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Rewriting is a versatile and powerful technique used in many domains. Strategic rewriting allows programmers

to control the application of rewrite rules by composing individual rewrite rules into complex rewrite strategies.

These strategies are semantically complex, as they may be nondeterministic, they may raise errors that trigger

backtracking, and they may not terminate.

Given such semantic complexity, it is necessary to establish a formal understanding of rewrite strategies

and to enable reasoning about them in order to answer questions like: How do we know that a rewrite strategy

terminates? How do we know that a rewrite strategy does not fail because we compose two incompatible

rewrites? How do we know that a desired property holds after applying a rewrite strategy?

In this paper, we introduce Shoggoth: a formal foundation for understanding, analysing and reasoning about

strategic rewriting that is capable of answering these questions. We provide a denotational semantics of System

S, a core language for strategic rewriting, and prove its equivalence to our big-step operational semantics,

which extends existing work by explicitly accounting for divergence. We further define a location-based

weakest precondition calculus to enable formal reasoning about rewriting strategies, and we prove this calculus

sound with respect to the denotational semantics. We show how this calculus can be used in practice to reason

about properties of rewriting strategies, including termination, that they are well-composed, and that desired

postconditions hold. The semantics and calculus are formalised in Isabelle/HOL and all proofs are mechanised.

CCS Concepts: • Theory of computation → Denotational semantics; Operational semantics; Axiomatic

semantics; Hoare logic; Pre- and post-conditions; Rewrite systems.
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1 INTRODUCTION

Strategic rewriting allows programmers to compose rewrite rules and control their application.
Dedicated strategy languages, such as Stratego [Visser 2001; Visser et al. 1998] and more recently
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Elevate [Hagedorn et al. 2020, 2023], provide combinators for composing rewrite rules into larger
strategies, as well as traversals to describe the location at which rewrite strategies are applied.

Strategic rewriting has important practical applications. Stratego is used to specify the semantics
of programming languages by writing interpreters with rewrite strategies in the Spoofax language
workbench [Wachsmuth et al. 2014]. Elevate is used to describe compiler optimisations for generat-
ing fast code achieving competitive performance to the state-of-the art machine learning compiler
TVM [Hagedorn et al. 2020]. Strategic rewriting is also used in domains ranging from generic
programming [Lämmel and Visser 2002] to tactic languages in proof assistants [Sozeau 2014].

Compositions of rewrites easily become complex. For example, Hagedorn et al. [2020] report that
for performing their compiler optimisations up to 60, 000 rewrite steps are required. To orchestrate
such long rewrite sequences, strategy languages provide various combinators for composing
strategies together and traversals for applying strategies to different sub-expressions within the
given abstract syntax tree. Together with support for recursion, these combinators and traversals
are capable of modelling the complex rewrite sequences required in practical applications.

This capability comes at the cost of semantic complexity, as strategies can be nondeterministic,
they may give an error which triggers backtracking, and they may diverge due to the presence of
general recursion. Such a combination of features introduces a lot of semantic subtleties, which
make it easy to define not well-behaved strategies by mistake. For example, a strategy that does
not terminate as it repeatedly tries to apply a rewrite. Similarly, it is easy to compose incompatible
rewrites that will fail for every possible input expression. Finally, even if a rewrite strategy success-
fully terminates, it may not do what it was supposed to do by rewriting the input expression into
an undesired form.
The goal of this paper is to provide a rigorous treatment of strategic rewriting, that we believe

lacks so far. Considering that strategic rewriting has various application domains but has problematic
behaviours, a rigorous formal understanding of strategic rewriting is required to model and analyse
its semantic subtleties as well as reason about the execution of strategies. Therefore, we present
Shoggoth: a formal foundation for reasoning about strategic rewriting.

We start with introducing the formal syntax of System S, a formal core strategy language originally
introduced by Visser and Benaissa [1998]. Some example strategies are sketched to give the gist
of strategic rewriting as well. We then give a comprehensive semantic accounting of strategic
rewriting languages. We define a denotational semantics for System S, which originally had been
given a big-step operational semantics. Our denotational semantics accounts for non-determinism
and errors, and, unlike previous work, also explicitly models divergence. We formalise an extended
big-step operational semantics which accounts for diverging executions, and formally prove the
equivalence of our two models via soundness and computational adequacy theorems. All of our
results have been mechanised in Isabelle/HOL [Nipkow et al. 2002].

To facilitate formal reasoning about rewriting strategies, we define aweakest precondition calculus
that for a given postcondition computes the weakest precondition that must hold in order for
the given strategy to execute successfully and satisfy the postcondition. Because traversals allow
us to apply strategies to sub-expressions of the input expression, we must know not just which
rewrite rules are to be applied, but also where in the input expression they are to be applied,
in order to determine the weakest precondition. To accomplish this, our weakest precondition
calculus is location-based: weakest preconditions are not just based on the given strategy and
desired postcondition, but also depend on the location at which the strategy is to be applied in
the input expression. We have mechanised the definition of the weakest precondition calculus in
Isabelle/HOL and formally proven its soundness with respect to the denotational semantics. 1

1Our mechanisation can be found at the Archive of Formal Proofs.
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Finally, we show how to use the weakest precondition calculus to reason about rewrite strategies
by applying it to various examples, including termination, that a strategy is well-composed, and
that a rewrite strategy satisfies a particular postcondition after its execution. One of our exam-
ples is a strategy for V[-normalisation taken from the Elevate project by Hagedorn et al. [2020],
demonstrating the applicability of our work to practical scenarios.
In summary, we make the following contributions:

• We design, formalise and mechanise using Isabelle/HOL the semantics of System S, including
both denotational and operational models with a full accounting of nondeterminism, errors,
and divergence. We prove these two semantics equivalent (Section 3).

• We design, formalise and mechanise using Isabelle/HOL a location-based weakest precondi-
tion calculus for System S. We prove its soundness with respect to the denotational semantics
(Section 4).

• We demonstrate how to use the weakest precondition calculus to prove practical useful
properties of strategic rewriting (Section 5):
– that a strategy terminates, i.e., that is does not diverge;
– that a strategy is well-composed, i.e., that there exist input expressions for which the
strategy execution will succeed;

– that a desired property is satisfied after execution of the strategy.

Before stepping into the formalisation of System S, in the next section we present the syntax of
System S as well as some example strategies to facilitate the understanding of strategic rewriting.

2 THE SYNTAX OF SYSTEM S

System S [Visser and Benaissa 1998] is a core calculus providing basic constructs of strategic
rewriting, including atomic strategies (rewrite rules) and operators composing strategies and
performing expression traversals in an abstract syntax tree (AST). A successful execution of a
strategy transforms an expression into some other expression while preserving its semantics. The
expressions being rewritten can either be Leaf s or nodes, in general, taking the form of:

Expression(E) 4 ::= Leaf |
n

44

Figure 1 presents the syntax of strategies in System S. We use S to denote the set of all strategies.
Variables, atomic strategies, SKIP and ABORT are basic strategies. Basic strategies are not decom-
posable. An atomic strategy is simply a rewrite rule. For instance, the commutativity of addition
addcom and commutativity of multiplication multcom are atomic strategies:

addcom : 0 + 1 ⇝ 1 + 0 Commutativity of addition

multcom : 0 ∗ 1 ⇝ 1 ∗ 0 Commutativity of multiplication

SKIP can always be executed successfully while executing ABORT would always cause failure. To
compose strategies, one can make use of combinators including sequential composition ( ; ), left
choice (<+) and nondeterministic choice (<+>). Sequential composition instructs to execute two
strategies one after the other. Left choice prefers executing the strategy at the left hand side of
the combinator over the strategy at the right hand side of the operator while nondeterministic
choice decides to execute one of the given two strategy nondeterministically. In addition, one, some

and all are traversals that navigate within the AST. Intuitively, one(B) applies B to one immediate
sub-expression of an input expression, some(B) applies B to as many immediate sub-expressions of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.
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Strategy(S) B ::= atomic | - | SKIP | ABORT

| B ; B | B <+ B | B <+> B

| one(B) | some(B) | all(B)

| `- .B

Fig. 1. The Syntax of System S

an input expression as possible and all(B) applies B to all immediate sub-expressions of an input
expression. Lastly, System S provides a fixed-point operator to model recursion.

Comparison of the expressiveness to the original System S. One difference between our formalism
and the original System S is that we abstract away the term building details for atomic strategies,
instead modelling atomic strategies as partial functions. We believe that applying this abstraction
does not limit the expressiveness of our system. In fact, the purpose of such design is to allow the
flexibility of the term languages, not only limited to the original System S, but also capturing other
strategic rewriting languages that use term constructs that are different from System S. Moreover,
this design enables us to focus on reasoning about properties of compositions of rewriting strategies
that hold independent of the term building behaviour.

Composing strategies. We can compose strategies together with these combinators, traversals
and the fixed-point operator to define more strategies. For example, we define a strategy try(B)
using left choice and SKIP which attempts to apply a strategy B to an input expression. If an error
occurs, then it will leave the input expression unchanged by executing the strategy SKIP:

try(B) := B <+ SKIP

With the fixed-point operator and sequential composition, we can then define a strategy repeat (B)
which keeps applying a strategy B to an input expression until its no longer applicable:

repeat (B) := `- .try(B ; - )

With the fixed-point operator, the traversal one(B) and left choice, we can define top-down and
bottom-up traversals in an AST:

topDown(B) := `- .(B <+ one(- )) bo�omUp(B) := `- .(one(- ) <+ B)

We can further compose repeat (B) and topDown(B) to define a strategy normalise(B), which keeps
applying a strategy B to all sub-expressions of an input expression until it is no longer applicable:

normalise(B) := repeat (topDown(B))

The normalise strategy is very commonly used to express program transformations. Given beta and
eta reductions for _-expressions, we can use the normalisation strategy normalise(beta <+ eta) for
normalising an input _-expression into its V[-normal form.
As previously mentioned, the composition of strategies can be invalid and the executions of

strategies are not always successful. For instance, the strategy multcom ; addcom is not well com-
posed since it cannot be successfully executed on any input expression. repeat (SKIP) is a strategy
that cannot terminate. Although normalise(beta <+ eta) can certainly be successfully executed on
some input expressions, on other inputs it may not terminate. It is important to know that when it
terminates, it will indeed leave the expression in V[-normal form.

