better fit than 
ALES, our comprehensive algorithm can provide a more accurate AL estimation to explore how stress 
exposure enhances age‑related health decline.

Allostatic Load (AL) describes the wear and tear resulting from physiological responses upon chronic stress 
 exposure1,2. The first AL index described included neuroendocrine, metabolic, immune, and cardiovascular bio-
markers, classified in two categories: primary mediators, like cortisol or epinephrine, released as first response of 
the hypothalamic-pituitary axis (HPA) upon stress exposure; and secondary outcomes, or downstream responses 
activated by primary mediators, such as glycemia or blood pressure. For scoring biomarkers, higher quartile 
values based on sample distribution were used to define risk, and then summed into a total AL  score3. Novel 
approaches have excluded primary mediators, focusing on cardiovascular, metabolic, and inflammatory mark-
ers, which are easier to assess and collect in large cohorts. Nowadays, there is considerable heterogeneity in AL 
scoring methods. McLoughlin et al., compared 14 different algorithms and concluded that the association of AL 
with health outcomes is robust to variations in the  method4. However, they also reported that quartiles calculation 
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based on sex-specific distributions and inclusion of prescribed medications provide a strong improvement in 
model fit relative to the purely empirical quartile-based algorithm. Current evidence favour more comprehensive 
approaches that include prescribed medications and clinical thresholds when  available5,6, and the need to consider 
sex differences among biomarkers is strongly supported by both clinical  practice7,8 and research  evidence9–11.

Accordingly, we propose a comprehensive composite for AL scoring (ALCS) that includes sex and age differ-
ences, a high-quartile approach, clinical thresholds, and current medications, to develop a more accurate index 
and generate AL risk categories.

To date, evidence reports that several demographic and health covariates are predicted by high AL, such us 
males over females, increased age, fewer years of education, low income, smoking, poor sleep quality, APOEe4 
carriers, and dementia  risk5,9,11–13. Thus, after statistical validation of the ALCS algorithm, these covariates were 
assessed for replicability on the AL risk categories.

Additionally, AL has been associated with increased risk of cognitive  impairment14, Alzheimer’s disease 
(AD)13, and brain  deterioration15–17. However, evidence related to brain changes in senior participants (> 60 years) 
remains diverse, with some showing strong negative associations to grey but not white-matter  volumes16,17, and 
others reporting lower white-matter and hippocampal  volumes15. As all these studies derived an AL scoring using 
a purely empirical approach, we evaluated whether our ALCS risk categories could replicate previous findings 
and better predict volumetric changes and white matter hyperintensities (WMH) across several brain areas.

Results
Participants
The analytical sample included 620 participants from the PREVENT dementia study (61.13% females), with an 
average age of 51.3 (SD = 5.48) years old (females: 50.97, SD = 5.41), and a mean of 16.62 (SD = 3.44) years of edu-
cation. Demographic characteristics of the PREVENT participants included the analyses are detailed in Table 1. 
No differences were found between males and females for age and years of education (Supplementary Table S1).

Comprehensive AL (ALCS) algorithm validation
The comprehensive AL score (ALCS) and the empirical AL score (ALES) were calculated following the algorithm 
flowchart described in Fig. 1, to create AL risk categories. Final risk categories of No-risk, Low-Risk, Medium-
risk and High-risk were created for both algorithms.

Each categorical output was regressed separately for model fit comparison. Multinomial logistic regressions 
(MLR) for AL categories as dependent variable showed satisfactory fitting for both scoring algorithms, with a 
slight difference between Mc Fadden’s pseudo-R2 in favouring the ALCS scoring (ΔR2 = 0.013). Nonetheless, 

Table 1.  Demographic characteristics of the studied population.

Variable [missing]

Sex, n (%)

Male 241 (38.87%)

Female 379 (61.13%)

Total Females

Age, mean (SD) Total range 40–60 (IQR = 9) 51.26 (5.48) 50.97 (5.41)

Years of education, mean (SD) [1] 16.62 (3.44) 16.79 (3.58)

Education, n (%) [3] 

Less than high school 2 (0.32%) 0 (0%)

High school / Secondary school 93 (15.07%) 58 (15.34%)

College / University 280 (45.38%) 165 (43.65%)

Trade / Technical / Non-University 64 (10.37%) 38 (10.05%)

Post-graduate 178 (28.85%) 117 (30.95%)

Employment, n (%)
No current employment 87 (14.03%) 55 (14.51%)

Employed 533 (85.97%) 324 (85.49%)

Smoking History, n (%) [1] 