To reason about the successful and unsuccessful executions of strategies, we design the location-
based weakest precondition calculus which is discussed in section 4. With this calculus, we are
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Shoggoth: A Formal Foundation for Strategic Rewriting 3:5

able to detect bad strategies that do not have successful executions, like multcom ; addcom and
repeat (SKIP), by concluding that there is no input expression that can be successfully rewritten by
such strategies into a desired form. Also, for a good strategy that has successful executions, we are
able to distinguish inputs that indeed lead to successful executions of the strategy and inputs that
lead to erroneous or diverging executions. Such reasoning power is demonstrated in section 5.
To design the location-based weakest precondition calculus, we need to understand the be-

haviours of executing these strategies in System S. Therefore, before introducing the calculus and
its reasoning power, we firstly study the formal semantics of System S.

3 THE SEMANTICS OF SYSTEM S

For given collections of expressions E, System S defines nondeterministic execution for given
strategies that can result in expressions or errors. We extend the original System S by allowing
divergence as a possible result of executing a strategy. Therefore, applying a strategy to an expression
can result in expressions, an error or divergence.

3.1 The Plotkin Powerdomain

We provide a denotational semantics of System S as an instance of Plotkin’s powerdomain construc-
tion [Plotkin 1976], which allows us to assign least fixed points as the semantics of the recursion
construct. An l-complete partial order (l-cpo) is a partially ordered set (-, ⪯) in which each
l-chain (G1 ⪯ G2 ⪯ G3 ⪯ . . . ) has a least upper bound. A function 5 : - → - on such a set is
continuous if for each l-chain G1 ⪯ G2 ⪯ G3 ⪯ . . . with least upper bound G , one has that 5 (G)
is the least upper bound of the set {5 (G1), 5 (G2), 5 (G3), . . . }. A continuous function is certainly
monotone, in the sense that G1 ⪯ G2 implies 5 (G1) ⪯ 5 (G2) – this follows by considering thel-chain
G1 ⪯ G2 ⪯ G2 ⪯ G2 ⪯ . . . , and its least upper bound G2. Now Kleene’s fixed-point theorem says that
each continuous function 5 on an l-cpo with a least element has a least fixed point.

Consider a nondeterministic, possibly diverging, algorithm that transforms values into values. If
V is the set of values, this algorithm can be modelled as a function 5 : V → P¬∅ (V⊥), where
P¬∅ (- ) is the set of non-empty subsets of - , the non-empty-powerset, and V⊥ := V ⊎ {⊥} is the
set in which we embed V together with a new element ⊥. The newly added element ⊥ represents
the outcome where the algorithm diverges. We equip the set V⊥ with a partial order by defining:

G ⪯ ~ ⇐⇒ G = ⊥ ∨ G = ~ .

This fits with the intuition that ⊥ represents a computation that has not yet terminated, and G ⪯ ~

holds when ~ is a later stage of the computation G .

Terminated computations are identified by the values they com-
pute. We compare sets of values using the Egli-Milner ordering:

� ⪯ � ⇐⇒ (∀G ∈ �. ∃~ ∈ �. G ⪯ ~)∧(∀~ ∈ �. ∃G ∈ �. G ⪯ ~)

Lifting a partial order from elements to sets in this fashion always
yields a preorder. For a flat domain V⊥, ⪯ is a partial order on
P¬∅ (V⊥). It is characterised by:

� ⪯ � ⇐⇒ � = � ∨ ((⊥ ∈ �) ∧�\{⊥} ⊆ �) (Porcupine ordering)

The resulting poset P¬∅ (V⊥) is an l-cpo. Each l-chain either enters a spine of the porcupine,
and thus contains a largest element which is its least upper bound, or ⊥ is a member of all elements
in the chain, so that its least upper bound is simply the union of all sets in the chain.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.
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Aside on the powerdomain construction and the Egli-Milner ordering. To give some further insight
into the powerdomain construction and the Egli-Milner ordering, recall the following well-known
characterisation. Hennessy and Plotkin [1979, Remark after Lemma 3.5] show that Plotkin’s [1976]
powerdomain construction extends to alll-complete partial orders (l-cpos) by sending eachl-cpo
to the free semi-lattice over it. In detail, given an l-cpo - , we define a free semi-lattice over - as
an l-cpo �- , together with a Scott-continuous function [ : - → �- and a Scott-continuous
binary operation: ∨ : (�- )2 → �- that is associative, commutative, and idempotent. A free
semi-lattice always exists, but its explicit description may be complicated. Hennessy and Plotkin
show that, when l-cpo is l-algebraic, we can construct the free semi-lattice explicitly by taking
�- := P¬∅- to be the powerdomain construction with the Egli-Milner ordering, [ (G) := {G}
as the embedding of - into this semi-lattice, and sub-set union as the binary operation. So in a
specific and technical sense, the powerdomain �- is the simplest extension of the l-cpo - with
an associative, idempotent and commutative binary operator. (end of aside)

In our mechanised Isabelle/HOL formalisation, we opt to use posets that are complete with
respect to all chains, not merely countable or directed ones, without maintaining continuity as an
assumption. The stronger assumption on posets allows us to weaken the assumption on functions:
we only require monotonicity to ensure existence of fixed points. This choice was made purely for
ease of formalisation, as Isabelle/HOL already includes a library for chain-complete partial orders.
While this means that our domain may contain monotone functions that do not correspond to any
expressible strategy, and that Hennessy and Plotkin’s characterisation does not directly apply, our
meta-theoretic results below show how to relate our semantics to the operational semantics, and
our reasoning examples show that this semantics suffices to reason about practically interesting
examples. We conjecture that our results will easily carry over to a semantics defined with l-cpos.

3.2 Formalised Denotational Semantics

We now present and discuss the denotational semantics for System S, capturing successful and
erroneous executions of strategies as well as nondeterminism, divergence and recursion. A strategy
is a nondeterministic algorithm/function that rewrites expressions into expressions. This nondeter-
ministic algorithm can sometimes yield an error err instead of an expression, and it might fail to
terminate. In the latter case, we say that it yields the value div. Formally, we instantiate Plotkin’s
powerdomain construction from the previous section by setting V := E ∪ {err} and ⊥ := div,
noting it is a flat domain. We denote the resulting powerdomain by:

D? := P¬∅ (E∪ {err} ∪ {div}) , ordered by � ⪯ � ⇐⇒ � = � ∨ ((div ∈ �) ∧�\{div} ⊆ �) .

We define the denotational semantics of System S over the point-wise lifting of the powerdomain:

D = E→ D?

To define the denotational semantics of strategies in a concise manner, we provide semantic
combinators and traversals that encapsulate the meaning of syntactic combinators and traversals.

Figure 2 illustrates the definitions of the combinators. The definition of sequential composition
B ;B C is straightforward, indicating that the execution of the strategy C depends on the result of
applying B to the input expression 4 . If applying B to 4 results in an error or divergence, the
sequential composition will produce an error and divergence, respectively. Otherwise, the result
of the sequential composition B ;B C is produced by applying C to the expression obtained by the
execution of B . The definition of left choice B<+BC prioritises the execution of the strategy B over C .
The strategy C will only be executed if the execution of B produces an error. Our treatment of
nondeterminism is demonic with respect to divergence while angelic with respect to errors. If either
the execution of B or C divergences, then the nondeterministic choice B<+>BC diverges as well. The

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.



Shoggoth: A Formal Foundation for Strategic Rewriting 3:7

( ;B ) : D → D → D

(B ;B C) (4) =
⋃

{C (4′) | 4′ ∈ B (4) ∩ E} ∪ {A | A ∈ B (4) ∩ {div, err}}

(Sequential composition)

(<+B ) : D → D → D

(B <+B C) (4) = (B (4) \ {err}) ∪ {4′ | 4′ ∈ C (4) ∧ err ∈ B (4)}

(Left choice)

(<+>B ) : D → D → D

(B <+>B C) (4) = {4′ | 4′ ∈ B (4) ∩ E} ∪ {div | div ∈ B (4)}
∪ {4′ | 4′ ∈ C (4) ∩ E} ∪ {div | div ∈ C (4)} ∪ {err | err ∈ B (4) ∩ C (4)}

(Nondeterministic choice)

Fig. 2. Semantic Combinators of System S

nondeterministic choice will only result in an error if both executions of B and C result in an error.
When both B and C give cause for a successful execution, the choice is nondeterministic.

These combinators are sufficient for composing strategies applied to the root of an AST. System
S also provide traversals one, some and all to apply strategies to sub-expressions. Their semantics
are shown in figure 3. The traversal oneB (B) (4) nondeterministically chooses one immediate sub-
expression of 4 and applies strategy B to it. The treatment of nondeterminism here is again demonic
with respect to divergence and angelic with respect to errors. If applying B to one of the sub-
expressions results in divergence, oneB (B) will diverge. An error will only occur when 4 has no
sub-expression or applying B to all sub-expressions of 4 results in error. The traversal someB (B) (4)
applies B to as many immediate sub-expressions of 4 as possible. Its divergence and erroneous
situations are the same as oneB . The successful execution of allB (B) on an input expression 4 requires
successful application of B to all immediate sub-expressions of 4 or 4 being a Leaf . If applying B to
one sub-expression leads to an error or divergence, allB (B) (4) yields err or div, respectively. For
simplicity of the presentation and illustration, we have restricted ourselves to binary trees in this
paper. However, the traversals can easily be generalised to ASTs with wider branching.

With the semantic combinators and semantic traversals introduced, we provide the denotational
semantics for System S shown in figure 4. The semantics of a strategy is modelled as a function
that takes in a semantic environment b , which is a function mapping variables to elements ofD.

The semantics of a variable consists of looking up the variable in a given semantic environment.
Wemodel an atomic strategy as a partial function, which can successfully rewrite an input expression
into an output expression when it is defined for the input expression. When an atomic strategy is
not defined for an input expression, applying it to the input expression will result in an error. SKIP is
a strategy that always rewrites an input expression to itself while ABORT is a strategy that always
produces an err . The denotational semantics of combinators and traversals are straightforwardly
defined with the semantic combinators and traversals. Lastly, the semantics of the fixed-point
operator is the least fixed point in our domain, where we extend the semantic environment with a
mapping from the syntactic fixed-point variable to the fixed point in our domain. We denote this
environment extension with the syntax b [- ↦→ 3].

The denotational semantics is monotone. Given two environments b1 and b2, if the values obtained
from looking up the variables in the environments satisfy the ordering b1 (- ) ⪯ b2 (- ) for any
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(ones) : D → D

ones (B) (4) = {
=

424′1
| 4 =

=

4241
∧ 4′1 ∈ B (41) ∩ E} ∪ {

=

4′241
| 4 =

=

4241
∧ 4′2 ∈ B (42) ∩ E}

∪ {div | 4 =
=

4241
∧ div ∈ B (41) ∪ B (42)}

∪ {err | 4 = Leaf ∨ (4 =
=

4241
∧ err ∈ B (41) ∩ B (42))}

(One)

(somes) : D → D

somes (B) (4) = {
=

4′24′1
| 4 =

=

4241
∧ 4′1 ∈ B (41) ∩ E ∧ 4′2 ∈ B (42) ∩ E}

∪ {
=

424′1
| 4 =

=

4241
∧ 4′1 ∈ B (41) ∩ E ∧ err ∈ B (42)}

∪ {
=

4′241
| 4 =

=

4241
∧ 42 ∈ B (42) ∩ E ∧ err ∈ B (41)}

∪ {div | 4 =
=

4241
∧ div ∈ B (41) ∪ B (42)}

∪ {err | 4 = Leaf ∨ (4 =
=

4241
∧ err ∈ B (41) ∩ B (42))}

(Some)

(alls) : D → D

alls (B) (4) = {Leaf | 4 = Leaf } ∪ {
=

4′24′1
| 4 =

=

4241
∧ 4′1 ∈ B (41) ∩ E ∧ 4′2 ∈ B (42) ∩ E}

∪ {div | 4 =
=

4241
∧ div ∈ B (41) ∪ B (42)}

∪ {err | 4 =
=

4241
∧ err ∈ B (41) ∪ B (42)}

(All)

Fig. 3. Semantic Traversals of System S

variable - , the values obtained from evaluation of a strategy B with these environments should
also satisfy the ordering ⟦B⟧b1 ⪯ ⟦B⟧b2. Formally, we present the monotonicity theorem 3.1:

Theorem 3.1 (Semantics monotonicity theorem). For given environments b1 and b2, and

strategy B we have:

∀- .b1 (- ) ⪯ b2 (- )

⟦B⟧b1 ⪯ ⟦B⟧b2
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Variable(V) - . / . . .

Semantic Environment(Γ( ) b : V→ D

⟦S ⟧ : Γ( → D

⟦-⟧b = b-

⟦atomic⟧b = _4.{atomic(4) | atomic(4) def} ∪ {err | atomic(4) undef}

⟦SKIP⟧b = _4.{4}

⟦ABORT⟧b = _4.{err}

⟦B ; C⟧b = ⟦B⟧b ;B ⟦C⟧b (Sequential composition)

⟦B <+ C⟧b = ⟦B⟧b <+B ⟦C⟧b (Left choice)

⟦B <+> C⟧b = ⟦B⟧b <+>B ⟦C⟧b (Nondeterministic choice)

⟦one(B)⟧b = oneB (⟦B⟧b) (One)

⟦some(B)⟧b = someB (⟦B⟧b) (Some)

⟦all(B)⟧b = allB (⟦B⟧b) (All)

⟦`- .B⟧b = `X.⟦B⟧(b [- ↦→ X]) (Fixed point)

Fig. 4. Denotational Semantics of System S

We prove this theorem in Isabelle/HOL by structural induction on the strategy B .

3.3 Formalised Big-Step Operational Semantics

In this section, we present the formalised big-step operational semantics of System S, with our
extension allowing for divergent strategies. Figure 5 depicts the big-step operational semantics
for the non-diverging cases of System S. These cases are essentially the same as those of Visser
and Benaissa [1998], albeit with the aforementioned simplification to binary trees applied.2 The
semantic rules are given in a straightforward way.
On top of these rules for terminating cases, we define the semantics for divergence as the

coinductive judgement [Leroy and Grall 2009] satisfying the rules shown in figure 6. Here we use
4

B
−→
∞

to indicate that the evaluation of an expression 4 by a strategy B leads to divergence.

3.4 The Denotational Semantics is Equivalent to The Big-Step Operational Semantics

In section 3.2 and section 3.3, we have provided two styles of semantics for System S. It is essential
to prove that these two semantics are equivalent, since we would like our formal semantics to
provide unambiguous and unique interpretation of strategies in System S. In addition, with the
equivalence of these two semantics established, we only need to refer to one of them to prove some
properties of System S and they should also hold for the other semantics.
We reason about the equivalence between the denotational semantics and big-step operational

semantics via computational soundness and computational adequacy theorems. More specifically,
we have a pair of computational soundness and adequacy theorems to relate the non-diverging
cases and a pair of computational soundness and adequacy theorems to relate the diverging cases.

2Visser and Benaissa [1998] denote error by ↑.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.



3:10 Xueying Qin, Liam O’Connor, Rob van Glabbeek, Peter Höfner, Ohad Kammar, and Michel Steuwer

4
SKIP
−−−→ 4

(Skip)

4
ABORT
−−−−→ err

(Abort)

4
atomic
−−−−→ atomic(4)

(Atomic)

4
B1
−→ 41 41

B2
−→ 42

4
B1 ; B2
−−−−→ 42

(SeqComp)

4
B1
−→ err

4
B1 ; B2
−−−−→ err

(SeqCompErr(1))

4
B1
−→ 41 41

B2
−→ err

4
B1 ; B2
−−−−→ err

(SeqCompErr(2))

4
B1
−→ 41

4
B1<+B2
−−−−−→ 41

(LChoice (L))

4
B1
−→ err 4

B2
−→ 42

4
B1<+B2
−−−−−→ 42

(LChoice (R))

4
B1
−→ err 4

B2
−→ err

4
B1<+B2
−−−−−→ err

(LChoiceErr)

4
B1
−→ 41

4
B1<+>B2
−−−−−−→ 41

(Choice(L))

4
B2
−→ 42

4
B1<+>B2
−−−−−−→ 42

(Choice(R))

4
B1
−→ err 4

B2
−→ err

4
B1<+>B2
−−−−−−→ err

(ChoiceErr)

4
B [- :=`- .B ]
−−−−−−−−−→ 41

4
`- .B
−−−→ 41

(FixedPoint)

4
B [- :=`- .B ]
−−−−−−−−−→ err

4
`- .B
−−−→ err

(FixedPointErr)

Leaf
one (B )
−−−−−→ err

(One(Id))

Leaf
some (B )
−−−−−−→ err

(Some(Id))

Leaf
all (B )
−−−−→ Leaf

(All(Id))

41
B
−→ 4′1

=

4241

one (B )
−−−−−→

=

424′1

(One(L))

42
B
−→ 4′2

=

4241

one (B )
−−−−−→

=

4′241

(One(R))
41

B
−→ err 42

B
−→ err

=

4241

one (B )
−−−−−→ err

(OneErr)

41
B
−→ 4′1 42

B
−→ err

=

4241

some (B )
−−−−−−→

=

424′1

(Some(L))

41
B
−→ err 42

B
−→ 4′2

=

4241

some (B )
−−−−−−→

=

4′241

(Some(R))

41
B
−→ 4′1 42

B
−→ 4′2

=

4241

some (B )
−−−−−−→

=

4′24′1

(Some)
41

B
−→ err 42

B
−→ err

=

4241

some (B )
−−−−−−→ err

(SomeErr)

41
B
−→ 4′1 42

B
−→ 4′2

=

4241

all (B )
−−−−→

=

4′24′1

(All)
41

B
−→ err

=

4241

all (B )
−−−−→ err

(AllErr(L))

42
B
−→ err

=

4241

all (B )
−−−−→ err

(AllErr(R))

Fig. 5. Big-step operational semantics of non-diverging cases

Firstly, we show that if an expression 4 is evaluated to another expression or an error using
the big-step operational semantics of a strategy B♣, this result must also be in the set obtained by
executing the denotational semantics of B♣ with the given expression 4 . Formally, this is described
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4
B1
−→
∞

4
B1 ; B2
−−−−→
∞

(SeqCompDiv(1))

4
B1
−→ 41 41

B2
−→
∞

4
B1 ; B2
−−−−→
∞

(SeqCompDiv(2))

4
B1
−→
∞

4
B1<+B2
−−−−−→

∞

(LChoiceDiv(1))

4
B1
−→ err 4

B2
−→
∞

4
B1<+B2
−−−−−→

∞

(LChoiceDiv(2))

4
B1
−→
∞

4
B1<+>B2
−−−−−−→

∞

(ChoiceDiv(1))

4
B2
−→
∞

4
B1<+>B2
−−−−−−→

∞

(ChoiceDiv(2))

41
B
−→
∞

=

4241

one (B )
−−−−−→

∞

(OneDiv(1))

42
B
−→
∞

=

4241

one (B )
−−−−−→

∞

(OneDiv(2))

41
B
−→
∞

=

4241

some (B )
−−−−−−→

∞

(SomeDiv (1))

42
B
−→
∞

=

4241

some (B )
−−−−−−→

∞

(SomeDiv (2))

41
B
−→
∞

=

4241

all (B )
−−−−→

∞

(AllDiv (1))

42
B
−→
∞

=

4241

all (B )
−−−−→

∞

(AllDiv (2))

4
B [- :=`- .B ]
−−−−−−−−−→

∞

4
`- .B
−−−→
∞

(FixedPointDiv)

Fig. 6. Big-step operational semantics of diverging cases

by our first computational soundness theorem 3.2. The subscript ♣ indicates that B♣ is a closed

strategy: a strategy with no free variables, i.e. fv(B♣) = ∅.

Theorem 3.2 (Computational soundness theorem one). For a given closed strategy B♣, and

any environment b , we have for an arbitrary expression 4 and result A :

4
B♣
−→ A

A ∈ ⟦B♣⟧b4

We prove this by induction on the derivation of 4
B♣
−→ A from the rules of Figure 5. As the strategy

B♣ is always closed, to instantiate our inductive hypothesis in the cases for the fixed-point operator,
we make use of the following substitution lemma 3.3 to semantically relate the syntactic substitution
of a closed strategy B♣ for a variable - in B with the strategy B under the environment where -
maps to the semantics of B♣.
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Lemma 3.3 (Substitution lemma one).