Current 34 (5.49%) 17 (4.5%)

Past 228 (36.83%) 137 (36.24%)

Never 357 (57.67%) 224 (59.26%)

Dementia Risk, n (%)

Parent dementia History 314 (50.65%) 200 (52.77%)

Direct relative Alzheimer’s disease 137 (22.1%) 88 (23.22%)

APOEe4 carriers 235 (38.21%) 142 (60.43%)

Subjective Memory Complaint, n (%) 182 (29.35%) 116 (30.61%)

ALCS risk categories, n (%)

No risk 14 (2.26%) 13 (3.43%)

Low risk 191 (30.81%) 114 (30.08%)

Medium risk 230 (37.09%) 136 (35.88%)

High risk 185 (29.84%) 116 (30.61%)

Pittsburgh Sleep Quality Index Questionnaire (PSQI) PSQI Global Score, Mean (SD) 6.03 (3.07) 6.16 (3.1)

Connor-Davidson Resilience Scale (CDRS) Total Score, Mean (SD) 72.83 (12.98) 72.33 (13.31)
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ALCS showed higher log-likelihood (ΔLL = 40.747) and substantial decrease of the Bayesian Information 
Criterion (ΔBIC = − 81.494), compared to ALES. Both algorithms showed significant effects for age (Likeli-
hood ratios χ2(3) = 18.35, p < 0.001; χ2(3) = 29.24, p < 0.001) and education (Likelihood ratios χ2(3) = 11.96, 
p = 0.008; χ2(3) = 13.93, p = 0.003), but only ALCS displayed a significant effect for sex (Likelihood ratios for 
ALCS χ2(3) = 8.28, p = 0.041, versus ALES χ2(3) = 2.16, p = 0.541).

Analysis between the ratios of correct classification into AL categories showed no significant differences 
among algorithms, although low-risk category appeared better ranked in ALCS. Inter-rater reliability test showed 
a slight level of agreement between algorithms (Cohen’s kappa test for 4 measures and 2 scorers: κ = 0.147) how-
ever, z test revealed a significant relation between scorers (z = 5.033, p < 0.001). Finally, both algorithms were 
correlated against age to assess sensitivity. Both algorithms showed significant positive Spearman’s correlation 
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Figure 1.  Algorithm flowchart for AL scoring and AL risk categories construction. (a) Algorithm for 
comprehensive (ALCS) and (b) empirical (ALES) scores construction.
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coefficients (ALES  rs = 0.172, p < 0.001; ALCS  rs = 0.201, p < 0.001) and no significant differences between coef-
ficients were found after Fisher’s z transformation (z = 0.528, p = 0.298). Table 2 shows model fit comparisons 
between ALCS and ALES algorithms. Overall, even when no significant differences were found between the 
standard algorithm based on high-quartiles and our comprehensive composite, the latter proved better model 
fit criteria.

Associations between ALCS and demographic variables
Associations between ALCS risk categories and demographic covariates were estimated through MLR (Sup-
plementary Table S2). The model showed satisfactory fitting (χ2(27) = 64.78, p < 0.001), with significant effects 
for age (χ2(3) = 24.66, p < 0.001), sex (χ2(3) = 9.05, p = 0.029), and educational level (χ2(3) = 9.89, p = 0.019). Age 
was positively associated with AL, with significantly increased odds of being in medium (aOR = 1.16, p = 0.009) 
and high-risk AL (aOR = 1.2, p = 0.002) respectively). Conversely, sex showed that males had significantly higher 
odds for being at low (aOR = 0.11, p = 0.035) and medium-risk (aOR = 0.11, p = 0.034) AL categories. No sig-
nificant associations were found between AL risk and educational level, employment status, smoking history, 
parental history of dementia, direct relatives with AD (parents or siblings), APOEe4 carrier status, or subjective 
memory complaints.

Associations between ALCS, brain volume and white matter hyperintensity volumes (WMHV)
571 Participants (females: n = 344) had MRI at baseline for white-matter, total grey-matter, subcortical grey-
matter, left and right hippocampal volume measurements (WM, GM, SCG, lHC, rHC, respectively). 481 par-
ticipants (females: n = 291) had data for CA1 volume, and 566 (females: n = 341) for WMH analysis. Greater raw 
and adjusted volumes after residual correction were found in men, however hippocampal and CA1 values were 
greater in females after adjustment (Supplementary Table S3).

To evaluate associations between ALCS risk categories and brain volumetric measurements, a hierarchical 
linear approach with three blocks of variables was used. First, we considered a univariate regression between 
volume measurement and ALCS categories. Second, for a partially adjusted model, we included the same demo-
graphic variables used for validating the ALCS (sex, age and years of education). Finally, a fully adjusted third 
model included the Pittsburgh Sleep Quality Index (PSQI) global score and the Connor-Davidson Resilience 
Scales (CDRS) score as additional covariates potentially affected by stress exposure.

A first set of regressions was conducted for WM, GM, SCG, lHC, rHC, CA1 and total WMHV (Table 3). The 
univariate model showed no association between AL categories and volumetric measurements, except for total 
WMHV (F(1,565) = 7.7, p = 0.005). The partially and fully adjusted models provided better fit in all the regressed 
variables, with exception of the lHC and rHC volumes, although no significant associations emerged.

Table 2.  Model fit comparison of comprehensive (ALCS) and empirical (ALES) algorithms. BIC, Bayesian 
Information Criterion; BIC Δ, Difference in BIC compared with the classic empirical AL scoring algorithm. 
a Substantial decrease in BIC compared with the classic empirical AL scoring algorithm.

Model fit statistics (AL category = Sex + Age + Years of education)

Model Fitting Pseudo  R2 ΔR2 BIC ΔBIC Log-likelihood (LL) Δ LL

ALES χ2 (9) = 35.666,  p < 0.001 0.023 REF 1237.12 REF − 579.9815 REF

ALCS χ2 (9) = 53.241,  p < 0.001 0.036 0.013 1155.63 − 81.494a − 539.2345 40.747

Rate of correct classification

No-risk Low-risk Medium-risk High-risk Overall

ALES

observed 35 181 246 158 620

predicted 0 14 211 29 254

% correct 0 7.7 85.8 18.4 41

ALCS

observed 14 191 230 185 620

predicted 0 71 133 57 261

% correct 0 37.2 57.8 30.8 42.1

p̂ Comparisons

pooled p̂ 0 0.228 0.723 0.251 0.415

SEDp 0 0.123 0.05 0.099 0.043

z 0 2.398 5.638 1.26 0.26

p (α = 0.05) 0.5 0.008 < 0.001 0.104 0.397

Inter-rater reliability

Agreement p Error Cohen’s κ SEκ 95% CI Z transformed p

0.776 0.314 0.147 0.029 0.09 0.204 5.033 < 0.001

Correlation AL category versus Chronological Age

Spearman’s rho  (rs) p Z Δ Z Observed Z p (α = 0.05)

ALES 0.172 < 0.001 0.174 REF

ALCS 0.201 < 0.001 0.204 0.03 0.528 0.298
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No associations were found between AL categories and WM or GM volumes, however greater GM volume was 
predicted in younger male participants with higher years of education in the partial (sex: β = − 0.280, p < 0.001; 
age: β = − 0.145, p < 0.001; education: β = 0.140, p = 0.001) and fully adjusted model (sex: β = − 0.279, p < 0.001; 
age: β = 0.146, p < 0.001; education: β = 0.140, p = 0.001).

Although subcortical grey matter volume (SCG) showed a positive association with AL categories in the 
partial (β = 0.103, p = 0.013) and fully adjusted (β = 0.113, p = 0.007) models, the inconsistency with the univariate 
model suggested an artificially improved regression coefficient due to a suppressor variable effect. Accordingly, 
when the covariate age was removed from the partially and fully adjusted models, the association between SCG 
and AL risk category was lost (see Table 3, for SCG volume coefficients between brackets and corrected models), 
and greater SCG volumes were only found associated with participants with higher resilience scores (β = 0.098, 
p = 0.02).

Finally, total WMHV was positively associated with higher AL risk categories in all models (β = 0.116, 
p = 0.006; β = 0.083, p = 0.046; β = 0.09, p = 0.035, for the univariate, partial and fully adjusted models, respectively).

A second set of regressions was conducted to evaluate local WMHV in the peri-ventricular (PV), deep, left-
frontal (LF) right-frontal (RF), left-parietal (LP), right-parietal (RP), left-occipital (LO), right-occipital (RO), 
left-temporal (LT), and right-temporal (RT) areas (Table 4). Greater WMHV in the PV, LF and RF regions were 
predicted by higher AL categories in the univariate regression model (PV: β = 0.135, p = 0.001; LF: β = 0.171, 
p < 0.001; RF: β = 0.119, p = 0.005), and the association was maintained after including the second and third block 
of covariates. Increased LP and LT WMHV were only predicted by higher AL in the univariate model (β = 0.086, 
p = 0.041; β = 0.083, p = 0.046, respectively). Deep WMHV was not predicted by AL in any of the models fitted.