⟦B [- := B♣]⟧b = ⟦B⟧b [- ↦→ (⟦B♣⟧b)]

This lemma can easily be generalised to allow B♣ to instead be an open strategy, so long as - is
not free in B♣, however our operational semantics only ever substitutes closed strategies, thus this
generalisation is not necessary to prove our semantic equivalence theorems.

We now prove a computational adequacy theorem, the converse of the computational soundness
theorem 3.2. It states that if a non-diverging result A is one of the results of the denotational semantics
for a closed strategy B♣ with an input expression 4 , then the big-step operational semantics of B♣
with the input expression 4 will produce the same result.

Theorem 3.4 (Computational adeqacy theorem one). For an expression 4 , result A , and closed

strategy B♣ we have:

A ∈ ⟦B♣⟧b4 A ≠ div

4
B♣
−→ A

To prove this theorem, we first generalise to open strategies. To do this, we define an approximation
relation between a closed strategy and an element of our domain, and state an approximation
lemma. Here, we employ, for a simultaneous substitution \ : V → S♣, the notation B [\ ] for the
application of \ to all free variables in B .

Definition 3.1 (Approximation relation one). Given a closed strategy B♣ and a function 3 ∈ D,

we say B♣ △3 if and only if for any given input expression 4 , when A is a non-diverging result obtained

by applying 3 to 4 , A will also be the result of evaluating the big-step operational semantics of B♣ with

the input expression 4 .

B♣ △3 ⇐⇒ ∀4 A . A ∈ 3 (4) ∩ (E ∪ {err}) ⇒ 4
B♣
−→ A

Lemma 3.5 (Approximation lemma one).

∀~ ∈ fv(B). \ (~) △ b (~) B♣ = B [\ ]

B♣ △ ⟦B⟧b

The proof of this lemma is by induction on the strategy B , and Scott induction is required for the
fixed point cases. From the approximation lemma, we prove the computational adequacy theorem
3.4 by setting B := B♣. As there are no free variables in B♣, the approximation relation trivially
implies our goal.

The computational soundness and adequacy theorems presented above state that the denotational
semantics and big-step operational semantics are equivalent for the non-diverging cases. Next, we
present computational soundness and adequacy theorems for divergent strategies.
The computational soundness theorem for the diverging cases states that, if the evaluation of

the big-step operational semantics of a closed strategy B♣ with an input expression 4 diverges, div
must be in the resulting set obtained by executing the denotational semantics of B♣ with the given
expression 4 .

Theorem 3.6 (Computational soundness theorem two).

4
B♣
−→
∞

div ∈ ⟦B♣⟧b4

Just as with computational adequacy for non-diverging cases, we must first generalise to open
strategies. We define the second approximation relation together with an approximation lemma to
prove this soundness theorem.
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Definition 3.2 (Approximation relation two). Given a closed strategy B♣ and a function

3 ∈ D, we say B♣ △∞ 3 if and only if for any given input expression 4 , when evaluating the big-step

operational semantics of B♣ with the input expression 4 diverges, the divergence div will be obtained by

applying 3 to 4 , and we have the ordering 3 (4) ⪯ ⟦B♣⟧b4 .

B♣ △∞ 3 ⇐⇒ ∀4. (4
B♣
−→
∞

⇒ div ∈ 3 (4)) ∧ 3 (4) ⪯ ⟦B♣⟧b4

Lemma 3.7 (Approximation lemma two).

∀~ ∈ fv(B). \ (~) △∞ b (~) B♣ = B [\ ]

B♣ △∞ ⟦B⟧b

The proof of this lemma is (again) by induction on the strategy B , where Scott induction is used for the
fixed point cases. For the cases which involve terminating sub-steps, such as sequential composition
or left choice, we make use of our soundness theorem for non-diverging cases, theorem 3.2. We
utilise this approximation lemma 3.7 to prove the computational soundness theorem 3.6.

Lastly, we prove the computational adequacy theorem for the diverging cases, which is again the
converse of the soundness theorem 3.6. It states that if div is in a result of executing the denotational
semantics of a closed strategy B♣ with an input expression 4 , then evaluating the big-step operational
semantics with the given expression 4 leads to divergence.

Theorem 3.8 (Computational adeqacy theorem two).

div ∈ ⟦B♣⟧b4

4
B♣
−→
∞

We prove this by coinduction over big-step operational semantics for diverging cases while
making use of the computational adequacy theorem 3.4 for the non-diverging cases. Just as with
our computational soundness proof for non-diverging cases, we work only with closed strategies
B♣, and rely on our substitution lemma 3.3 for the fixed point cases.

With these two pairs of computational soundness and adequacy theorems, we can conclude that
the denotational semantics and big-step operational semantics are equivalent. Formally, we obtain:

Theorem 3.9 (Eqivalence between semantics).

⟦B♣⟧b4 = {A | 4
B♣
−→ A } ∪ {div | 4

B♣
−→
∞

}

In this section, we have studied two styles of semantics of System S, namely a denotational
semantics and a big-step operational semantics. To complete our semantic accounting, it may be
worthwhile for us to study its small-step operational semantics in the future.

4 LOCATION-BASEDWEAKEST PRECONDITION CALCULUS

As we have seen, a strategy either successfully rewrites an expression into another expression,
generates an error, or fails to terminate.
Naturally, we care mainly about the successful executions of a strategy. In particular, when it

rewrites an input expression into another expression that satisfies a desired property. In order to
formally understand successful and unsuccessful executions of strategies, we design and formalise
a location-based weakest precondition calculus. Weakest preconditions were introduced by Dijkstra
[1975], as an axiomatic semantics for his guarded command language. Different from other weakest
precondition calculi, we introduce the notion of a location in an AST as a parameter in our calculus
for reasoning about traversals, which is discussed in section 4.1. Before presenting the formal
definition of the calculus, we recapitulate the definition of a weakest precondition.
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Definition 4.1 (Weakest precondition). Given a program ( and a postcondition % , the weakest

precondition wp((, %) is an assertion 'F such that for any precondition ':

{'}({%} ⇔ (' ⇒ 'F)

Here {'}({%} is a Hoare triple stating that ( will successfully terminate in a state satisfying
assertion % if the state before executing ( satisfies '. Intuitively, the weakest precondition of (
under % characterises all those states that lead to successful termination in a state of % when
executing ( . In Dijkstra’s [1975] calculus, a function wp is defined which, given a program and
an assertion as a postcondition, computes the weakest precondition inductively on the program
structure. Bonsangue and Kok [1992] extend Dijkstra’s calculus to assign weakest preconditions for
a fixed-point operator by additionally including a logic environment as an input to the wp function,
which associates a predicate transformer with each variable. As we also have a fixed-point operator
for general recursion, we do the same in this formalisation.
When dealing with strategies, assertions take the form of sets of expressions, and a state is an

expression we are rewriting. Thus, the weakest precondition is a set of input expressions for a
strategy to be applied to, such that the result of the application of the strategy will lead to another
expression. That means the strategy will neither yield an error nor diverge. Moreover, the weakest
precondition has to guarantee that an expression of the postcondition is reached.

Definition 4.2 (Weakest must succeed precondition). Aweakest must succeed precondition
takes the formF?Z⊩B@; (%). This is the set of those expressions that, by applying strategy s at location

l under the logic environment Z , will be successfully transformed into expressions satisfying % .

To calculate this set of input expressions constituting the weakest must succeed precondition,

we also introduce the following auxiliary function. In fact, F?Z⊩B@; (%) and F?
↑
Z⊩B@;

(%) will be

defined by mutual induction.

Definition 4.3 (Weakest may error precondition). A weakest may error precondition takes

the form ofF?
↑
Z⊩B@;

(%). This is the set of those expressions that, by applying strategy s at location l

under the logic environment Z , will be successfully transformed into expressions satisfying % , or result

in error.

4.1 Modelling Traversals

In definitions 4.2 and 4.3, we introduce the location for specifying the particular sub-expression
to which the strategy B should be applied. This allows us to express that after applying a strategy
B to the sub-expression at the location ; of an input expression 4 , the input expression 4 should
be transformed into an expression that satisfies the postcondition % . Consequently, the weakest
precondition for traversals such as one(B), some(B), and all(B) can be defined inductively in terms
of the weakest precondition of B , just at different locations.

Kieburtz [2001] proposes an alternative approach, using modal logic for assertions about traver-
sals. However, it is unclear how this technique could be used to define a complete calculus. We
discuss this in section 6.
A location is essentially a path into the abstract syntax tree. Such a path consists of a sequence

of positions, for our binary trees either left (%) or right (+). Positions are prepended to a location
with ⊳ and appended with ⊲. For instance, suppose we have an AST representing an arithmetic
expression 1 + 3, each sub-expression is located as:

+ (n)

3 (n ⊲ +)1 (n ⊲ %)
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With locations being introduced in the assertions, accompanied by the two helper functions
lookup and update discussed in the next section, we can model the execution of a strategy at a
given location in the input expression, which enables the assignments of weakest preconditions
inductively for traversals just as with other operators.

4.2 The Calculus

We now introduce the location-based weakest precondition calculus for System S in its full formal
detail. We first provide definitions of helper functions and essential notations for the formalisation.
To connect locations and expressions, we introduce two partial functions lookup and update,

shown in figure 7. Given a location ; and an expression 4 , the partial function lookup returns the
sub-expression which is located at the location ; in an expression 4 . The function is partial, as it is
only defined when the location ; actually exists in the expression 4 . The partial function update

takes in a set xs ∈ D? , and updates an expression 4 at the location ; with each expression in xs,
resulting in a set of expressions where each element is obtained by replacing the sub-expression of
4 at the location ; with an element of xs, with appropriate handling of errors and divergence.

Figure 8 shows the essential notations for defining the weakest precondition calculus. Since
we will again have fixed-point operators in the weakest precondition calculus, we need to ensure
that least fixed points exist, by operating in a domain which is again a cpo, and show that our wp
function is monotone with respect to that domain. The ordering of our domainD! is a point-wise
lifted set ordering, of which the bottom element is the empty set.
Similar to the semantic environment introduced for the denotational semantics in figure 4, the

logic environment contains mappings of (fixed point) variables to an element of our logic domain
(which is a function). Since we mutually define weakest must succeed preconditions and weakest
may error preconditions, a fixed-point variable can map to two different functions. We use the tags
· (must succeed) and ↑ (may error) to distinguish these two different mappings.
With these notations and helper partial functions, we provide the location-based weakest pre-

condition calculus. For presentation purposes, we simplify our definitions by only considering the

lookup : L→ E⇀ E (We write it as ⋔; :L (4 : E) : (4′ : E))

lookup n 4 = 4

lookup (% ⊳ ;)
=

4241
= lookup ; 41

lookup (+ ⊳ ;)
=

4241
= lookup ; 42

update : L→ E⇀ D? → D? (We write it as (3 : D? )�; :L (4 : E) : (3 ′ : D? ))

update n 4 xs = xs

update (% ⊳ ;)
=

4241
xs = {

=

424′1
| 4′1 ∈ (update ; 41 xs) ∩ E} ∪ (xs ∩ {err, div})

update (+ ⊳ ;)
=

4241
xs = {

=

4′241
| 4′2 ∈ (update ; 42 xs) ∩ E} ∪ (xs ∩ {err, div})

Fig. 7. Helper functions
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Position 8 := % | +

Variable(V) - . / . . .

Location(L) ; := n | ; ⊲ 8 | 8 ⊳ ;

Tag(T) C := · | ↑

Logic Domain D! = L→ P (E) → P (E)

Logic Environment(Γ!) Z : (V × T) → D!

F?Z :Γ!⊩B :S@; :L (% : P (E)) : ('F : P (E)) (Weakest must succeed precondition)

F?
↑
Z :Γ!⊩B :S@; :L

(% : P (E)) : ('F : P (E)) (Weakest may error precondition)

Fig. 8. Basic notations

cases where location ; actually exists in the expression. In our Isabelle/HOL formalisation, we make
this explicit in the definition of wp and wp↑.

Figure 9 shows the weakest preconditions for basic strategies: SKIP, ABORT and atomic. Trivially,
the weakest must succeed precondition and weakest may error precondition for SKIP are the same,
i.e., the given postcondition % , since the execution of SKIP never results in error or divergence, nor
changes the input expression. As for ABORT, since it will always result in an error no matter what
input expression is given, its weakest must succeed precondition is the empty set and its weakest
may error precondition is the set of all expressions. The weakest preconditions of atomic strategies
are defined using their denotational semantics (cf. figure 4): the weakest must succeed precondition
is the set of input expressions, for each expression of which applying the atomic strategy to its
sub-expression at the given location ; should result in a (singleton) set of expressions which is a
subset of the given postcondition % . The weakest may error postcondition is defined in a similar
manner, the only difference is that the resulting set of expressions should be a subset of % ∪ {err}.
It does not matter what semantic environment is given here when we invoke the semantics, so
we just use the environment which maps all variables to {div}, denoted by ∅. Remember that the
operators ⋔ and� are lookup and update.

Figure 10 shows the weakest preconditions for combinators: sequential composition, left choice
and nondeterministic choice. Intuitively, the weakest must succeed precondition of the sequential
composition B ; C is simply to sequentially compose the weakest must succeed preconditions of B
and C where the post condition of B is the weakest must succeed precondition of C . The same approach
is taken for defining the weakest may error precondition. The weakest must succeed precondition
of the left choice B <+ C is the union of the set of expressions that can be successfully rewritten
by the strategy B and the set of expressions for which applying B may result in error but that can
be successfully rewritten by the strategy C . Its weakest may error condition additionally includes
the set of expressions for which applying the strategy C may result in error. The definitions of the

F?Z⊩SKIP@; (%) = %

F?
↑
Z⊩SKIP@;

(%) = %

F?Z⊩ABORT@; (%) = ∅

F?
↑
Z⊩ABORT@;

(%) = E

F?Z⊩atomic@; (%) = {4 | (⟦atomic⟧∅(⋔; 4))�; 4 ⊆ %}

F?
↑
Z⊩atomic@;

(%) = {4 | (⟦atomic⟧∅(⋔; 4))�; 4 ⊆ % ∪ {4AA }}

Fig. 9. Location-based weakest preconditions for basic strategies
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F?Z⊩B ; C@; (%) = F?Z⊩B@; (F?Z⊩C@; (%)) F?
↑
Z⊩B ; C@;

(%) = F?
↑
Z⊩B@;

(F?
↑
Z⊩C@;

(%))

(Sequential composition)

F?Z⊩B<+C@; (%) = F?Z⊩B@; (%) ∪ (F?
↑
Z⊩B@;

(%) ∩F?Z⊩C@; (%))

F?
↑
Z⊩B<+C@;

(%) = F?Z⊩B@; (%) ∪ (F?
↑
Z⊩B@;

(%) ∩F?
↑
Z⊩C@;

(%))

(Left choice)

F?Z⊩B<+>C@; (%) = (F?
↑
Z⊩C@;

(%) ∩F?Z⊩B@; (%)) ∪ (F?
↑
Z⊩B@;

(%) ∩F?Z⊩C@; (%))

F?
↑
Z⊩B<+>C@;

(%) = F?
↑
Z⊩B@;

(%) ∩F?
↑
Z⊩C@;

(%)

(Nondeterministic choice)

Fig. 10. Location-based weakest preconditions for combinators

weakest preconditions of the nondeterministic choice B <+> C capture the angelic nondeterminism
for err and demonic nondeterminism for div. Its weakest must succeed precondition is the set of
expressions to which applying neither the strategy B nor C will diverge and which can be successfully
rewritten by at least one of B and C . The weakest may error precondition relaxes this last requirement
by including the set of expressions to which applying both B and C may result in an error.
Location is very important for defining the weakest preconditions of traversals. Demonstrated

in figure 11, the approach of defining the weakest preconditions for one(B) is again similar to
nondeterministic choice, as one(B) nondeterministically chooses one of the left or right child of
the current expression to apply the strategy B to. Its weakest must succeed precondition is a set
of expressions that are not leaf nodes. For each of them, applying B to either its left child or right
child should not diverge, and at least one of its children must be successfully rewritten by B . The
weakest may error precondition of one(B) includes all expressions that are leaf nodes as well as
expressions whose both children to which applying B may result in error. The weakest must succeed
precondition of some(B) is a set of expressions that are not leaf nodes. For each of them, if the given
strategy B can be applied to both of its children successfully, the result of applying B to both of
them regardless of the ordering of the application should satisfy the postcondition % . In addition,
applying B to one of its children may result in an error, but not for both of its children. Again,
expressions with children to which applying B diverges are excluded from the weakest must succeed
precondition. Similar to one(B), the weakest may error preconditions includes all leaf expressions
and expressions whose both children to which applying B may result in error. Since all(B) requires
the strategy B to be applied to either a leaf expression or both children of an expression which is not
a leaf, intuitively, its weakest must succeed precondition is a set of leaf expressions, or expressions
of which both children can be successfully rewritten by the strategy B regardless of the order of
the application of B . Its weakest may error precondition again includes all leaf expressions and
expressions with children to which applying B may result in an error.

Lastly, we introduce the weakest preconditions for the fixed-point operator, shown in figure 12,
which are defined using simultaneous induction. Δ contains a pair of simultaneously defined least
fixed points� and� which are used to define the weakest must succeed precondition and weakest
may fail precondition respectively. In these fixed-point equations, we extend the logic environment
Z with mappings from the fixed-point variable with tags (-, ·) and (-, ↑) to the least fixed points
� and� respectively.
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F?Z⊩one (B )@; (%) = (F?
↑
Z⊩B@;⊲%

(%) ∩F?Z⊩B@;⊲+ (%)) ∪ (F?
↑
Z⊩B@;⊲+

(%) ∩F?Z⊩B@;⊲% (%))

F?
↑
Z⊩one (B )@;

(%) = {4 | (⋔; 4) = Leaf } ∪ (F?
↑
Z⊩B@;⊲%

(%) ∩F?
↑
Z⊩B@;⊲+

(%))

(One)

F?Z⊩some (B )@; (%) = F?Z⊩B@;⊲% (F?Z⊩B@;⊲+ (%)) ∪F?Z⊩B@;⊲+ (F?Z⊩B@;⊲% (%))

∪ (F?Z⊩B@;⊲% (%) ∩F?Z⊩B@;⊲% (F?
↑
Z⊩B@;⊲+

(%)))

∪ (F?Z⊩B@;⊲+ (%) ∩F?Z⊩B@;⊲+ (F?
↑
Z⊩B@;⊲%

(%)))

F?
↑
Z⊩some (B )@;

(%) = {4 | (⋔; 4) = Leaf }

∪ F?
↑
Z⊩B@;⊲%

(F?
↑
Z⊩B@;⊲+

(%)) ∩F?
↑
Z⊩B@;⊲+

(F?
↑
Z⊩B@;⊲%

(%))

∩ (F?
↑
Z⊩B@;⊲%

(%) ∪F?
↑
Z⊩B@;⊲%

(F?Z⊩B@;⊲+ (%)))

∩ (F?
↑
Z⊩B@;⊲+

(%) ∪F?
↑
Z⊩B@;⊲+

(F?Z⊩B@;⊲% (%)))

(Some)

F?Z⊩all (B )@; (%) = (% ∩ {4 | (⋔; 4) = Leaf })
∪ F?Z⊩B@;⊲% (F?Z⊩B@;⊲+ (%)) ∪F?Z⊩B@;⊲+ (F?Z⊩B@;⊲% (%))

F?
↑
Z⊩all (B )@;

(%) = (% ∩ {4 | (⋔; 4) = Leaf })

∪ (F?
↑
Z⊩B@;⊲%

(F?
↑
Z⊩B@;⊲+

(%)) ∩F?
↑
Z⊩B@;⊲+

(F?
↑
Z⊩B@;⊲%

(%)))

(All)

Fig. 11. Location-based weakest preconditions for traversals

F?Z⊩-@; (%) = Z (-, ·) ; % (where Z (-, ·) def.) F?
↑
Z⊩-@;

(%) = Z (-, ↑) ; % (where Z (-, ↑) def.)