A comparison between AL categories revealed significant differences in PV WMHV between high and no 
AL risk, and between high and low AL risk individuals (Fig. 2a). Significant differences were also found in LF, 
RF and LP WMHV, between high and low AL categories (Fig. 2b-d, respectively). No significant differences 
were observed among AL categories in LT WMHV. Results for Kruskal–Wallis tests and post-hoc Dunn’s test 
for multiple comparisons are detailed in Supplementary Table S4.

For a final confirmation of the potential superiority of ALCS, WMHV showing strong associations with 
AL in the univariate model (Total, PV, LF, RF, LP and LT) were regressed on AL categories generated by ALES. 
Overall, fit criteria measured as differences in BIC and  R2 values favoured the ALCS algorithm, except for LT 
and LP where no differences were found (Supplementary Table 5).

As WM disease is considered a biomarker of vascular burden, we evaluated if the associations were driven 
by the cardiovascular component of the AL index. Following the ALCS algorithm, new risk categories were 
derived from an AL score excluding the cardiovascular biomarkers, and univariate regressions were conducted 
on Total, PV, LF, RF, LP and LT WMHV. Surprisingly, all associations were lost with the non-cardiovascular AL 
risk categories, except for Left-frontal WMHV β = 0.098, p = 0.019 (Supplementary Table S6).

Table 3.  Hierarchical regression analysis of adjusted brain volumes cortical thickness and total WMHV. 
Standardized regression coefficients reported. ALCS, Allostatic load comprehensive scoring categories; Years 
Ed, Years of education; PSQI, Pittsburgh sleep quality index global score; CDRS, Connor-Davidson resilience 
scale; WM, white matter volume GM, grey matter volume; SCG, subcortical grey matter volume; lHC, left 
hippocampal volume; rHC, right hippocampal volume; CA1, Hippocampal CA1 subregion volume; LH 
thickness, left hemisphere mean thickness; RH thickness, right hemisphere mean thickness; WMHV, white 
matter hyperintensity volume. a Adjusted to eICV by residual correction method. b CA1 adjusted to eTIV by 
residual correction method. c Normalized to SPM12 total intracranial volume (TIV). Values between brackets 
represent artifactually increased associations due to suppressor variable effect. ǂSuppressor variable age 
excluded from regression model. *p < 0.05; **p < 0.01; ***p < 0.001.

WM  vola GM  vola SCG  vola SCG  vola ǂ lHC  vola rHC  vola CA1  volb LH thickness RH thickness Total  WMHVc

Model 1

ALCS 0.011 − 0.029 0.059 0.059 0.005 − 0.032 0.075 − 0.026 − 0.022 0.116**

R2 0.000 0.001 0.003 0.003 0.000 0.001 0.006 0.001 0.000 0.013

F (1,570) 0.07 0.48 1.97 F(1,570) 1.97*** 0.02 0.6 F(1,480) 2.74 0.38 0.28 F(1,565) 7.7**

Model 2

ALCS 0.022 0.015 [0.103*] 0.061,  p = 0.143 0.016 − 0.021 0.083 0.016 0.018 0.083*

Sex  − 0.137** − 0.28*** − 0.187*** − 0.173*** 0.080 0.068 0.231*** 0.054 0.045 − 0.140***

Age − 0.035 − 0.145*** − 0.223*** excluded ǂ − 0.067 − 0.041 − 0.021 − 0.162*** − 0.153*** 0.153***

Years Ed 0.043 0.14** 0.012 0.033 − 0.029 0.022 − 0.010 0.072 0.069 − 0.022

R2 0.021 0.112 0.081 0.034 0.012 0.009 0.060 0.038 0.033 0.060

F (4,570) 2.99* 7.87*** 2.45*** F(3,570) 6.59*** 1.67 1.22 F(4,480) 7.56*** 5.56*** 4.84** F(4,565) 0.89***

Model 3

ALCS 0.024 0.018 [0.113**] 0.07,  p = 0.094 0.015 − 0.020 0.084 0.007 0.007 0.09*

Sex − 0.134** − 0.279*** − 0.181*** − 0.167*** 0.081 0.070 0.234*** 0.048 0.038 − 0.138***

Age − 0.036 − 0.146*** − 0.225*** excluded ǂ − 0.068 − 0.042 − 0.020 − 0.16*** − 0.151*** 0.152***

Years Ed 0.043 0.14** 0.014 0.035 − 0.029 0.023 − 0.011 0.070 0.067 − 0.021

PSQI 0.020 − 0.023 − 0.037 − 0.034 0.025 0.020 0.017 0.022 0.040 − 0.057

CDRS 0.103* − 0.009 0.1* 0.098* 0.073 0.079 0.069 − 0.118** − 0.114** − 0.008

R2 0.031 0.113 0.094 0.046 0.017 0.014 0.064 0.054 0.050 0.063

F (6,570) 2.96** 1.93*** 9.77*** F(5,570) 5.451*** 1.59 1.37 F(6,480) 5.42*** 5.33*** 4.92*** F(6,565) 6.29***
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Discussion
In this study, we developed a comprehensive AL scoring algorithm (ALCS) by integrating three commonly used 
approaches: quartiles from sex-specific distributions, clinical thresholds, and medication treatments. Sex-specific 
distribution of total scores were used to create AL risk categories and compared to those generated by the classic 
empirical distribution method (ALES).

Ratios of correct classification into AL categories showed no significant differences although low-risk category 
appeared to be best ranked by the ALCS, whereas medium-risk was over categorized by ALES, suggesting that 
inclusion of clinical thresholds could increase the categorization sensitivity for mild cases. Both algorithms were 
highly correlated with age and, although no significant differences were found between scoring, ALCS showed 
better model fit criteria. This was further confirmed by comparing fit criteria of both algorithms regressed on 
selected MRI measurements. Overall, the higher sensitivity of ALSC seems to rely on the inclusion of clinical 
thresholds to score biomarkers above pathological ranges as high-risk. The availability of such values in com-
mon clinical settings could provide practitioners a quick overview of AL status of a patient without the need of 
a large sample to calculate quartiles.

No associations were found between AL categories and educational level, employment status, smoking history, 
parental history of dementia, direct relatives with AD, APOEe4 carrier status, or subjective memory complaints. 
However, according to previous evidence, AL risk was strongly predicted by sex and age, with low/medium 
categories associated to males and medium–high predicted by aging.

Evaluation of AL categories and brain imaging revealed positive associations between higher AL and total, 
periventricular, right and left frontal and left parietal WMH volumes, and the significant differences across AL 
categories suggests a dose-dependent response. As a biomarker of cerebrovascular  disease18, such differences 
point to the presence of cardiovascular burden, as most findings in WHMV lost association when the cardio-
vascular component was removed from the AL index. Previous evidence reports inverse associations of AL with 
total brain and white-matter  volumes15, as well as with grey-matter  density16,17. Nonetheless, the populations in 
these studies were older (72.5 years, SD = 0.7; 69.6 years, SD = 5.2; 72.7 years, SD = 0.7, respectively) than ours and 
the AL score was derived through the classic empirical approach, making our findings with ALSC in a younger 
cohort potentially novel to the existing evidence.

Altogether, our results suggest that sustained stress exposure may enhance brain deterioration in mid-life 
adults and could accelerate later cognitive decline and dementia development. Since regular follow-up assess-
ments are planned in the PREVENT cohort, we expect to evaluate this hypothesis in a prospective study.

A major limitation to derive an AL index is the lack of consensus about criteria for scoring algorithms. The 
biomarkers, usually measured in a continuous scale, are often categorized, and then summed into a final score. 
Category thresholds must then be set but, so far, the method to define them has relied almost exclusively on the 
subjective criteria of researchers. In 2016, a review of 21 studies form National Health and Nutrition Examina-
tion Survey (NHANES)19 reported 18 different equations and 5 methods for AL scoring, most of them based on 

Table 4.  Hierarchical regression analysis of WMHV by area. WMHV normalized to SPM12 total intracranial 
volume (TIV). Standardized regression coefficients reported. WMHV, white matter hyperintensity volume; AL, 
Allostatic load category; Years Ed, Years of education; PSQI, Pittsburgh sleep quality index global score; CDRS, 
Connor-Davidson resilience scale; PV, peri-ventricular; LF, left-frontal; RF, right-frontal; LP, left-parietal; RP, 
right-parietal; LO, left-occipital; RO, right-occipital; LT, left-temporal; RT, right temporal. *p < 0.05; **p < 0.01; 
***p < 0.001.