(Fixed-point variable)

F?Z⊩`- .B@; (%) = [LFP� : Δ] ; %

F?
↑
Z⊩`- .B@;

(%) = [LFP� : Δ] ; %
Where: Δ =

{
� ; % = F?Z [ (-,· ) ↦→� , (-,↑) ↦→� ]⊩B@; (%)

� ; % = F?
↑
Z [ (-,· ) ↦→� , (-,↑) ↦→� ]⊩B@;

(%)

(Fixed-point operator)

Fig. 12. Location-based weakest preconditions for fixed-point operators

The weakest must succeed precondition a (fixed point) variable - is calculated by applying the
function obtained by looking up (-, ·) in the logic environment Z to the location ; and postcondition
% . For the weakest may fail precondition, the function applied to ; and % is obtained by looking up
- with the may fail tag ↑ from Z .

4.3 The Soundness of the Weakest Precondition Calculus w.r.t. the Formal Semantics

Since our weakest precondition calculus is designed to reason about the execution of strategies,
it is essential to prove it is sound with respect to the formal semantics introduced in section 3.
Specifically, we define the soundness of the weakest must succeed precondition as theorem 4.1, and
the soundness of the weakest may error precondition as theorem 4.2. Both of these theorems have
the same assumption to relate the logic and semantic environments Z and b . This assumption states
that given any variable- , location ; and postcondition % , executing the function obtained by looking

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.



Shoggoth: A Formal Foundation for Strategic Rewriting 3:19

up- in the logic environment Z —with the must succeed tag or the may error tag correspondingly —
gives the set of expressions, at the location ; of each of which executing the semantics of the variable
(b (- )) results in a subset of the postcondition % or % ∪ {err} respectively. From this assumption,
theorem 4.1 concludes that the weakest must succeed preconditionF?Z⊩B@; (%) should equal to the
set of expressions on which executing the semantics of B gives a subset of % . Similarly, theorem 4.2

says that under the same assumptions, the weakest may error precondition F?
↑
Z⊩B@;

(%) should

equal to the set of expressions on which executing the semantics of B gives a subset of % ∪ {err}.

Theorem 4.1 (Soundness theorem for Weakest Must Succeed Precondition).

∀- ; % . Z (-, ·) ; % = {4 | b (- ) (⋔; 4)�; 4 ⊆ %}
∧Z (-, ↑) ; % = {4 | b (- ) (⋔; 4)�; 4 ⊆ % ∪ {4AA }}

F?Z⊩B@; (%) = {4 | (⟦B⟧b (⋔; 4))�; 4 ⊆ %}

Theorem 4.2 (Soundness theorem for Weakest May Error Precondition).

∀- ; % . Z (-, ·) ; % = {4 | b (- ) (⋔; 4)�; 4 ⊆ %}
∧Z (-, ↑) ; % = {4 | b (- ) (⋔; 4)�; 4 ⊆ % ∪ {4AA }}

F?
↑
Z⊩B@;

(%) = {4 | (⟦B⟧b (⋔; 4))�; 4 ⊆ % ∪ {err}}

We prove these two theorems simultaneously, by induction on the strategy B . For the fixed-point
operator cases, we make use of Scott induction. The proof is mechanised in Isabelle/HOL.

5 REASONING ABOUT STRATEGIES WITHWEAKEST PRECONDITION CALCULUS

As discussed in section 2, there are some strategies that can never be executed successfully, such
as strategies that always diverge like repeat (SKIP) and strategies that are not well composed like
multcom ; addcom. We call such strategies bad strategies. Formally, we define good and bad strategies
in terms of our weakest precondition calculus as definition 5.1 and definition 5.2, where the formal
definition of bad strategies is the negation of good strategies.

Definition 5.1 (Good strategies). A strategy B is good iff for a given postcondition % :

F?Z⊩B@; (%) ≠ ∅

Definition 5.2 (Bad strategies). A strategy B is bad iff for a given postcondition % :

F?Z⊩B@; (%) = ∅

For strategies that can terminate and are well composed, they may not be able to successfully
rewrite any input expression into an expression satisfying our desired postcondition. For instance,
even though the atomic strategy addcom is a good strategy, applying it to 3 ∗ 4 would result in
an error. Also, as illustrated in section 2, when encoding a normalisation strategy for rewriting
an input lambda expression into its V[-normal form, such strategy can diverge on some input
expressions (e.g., the expression Ω given below). If it does terminate on an input expression, it ought
to rewrite all reducible sub-expressions of such input expression. We formally define the successful
executions and unsuccessful executions of good strategies as definition 5.3 and definition 5.4.

Definition 5.3 (Successful execution). An execution of a good strategy B , on an input expression

4 is successful iff for a given postcondition % :

4 ∈ F?Z⊩B@; (%) (where: F?Z⊩B@; (%) ≠ ∅)
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Definition 5.4 (Unsuccessful execution). An execution of a good strategy B on an input

expression 4 is unsuccessful iff for a given postcondition % :

4 ∉ F?Z⊩B@; (%) (where: F?Z⊩B@; (%) ≠ ∅)

Next, we demonstrate how to use the location-based weakest precondition calculus to reason
about the execution of strategies. All examples we discuss are mechanised in Isabelle/HOL.

5.1 Reasoning About Termination

Strategies can diverge. Recall from section 2 that repeat (B) is defined as `- .CA~ (B ;- ) where try(B) is
defined as B <+ SKIP. We can derive the weakest precondition formula of repeat (B) by the weakest
precondition formulae of SKIP, left choice, sequential composition and the fixed-point operator:

F?Z⊩repeat (B )@; (%) = F?
↑
Z⊩repeat (B )@;

(%) = [LFP� : Δ] ; %

where Δ is the fixed-point equation

� ; % = F?Z [ (-,· ) ↦→� , (-,↑) ↦→�]⊩B@; (� ; %) ∪ (% ∩F?
↑
Z [ (-,· ) ↦→� , (-,↑) ↦→�]⊩B@;

(� ; %))

Although the execution of repeat (B) would never result in an error since its weakest may error
precondition formula is identical to its weakest must succeed precondition, it may diverge.
A simple example of a diverging strategy we have introduced is the strategy repeat (SKIP). It is

straightforward to conclude that it is a bad strategy using the weakest precondition calculus. With
the weakest must succeed precondition formulae of repeat (B) and SKIP, we calculate that for the
set of all expressions as the post condition, the weakest must succeed precondition of repeat (SKIP)
is an empty set:

F?Z⊩repeat (SKIP)@n (E) = ∅

Intuitively, such a result indicates that there is no expression that can be successfully rewritten
by the strategy repeat (SKIP). According to the definition 5.2, we can conclude that the diverging
strategy repeat (SKIP) is bad strategy.
Since we apply demonic nondeterminism on divergence as discussed in section 4, the strategy

SKIP <+> repeat (SKIP) always diverges. To show that it is a bad strategy, we can again calculate
its weakest must succeed precondition with the set of all expressions as the postcondition:

F?Z⊩SKIP<+>repeat (SKIP)@n (E) = ∅

Again, we obtain an empty set as its weakest must succeed precondition, indicating that such a
strategy can never be successfully executed on any input expression.

Strategies that can terminate are potentially good strategies. For instance, the strategy SKIP <+
repeat (SKIP) always terminates. To conclude it being a good strategy, we calculate its weakest
must succeed precondition:

F?Z⊩SKIP<+repeat (SKIP)@n (E) = E

Intuitively, because left choice prioritises the strategy on the left hand side of the combinator over
the strategy on the right hand side, SKIP is always preferred over repeat (SKIP) here. Therefore,
SKIP <+ repeat (SKIP) always terminates and produces expressions. According to the definition 5.1,
we conclude that the terminating strategy SKIP <+ repeat (SKIP) is a good strategy.

5.2 Reasoning About Well Composed Strategies

Strategies that terminate may still not be good strategies, since they can be not well composed and
always result in error. An example of a not well composed strategy that we have introduced in
section 2 ismultcom ; addcom. According to the weakest precondition formulae for atomic strategies
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Lambda Expression 4 := Id ] |
Abs

4•
|

App

44

Index ] ∈ N

Fig. 13. The syntax of the lambda calculus

and the sequential composition presented in figure 9 and figure 10, we calculate its weakest must
succeed precondition for the set of all expressions as the postcondition:

F?Z⊩multcom ; addcom@n (E) = ∅

Since its weakest must succeed precondition is an empty set, with definition 5.2, we can conclude
that the strategy multcom ; addcom is a bad strategy.

Well composed terminating strategies are good strategies. For example, given an atomic strategy
addid defined as:

addid : 0 + 0⇝ 0

The strategy addcom ; addid is a well composed strategy. In practice, it can successfully rewrite an
expression 3 + 0 into the expression 3. We are able to conclude that the strategy addcom ; addid is a
good strategy again by checking its weakest must succeed precondition for the set of all expressions
as the postcondition:

F?Z⊩addcom ; addid@n (E) = {4 | 4 = 0 + 0}

Since the calculated weakest must succeed precondition is not an empty set, according to the
definition 5.1, the strategy addcom ; addid is a good strategy.

5.3 Reasoning About Beta-Eta Normalisation

In section 2, we have defined the normalise strategy by composing the strategy repeat (B) and the
top-down traversal topDown(B) as normalise(B) = repeat (topDown(B)), which keeps applying a
given strategy B to every possible sub-expression of an expression until B is no longer applicable.

One example usage of the normalisation strategy we demonstrated is to reduce an expression in
_-calculus into the V[-normal form. Given the V-reduction and [-reduction as two atomic strategies
beta and eta, we can express the strategy for calculating the V[-normal form as:

BENF = normalise(beta <+ eta)

Furthermore, we define a predicate to assert that an expression is in V[-normal form, simply by
stating that the beta and eta atomic strategies must not be defined for any location in the expression:

isBENF 4 ⇔ ∀; . beta(⋔; 4) undef ∧ eta(⋔; 4) undef (where: ⋔; 4 is defined)

It is well known that not every _-expression has such a normal form. With our location-based
weakest precondition calculus, we are able to reason about whether an expression can be normalised
by the strategy BENF into a V[-normal form.