(Total sample N = 566; females N = 341)

PV
WMHV

Deep
WMHV

LF
WMHV

RF
WMHV

LP
WMHV

RP
WMHV

LO
WMHV

RO
WMHV

LT
WMHV

RT
WMHV

Model 1

AL 0.135** 0.067 0.171*** 0.119** 0.086* 0.014 0.061 0.04 0.083* 0.001

R2 0.018 0.004 0.029 0.014 0.007 0.000 0.004 0.002 0.007 0.000

F (1,565) 0.54** 2.52 7.06*** 8.04** 4.2* 0.11 2.07 0.91 3.97* 0.0001

Model 2

AL 0.095* 0.046 0.141** 0.089* 0.06 − 0.002 0.034 0.003 0.053 − 0.028

Sex − 0.125** − 0.13** − 0.089* − 0.089* − 0.099* − 0.097* − 0.276*** − 0.284*** − 0.104* − 0.093*

Age 0.182*** 0.084 0.14** 0.135** 0.11* 0.059 0.135** 0.174*** 0.116** 0.11*

Years Ed − 0.021 − 0.018 − 0.015 − 0.018 − 0.026 − 0.029 0.03 0.005 − 0.016 − 0.044

R2 0.071 0.031 0.059 0.042 0.032 0.015 0.102 0.118 0.032 0.025

F (4,565) 0.66*** 4.42** 8.76*** 6.18*** 4.63** 2.18 5.87*** 8.77*** 4.7** 3.59**

Model 3

AL 0.102* 0.054 0.147** 0.092* 0.063 0.008 0.046 0.015 0.06 − 0.019

Sex − 0.122** − 0.127** − 0.087* − 0.088* − 0.099* − 0.093* − 0.272*** − 0.28*** − 0.102* − 0.09*

Age 0.182*** 0.083 0.14** 0.134** 0.11* 0.058 0.133** 0.172*** 0.116** 0.109*

Years Ed − 0.02 − 0.017 − 0.014 − 0.018 − 0.026 − 0.028 0.032 0.007 − 0.015 − 0.043

PSQI − 0.051 − 0.052 − 0.038 − 0.021 − 0.045 − 0.068 − 0.067 − 0.079 − 0.072 − 0.064

CDRS − 0.013 0.001 0.004 0.005 − 0.067 − 0.001 0.027 0.001 − 0.067 − 0.01

R2 0.073 0.033 0.060 0.043 0.037 0.020 0.108 0.124 0.040 0.029

F (6,565) 7.34*** 3.2** 5.98*** 4.16*** 3.58** 1.88 1.24*** 3.21*** 3.84** 2.76*
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the classical quartile approach, others based on clinical guidelines, one merging both criteria, some considering 
current medications and others not. Overall, evidence favours more comprehensive approaches that includes 
clinical  criteria5,6,  sex7,8,  ethnicity6,20 and even geographical  diversity21.

The heterogeneity of algorithms for AL scoring also implies limitations for replicability. In analyses where a 
predictor is constructed by imprecise criteria, but the predicted variables are widely agreed measurements—as 
for the case of MRI volumes—it would not be rare to obtain inconsistent results. Moreover, the lack of meth-
odological agreement between studies could mislead conclusions regarding the association of AL on a given 
disease and limit the comparison of results, even when obtained in similar populations. We expect this study 
will contribute to achieve an agreed and validated criteria for constructing AL scores that allow more accurate 
comparisons and replications.

Methods
Participants
Data from the PREVENT study (v700 baseline  dataset22) were used. As described  previously23,24, the PREVENT 
cohort recruited mid-life participants (age: 40–59 years) from sites in Edinburgh, West London, Dublin, Cam-
bridge and Oxford, with half reporting a first-degree family history of dementia. All participants provided written 
informed consent prior to participation.

Ethical approval was granted by the London-Camberwell St Giles National Health Service (NHS) Research 
Ethics Committee (REC reference: 12/LO/1023, IRAS project ID: 88938), which operates according to the Hel-
sinki Declaration of 1975 (and as revised in 1983) and by Trinity College Dublin School of Psychology Research 
Ethics Committee (SPREC022021-010) and the St James Hospital/Tallaght University Hospital Joint Research 
Ethics Committee.

From the 620 participants selected with complete data for AL scoring, 571 had suitable structural MRI at 
baseline for assessment, 481 had data for the CA1 hippocampal subfield, and 566 for WMH analysis.
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Figure 2.  Individuals within high-risk ALCS category show increased white matter hyperintensity volume. 
Comparison between AL categories and (a) periventricular, (b) left frontal, (c) right frontal and (d) left parietal 
WMHV. Kruskal–Wallis test for independent groups, followed by a Bonferroni corrected Dunn’s test for 
multiple comparisons (*p < 0.05; **p < 0.01). Mean ± SEM is noted. PV: peri-ventricular; LF: left-frontal; RF: 
ri.ht-frontal; LP: left-parietal; WMHV: white matter hyperintensity volume.
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AL scorings
Biomarkers collection
Blood samples were collected consent in a fasted state during baseline visit and analysed in local laboratories. 
Fourteen biomarkers were assessed for inflammatory/immune (creatinine, albumin, C-reactive protein (CRP), 
fibrinogen), cardiovascular (systolic blood pressure (SBP), diastolic blood pressure (DBP), resting-heart-rate 
(RHR), and waist-to-hip ratio (WHR)), and metabolic (total cholesterol, high-density-lipoprotein (HDL) choles-
terol, low-density-lipoprotein (LDL) cholesterol, glycemia, triglycerides, and body-mass index (BMI)) systems.