Firstly, in figure 13, we provide an encoding of the lambda calculus with de Bruijn indices using

the expression tree structure we introduced, which takes the form of either a Leaf or a node
n

44
.

Specifically, we encode an Id expression (a de Bruijn index) as a Leaf and both an abstraction and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.



3:22 Xueying Qin, Liam O’Connor, Rob van Glabbeek, Peter Höfner, Ohad Kammar, and Michel Steuwer

an application as nodes. Then we encode beta reduction and eta reduction as two atomic strategies:

beta :

App

4Abs

5•

⇝ 5 [4/0] eta :

Abs

App

Id 05

• ⇝ 5 ⫰0

where 5 [4/0] is the de Bruijn substitution of the index 0 with the expression 4 in 5 and 5 ⫰0 is the
de Bruijn down shifting eliminating the index 0 in 5 .
Next we introduce the weakest precondition formula for the strategy normalise(B), which is

calculated using the weakest precondition formulae of repeat (B) (introduced in section 5.1) and
topDown(B). Recall that in section 2 the strategy topDown(B) is defined using the left choice combi-
nator, the traversal one(B) as well as the fixed-point operator:

topDown(B) = `- .(B <+ one(- ))

We can derive its weakest must succeed precondition and weakest may error precondition formulae:

F?Z⊩topDown(B )@; (%) = [LFP� : Δ] ; % F?
↑
Z⊩topDown(B )@;

(%) = [LFP� : Δ] ; %

Where:

Δ =





� ; % = F?Z [ (-,· ) ↦→� , (-,↑) ↦→� ]⊩B@; (%) ∪ (F?
↑
Z [ (-,· ) ↦→� , (-,↑) ↦→� ]⊩B@;

(%)

∩ ((�(; ⊲ %) % ∩�(; ⊲ +) %) ∪ (�(; ⊲ +) % ∩�(; ⊲ %) %)))

� ; % = F?Z [ (-,· ) ↦→� , (-,↑) ↦→� ]⊩B@; (%) ∪ (F?
↑
Z [ (-,· ) ↦→� , (-,↑) ↦→� ]⊩B@;

(%)

∩ (�(; ⊲ %) % ∩�(; ⊲ +) %))

With the weakest precondition formulae for topDown(B) defined, we can subsequently provide the
weakest precondition formula for the strategy normalise(B). Note that its weakest must succeed
precondition and weakest may error precondition share the same formula, just like repeat (B):

F?Z⊩normalise (B )@; (%) = F?
↑
Z⊩normalise (B )@;

Z (%) = [LFP�A : ΔA ] ; %

Where:

ΔA = �A ; % = [LFP�C : ΔC ] ; % ∪ (([LFP�C : ΔC ] ; %) ∩ %)

ΔC =





�C ; % = F?Z [ (-,· ) ↦→�A , (-,↑) ↦→�A , (.,· ) ↦→�C , (.,↑) ↦→�C ]⊩B@; (�A ; %)

∪ (F?
↑
Z [ (-,· ) ↦→�A , (-,↑) ↦→�A , (.,· ) ↦→�C , (.,↑) ↦→�C ]⊩B@;

(�A ; %)

∩ ((�C (; ⊲ %) % ∩�C (; ⊲ +) %) ∪ (�C (; ⊲ +) % ∩�C (; ⊲ %) %)))

�C ; % = F?Z [ (-,· ) ↦→�A , (-,↑) ↦→�A , (.,· ) ↦→�C , (.,↑) ↦→�C ]⊩B@; (�A ; %)

∪ (F?
↑
Z [ (-,· ) ↦→�A , (-,↑) ↦→�A , (.,· ) ↦→�C , (.,↑) ↦→�C ]⊩B@;

(�A ; %)

∩ (�C (; ⊲ %) % ∩�C (; ⊲ +) %))

With the weakest precondition formula for normalise(B), we can first conclude that the strategy
BENF for calculating the V[-normal form for expressions is a good strategy by showing:

F?Z⊩BENF@; (E) ≠ ∅
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Although the strategy BENF is good, some expressions are not able to be rewritten by it to a
V[-normal form. For instance, the expression Ω is defined as:

Ω :=

App

Abs

App

�3 0�3 0

•

Abs

App

�3 0�3 0

•

Applying the strategy BENF to the expression Ω will diverge, namely, the execution of the strategy
BENF on Ω is unsuccessful. We draw this conclusion by showing that Ω is not an expression in the
weakest must succeed precondition of BENF no matter what the postcondition is:

Ω ∉ F?Z⊩BENF@n (E)

We prove this proposition straightforwardly using Scott induction.
Beside identifying expressions that fail to be normalised into a V[-normal form using BENF , we

are also interested in examining whether a complex expression is indeed rewritten into a V[-normal
form after applying the strategy BENF . For instance, given an expression 4 defined as:

4 :=

App

Abs

Abs

App

�3 0�3 1

•

•

Abs

Abs

Abs

App

App

�3 0App

�3 1�3 2

�3 1

•

•

•

we show that applying the strategy BENF to the expression 4 does rewrite it to a V[-normal form
by showing the proposition below holds:

4 ∈ F?Z⊩BENF@n ({4 | isBENF 4})

The proof of this proposition is also straightforward, merely requiring the repeated unfolding of
fixed-point operators. On the basis of this result, we can conclude that the strategy BENF performs
the rewrite on the input expression 4 as we expected, namely, rewriting 4 into its V[-normal form.

5.4 Discussion

As this section demonstrates, our formal calculus provides precise description of strategies, in-
dependent of their length and complexity. It also provides a good characterisation of desired
properties to be satisfied after the execution of a strategy, as well as of expressions that can be
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successfully rewritten. Additionally, our calculus is capable of performing non-trivial reasoning
about rewrite strategies. Specifically, the reasoning about beta-eta normalisation already features
strategy combinators, traversals and recursion: the fundamental ingredients of strategic rewriting.
As our framework is fully mechanised in Isabelle/HOL, reasoning can be performed directly in and
facilitated by the proof assistant. Therefore, it is conceivable — still with a significant effort — to use
our framework for reasoning about complex applications, including Elevate [Hagedorn et al. 2020]
compiler optimisations. A significant initial hurdle is to encode the language that is rewritten (e.g.
the lambda calculus in section 5.3) as well as application-specific rewrites in Isabelle/HOL, before
we can start reasoning about the behaviour of more complex rewrite strategies. With our formal
calculus and its Isabelle/HOL implementation it would be possible to build up a library of standard
languages and rewrites, to facilitate reasoning about increasingly complex practical applications.

6 RELATED WORK

Strategic Rewriting and Traversals. Term rewriting systems [Dershowitz 1985] are a powerful
and versatile method to express syntactic transformations. Strategic rewriting languages, which
give programmers control over the rewriting process, have seen applications in many areas. Initial
efforts, such as the language ELAN [Borovanský et al. 1996], focused on using rewriting as a
way to model deduction and computation. The previously mentioned Stratego [Bravenboer et al.
2008; Visser 2001; Visser et al. 1998], which uses System S as its core language, is designed for
developing language interpreters in the Spoofax Language Workbench [Wachsmuth et al. 2014].
Elevate [Hagedorn et al. 2020, 2023] is very much in the style of Stratego, but is instead targeted
towards guiding optimisations in a compiler for high performance computing. The language
TL [Winter and Subramaniam 2004] applies strategic rewriting to data processing tasks, and
Strafunski [Lämmel and Visser 2002], which is again a Stratego-like language, uses strategies for
datatype-generic programming. Traversals are an essential feature of System S that also appear in
other program transformation designs, such as the ‘Scrap your boilerplate’ (SYB) style traversals (e.g.
everywhere, everything, anyDescendant, anyAncestor etc.) for XML programming [Lämmel
2007]. Reachability constraints are added to types of these traversals for detecting queries that
result in an empty set and transformations that always fail or do not change anything. To analyse
strategic programs some algebraic laws are discussed by Cunha and Visser [2007] for equational
reasoning and by Lämmel et al. [2013] as hints of potential dead code. One could potentially make
use of our weakest precondition calculus to prove and generalise these laws.

Weakest Preconditions. Weakest preconditions were introduced by Dijkstra [Dijkstra 1975]. Bon-
sangue and Kok [1992] extend Dijkstra’s calculus to include recursion in the same way that we
do. Weakest preconditions are key to Cook’s proof [Cook 1978] of the relative completeness of
Floyd-Hoare Logic [Floyd 1967; Hoare 1969], and are similarly used by Goncharov and Schröder
[2013] to show relative completeness of their Hoare Logic for programs with monadic effects.
Morgan [1994] uses weakest preconditions as the semantic foundation for his refinement calculus,
enabling stepwise derivation of programs from their specifications. In recent work, Aguirre et al.
[2022] explore the categorical structure of compositional weakest preconditions, characterising
them as those that are obtained from the Cartesian lifting of some monad. As a related application
of weakest preconditions, Swierstra and Baanen [2019] provide a weakest prediction semantics
for effectful programs, accounting for exceptions, state, non-determinism and general recursion.
Their work could possibly be an alternative approach to achieve some of the goals of our work,
although the application of such a formalism to the form of rewriting in formalisms like system
S is not immediate. For example, it is unclear whether System S with its handling of errors and
non-termination would actually form a monad. Errors alone can, of course, be handled by the Error
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monad; the interaction with divergence and errors is more sophisticated. As a consequence, this
may give rise to complications of a similar order of magnitude as the ones addressed in this paper.

Existing Formalisation and Verification. We are not the first to examine strategic rewriting lan-
guages formally. Both the initial paper on Stratego [Visser et al. 1998] and the paper on System
S [Visser and Benaissa 1998] present big-step operational semantics. However these semantics do
not model divergence, and are not the basis for any formal claims. In this work, by contrast, we
model all possible outcomes including divergence denotationally, and we show the denotational
model equivalent to an extended big-step operational semantics of System S that includes diver-
gence, by establishing the computational soundness and adequacy with respect to the extended
big-step operational semantics. Kaiser and Lämmel [2009] formalise a subset of System S without
divergence in Isabelle/HOL by shallow embedding, but this formalisation does not include the
general fixed-point operator of System S, and the choice to use shallow embedding, while conve-
nient for some tasks, precludes the formalisation of general, meta-theoretic properties about all
strategies. In our formalisation, we opt for a deep embedding, enabling us to mechanise all of the
definitions and proofs in this paper. Focusing on traversals in strategic languages, Lämmel et al.
[2013] characterise a list of strategic programming errors and discuss ways to avoid these errors
with static typing and static analysis. With a different approach, we provide a general and formal
characterisation of “good" and “bad" strategies as well as successful and unsuccessful executions of
strategies, using our location-based weakest precondition calculus.