Comprehensive AL score (ALCS)
Initial categories for “no-risk” (zero points), “at-risk” (one point), and “high-risk” (two points) were defined 
for each biomarker, based on both clinical  thresholds7,8 and quartiles from sex-specific distributions. When 
clinical upper limit (clinical-up) was higher than the 75th percentile (p75: creatinine, triglycerides, CRP, SBP, 
DBP), at-risk category was defined between ≥ p75–≤ clinical-up (no-risk: < p75 and high-risk: > clinical-up). 
When clinical upper limit was lower than p75 (total cholesterol, LDL cholesterol, BMI, WHR), at-risk was 
defined between ≥ clinical-up–≤ p75 (no-risk: < clinical-up, high-risk: > p75). For reverse biomarkers (albumin, 
HDL cholesterol), if clinical lower limit (clinical-low) was below the 25th percentile (p25), at-risk was defined 
as ≤ clinical-low–≥ p25 (no-risk: > p25 and high-risk: < clinical-low). For RHR, only clinical categories provided 
by the British Cardiovascular Society for age and gender were used. Clinical thresholds and quartiles values are 
detailed in Supplementary Table S7.

Medication treatments coded through the Anatomic Therapeutic Chemical (ATC) classification  system25 were 
scored as high-risk as could potentially mask some biomarkers values, as follows: total cholesterol, triglycerides 
and LDL for lipid modifying agents (C10); systolic and diastolic blood pressure for anti-hypertensive medication 
(C02, C03, C09); resting heart rate for beta-blockers (C07) or calcium blockers (C08); and glycemia for insulin 
or analogues (A10).

After summing the scores, high and low quartiles were calculated from sex-specific distributions of total 
scores ≥ 1, to generate the following final AL risk categories: No-risk: 0 points; Low-risk: 1 point–≤ p25; Medium-
risk: > p25–< p75; High-risk: ≥ p75. The decision algorithm is detailed in Fig. 1a.

Empirical AL score (ALES)
Following the classical  approach4, a purely quartile-based AL index was derived from sex-specific distributions 
to compare against the ALCS. Biomarkers were awarded 1 point if their value was ≥ p75, or ≤ p25 for albumin 
and HDL cholesterol. After scoring for medications, AL risk categories were generated from total scores by the 
same method used in ALCS. The decision algorithm is detailed in Fig. 1b.

Image acquisition and analyses
Structural MRI data were collected using 3 T Siemens Magnetic Resonance Imaging (MRI) scanners (specific 
models: Verio, Prisma, Prisma Fit, Skyra). Image processing was carried used using FreeSurfer (v7.1.0) and 
the following derived variables were used in this analysis: Cerebral white-matter volume (WM), total grey-
matter volume (GM), subcortical grey-matter volume (SCG), left and right hippocampal volumes (lHC and 
rHC respectively), CA1 hippocampal subfield volume, and mean cortical thickness for left (LH thickness) and 
right (RH thickness) hemispheres. Full MRI protocol and Freesurfer analysis are described in detail on Ritchie 
et al.22 (preprint) and Dounavi et al.26.

To correct for interindividual variations in intracranial volumes, all volumetric variables were adjusted by the 
residual correction  method27 of a least-square-derived linear regression between raw volumes and the estimated 
intracranial volume (eICV), or the estimated total intracranial volume (eTIV). Regressions using the entire data 
set were performed as suggested previously for studies involving healthy  groups28,29. Comparisons between male 
and female raw and adjusted values were performed by a 2-tailed unpaired t-test, with α = 0.05.

White-matter hyperintensities (WMH) lesion maps were obtained using an automated script on the Sta-
tistical Parametric Mapping 12 suite (https:// www. fil. ion. ucl. ac. uk/ spm/) on FLAIR MRI, as previously 
 described30,31. WMH were segmented into frontal, parietal, occipital, temporal, deep and periventricular as pre-
viously  described31,32. Lesion masks were visually inspected and manually corrected. WMH volumes (WMHV) 
were normalised by total intracranial volume (TIV) to account for individual differences in head size ((WMH/
TIV) × 100%), followed by cube root transformation due to right-tailed  skewness31,33.

Covariates
Demographic covariates included age, sex, years of education, educational level, smoking history, employment 
status, parental history of dementia, direct relative with Alzheimer’s Disease (AD), APOEε4 genotype status, 
and subjective memory complaint variables. Additionally, self-reported sleep quality was assessed through the 
Pittsburgh Sleep Quality Index PSQI  questionnaire34. As potential protective factor against stress, an index of 
self-reported resilient attitudes was included through the Connor-Davidson Resilience Scale (CDRS)35.

Statistical analysis
All analysis were conducted using IBM SPSS Statistics v.27.036. Statistical differences between sex for age, years 
of education, ALCS and ALES raw scores were evaluated by two-sided Mann Whitney-U rank sum test as nor-
mality were below the rejection value of < 0.05 (estimated by Shapiro–Wilk test). For model comparison, both 
ALCS and ALES were analysed separately, including age, sex, and years of education as covariates in Multinomial 
Logistic Regression (MLR) models, with the No-Risk category used as reference. Overall model fit and model 

https://www.fil.ion.ucl.ac.uk/spm/
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selection was determined by highest Mc Fadden’s pseudo-R24, the Bayesian Information Criterion difference 
(ΔBIC) >  −  1037, and highest log-likelihood parameters. Classification tables were used to compare the accu-
racy of correct classification into each AL category, and differences were assessed through pooled probabilities 
and z-transformations. Inter-rater reliability between algorithms was evaluated through contingency tables and 
Cohen’s kappa index.

Additionally, as aging is the strongest predictor of physiological decline, categories generated by both algo-
rithms were correlated against age and Spearman’s rho correlation coefficients were compared using Fisher’s z 
 transformation38.

After model validation, a MLR was fitted to assess relationships between ALCS categories and age, sex, edu-
cational level, employment status, smoking history, dementia risk variables and subjective memory complaint.

To evaluate associations between ALCS categories, brain volume and WMH, univariate, partially adjusted 
and fully adjusted linear regression models were fitted as follows:

Model 1 MRI outcome = β0 + β1 AL category + ε.
Model 2 MRI outcome = β0 + β1 AL category + β2 sex + β3 age + β4 years of education + ε.
Model 3 MRI outcome = β0 + β1 AL category + β2 sex + β3 age + β4 years of education + β5 PSQI global 

score + β6 CDRS score + ε.
Selected MRI measurements showing strong associations with AL were further assessed for variations between 

AL categories by Kruskal–Wallis test for independent groups, followed by a Bonferroni corrected Dunn’s test 
for multiple comparisons (α = 0.05). These measurements were also regressed on AL categories generated by 
ALES, and BIC and  R2 differences from the univariate models were compared for a final algorithm validation.

Ethics
Multi-site ethical approval was granted by the UK London-Camberwell St Giles National Health Service (NHS) 
Research Ethics Committee (REC reference: 12/LO/1023, IRAS project ID: 88938), which operates according to 
the Helsinki Declaration of 1975 (and as revised in 1983). A separate ethical application for Ireland was submitted 
for the Dublin site, was reviewed and given a favourable opinion by Trinity College Dublin School of Psychol-
ogy Research Ethics Committee (SPREC022021-010) and the St James Hospital/Tallaght University Hospital 
Joint Research Ethics Committee. All substantial protocol amendments have been reviewed by the same ethics 
committees and favourable opinion was granted before implementation at sites.

All necessary patient/participant consent has been obtained before assessments and the appropriate institu-
tional forms have been archived. Any patient/participant/sample identifiers included were not known to anyone 
(e.g., hospital staff, patients, or participants themselves) outside the research group so cannot be used to identify 
individuals.

Data availability
Data used in this study is available open access at no cost on the study website (www. preve ntdem entia. co. uk) or 
via the Alzheimer’s Disease Data Initiative (ADDI) platform (https:// doi. org/https:// doi. org/ 10. 34688/ PREVE 
NTMAIN_ BASEL INE_ 700V1) and Dementia Platforms UK (DPUK) platform, pending approval of the data 
access request from the PREVENT steering group committee. For data access requests or guidance for guidance 
on how to access to data on the above websites, please contact Katie Wells (katie.wells@ed.ac.uk), the National 
Research Coordinator for the PREVENT dementia Programme.
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