Kieburtz [2001], an inspiration for this work, informally sketches someweakest precondition rules
for Stratego. Rather than a location-based weakest precondition calculus such as ours, Kieburtz
[2001] includes assertions in modal logic (specifically a combination of CTL and the modal `-
calculus), where the various tree modalities allow movement to different sub-expressions. However,
this modal logic variant does not have the expressive power of our framework because of our choice
of location language. For instance, CTL is not expressive enough to reason about the one operator.
When it comes to traversals, Kieburtz [2001] does not define general predicate transformers for
modal assertions, and thus Kieburtz’s [2001] rules do not form a complete calculus. It is not clear
how Kieburtz’s [2001] approach could be extended to handle traversals in their full generality.
In our work, our assertions are just sets of expressions, and we move around an expression by
associating locations to our weakest preconditions. This enables us to define general rules for
traversals, allowing a compositional and complete calculus for all strategies and all postconditions.
In addition, the fixed-point operator is not well constructed in Kieburtz’s [2001] work and it is not
proven to be monotone, whereas we have a correct treatment of the fixed-point operator and have
proven monotonicity of all our formulae. Also, in Kieburtz’s [2001] work, soundness is not proven,
whereas we prove the soundness of our weakest precondition calculus w.r.t. the formal semantics.
Lastly, we provide a careful treatment of divergence with mutually defined wp and wp↑, while such
a feature is not reflected in Kieburtz’s [2001] work.

Type Systems for Strategic Rewriting Languages. A related but parallel strand of work is in giving
types to strategic rewriting languages. Smits and Visser [2020] add gradual typing to Stratego and
use it to find bugs in their strategies for language interpreters. Koppel [2023] uses typed strategies
to model multi-language program transformations, Lämmel [2003] adds types to strategies with
applications to generic programming in typed languages and Fu et al. [2023] makes use of structural
typing with traces for checking ill-composed strategies statically. These type systems emphasise
lightweight static or the hybrid of dynamic and static checking to find bugs, whereas our focus
is on a complete semantic accounting of rewriting strategies, and the development of a weakest
precondition calculus that can demonstrate the absence of bugs, not merely their presence.
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Kleene Algebra. Strategic rewriting languages resemble a Kleene Algebra [Kozen 1991] extended
with traversals and a biased choice operator. There have been many other extensions to Kleene Alge-
bra, most notably Concurrent Kleene Algebra [Hoare et al. 2011], which adds parallel composition,
and Kleene Algebra with Tests [Kozen 1997], which adds Boolean guards to model the semantics
of while programs. Kozen [1999] shows that reasoning by Kleene Algebra with Tests entirely
subsumes Hoare Logic for while programs. A version of Kleene Algebra with Tests, NetKAT, has
been used to reason about packet switching networks [Anderson et al. 2014]. Recently, Concur-
rent Kleene Algebra and NetKAT have been combined for reasoning about concurrent network
systems [Wagemaker et al. 2022].

Denotational semantics and adequacy. The appeal of the Scott-Strachey approach to seman-
tics [Stoy 1985] is in its local and compositional reasoning, and over the last 50 years it has been
used for many diverse programming languages. As far as programming language abstractions go,
the strategic rewriting language we consider is mostly standard, and we were able to use the follow-
ing relevant semantic tools with relatively minor modification. Plotkin pioneered the powerdomain
construction [1976] and later characterised it as the free semilattice over a domain [Hennessy and
Plotkin 1979]. Most denotational accounts include an adequacy proof, and it is possible to prove
them wholesale for standard programming languages with a myriad of expressive features [Johann
et al. 2010; Plotkin and Power 2001; Simpson 2004]. We found the decomposition of computational
adequacy into dual inductive and coinductive arguments interesting, and we hope it could inform
other reflective accounts of adequacy [Devesas Campos and Levy 2018].

7 CONCLUSION AND FUTURE WORK

We have presented Shoggoth, a rigorous formal foundation for strategic rewriting languages,
including a comprehensive semantic accounting of System S, and a weakest precondition calculus
to facilitate formal reasoning about rewriting strategies. Our semantic treatment models all possible
executions of strategies including divergences in both denotational and big-step operational models,
and our proofs of soundness and adequacy demonstrate the equivalence of these models. Our
location-based weakest precondition calculus is the first formal axiomatic treatment of rewriting
strategies, and enables reasoning about traversals by having the notion of location for indicating
where in an expression a given strategy operates. Our soundness proof justifies our location-based
weakest precondition calculus with respect to our semantic models, and we demonstrate practical
application of this calculus by applying it to realistic examples. All of our work has been mechanised
in over 5,000 lines of Isabelle/HOL proof script.
Weakest precondition calculi form the basis of verification condition generators (VCGs), which

are a key component of many automatic and semi-automatic verification tools such as VCC [Cohen
et al. 2009] and Dafny [Leino 2010], as well as of static analysers such as the popular Extended
Static Checking extension for Java [Flanagan et al. 2002; Leino 2005]. We envision that our weakest
precondition calculus could similarly inform the design of a VCG for automatic verification or
static checking of rewriting strategies. We intend, in future work, to use Shoggoth as a foundation
for the development of tools for verification and, potentially, synthesis of rewriting strategies.

ACKNOWLEDGMENTS

Xueying Qin would like to express her special thanks to Professor Glynn Winskel and Profes-
sor Dan Ghica for their helpful feedback on the design and equivalence proofs for denotational
and operational semantics. Rob van Glabbeek is supported by Royal Society Wolfson Fellowship
RSWF\R1\221008. Ohad Kammar is supported by a Royal Society University Research Fellowship.
We thank the anonymous reviewers for their insightful suggestions.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.



Shoggoth: A Formal Foundation for Strategic Rewriting 3:27

DATA AVAILABILITY STATEMENT

The artifact of this paper is on Zenodo [Qin et al. 2023].

REFERENCES

Alejandro Aguirre, Shin-ya Katsumata, and Satoshi Kura. 2022. Weakest preconditions in fibrations. Math. Struct. Comput.

Sci. 32, 4 (2022), 472–510. https://doi.org/10.1017/S0960129522000330

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.

2014. NetKAT: semantic foundations for networks. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell

(Eds.). ACM, 113–126. https://doi.org/10.1145/2535838.2535862

Marcello M. Bonsangue and Joost N. Kok. 1992. Semantics, Orderings and Recursion in the Weakest Precondition Calculus.

In Sematics: Foundations and Applications, REX Workshop, Beekbergen, The Netherlands, June 1-4, 1992, Proceedings (LNCS,

Vol. 666), J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg (Eds.). Springer, 91–109. https://doi.org/10.1007/3-

540-56596-5_30

Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Marian Vittek. 1996. ELAN: A logical

framework based on computational systems. In First International Workshop on Rewriting Logic and its Applications,

RWLW 1996, Asilomar Conference Center, Pacific Grove, CA, USA, September 3-6, 1996 (Electronic Notes in Theoretical

Computer Science, Vol. 4), José Meseguer (Ed.). Elsevier, 35–50. https://doi.org/10.1016/S1571-0661(04)00032-5

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008. Stratego/XT 0.17. A language and toolset

for program transformation. Sci. Comput. Program. 72, 1-2 (2008), 52–70. https://doi.org/10.1016/j.scico.2007.11.003

Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen, Wolfram Schulte,

and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In Theorem Proving in Higher Order Logics,

22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (LNCS, Vol. 5674), Stefan

Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer, 23–42. https://doi.org/10.1007/978-3-

642-03359-9_2

Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput. 7, 1

(1978), 70–90. https://doi.org/10.1137/0207005

Alcino Cunha and Joost Visser. 2007. Transformation of Structure-Shy Programs: Applied to XPath Queries and Strategic

Functions. In Proceedings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program

Manipulation (Nice, France) (PEPM ’07). Association for Computing Machinery, New York, NY, USA, 11–20. https:

//doi.org/10.1145/1244381.1244385

Nachum Dershowitz. 1985. Computing with Rewrite Systems. Inf. Control. 65, 2/3 (1985), 122–157. https://doi.org/10.1016/

S0019-9958(85)80003-6

Marco Devesas Campos and Paul Blain Levy. 2018. A Syntactic View of Computational Adequacy. In Foundations of Software

Science and Computation Structures, Christel Baier and Ugo Dal Lago (Eds.). Springer International Publishing, Cham,

71–87.

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18, 8

(1975), 453–457. https://doi.org/10.1145/360933.360975

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended

Static Checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM, 234–245.

https://doi.org/10.1145/512529.512558

Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19 (1967),

19–32. https://doi.org/10.1007/978-94-011-1793-7_4

Rongxiao Fu, Ornela Dardha, and Michel Steuwer. 2023. Traced Types for Safe Strategic Rewriting. arXiv:2304.14154 [cs.PL]

Sergey Goncharov and Lutz Schröder. 2013. A Relatively Complete Generic Hoare Logic for Order-Enriched Effects. In 28th

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE

Computer Society, 273–282. https://doi.org/10.1109/LICS.2013.33

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving

high-performance the functional way: a functional pearl on expressing high-performance optimizations as rewrite

strategies. Proc. ACM Program. Lang. 4, ICFP (2020), 92:1–92:29. https://doi.org/10.1145/3408974

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer. 2023. Achieving

High Performance the Functional Way: Expressing High-Performance Optimizations as Rewrite Strategies. Commun.

ACM 66, 3 (2023), 89–97. https://doi.org/10.1145/3580371

Matthew Hennessy and Gordon D. Plotkin. 1979. Full Abstraction for a Simple Parallel Programming Language. In

Mathematical Foundations of Computer Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.

https://doi.org/10.1017/S0960129522000330
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1007/3-540-56596-5_30
https://doi.org/10.1007/3-540-56596-5_30
https://doi.org/10.1016/S1571-0661(04)00032-5
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1137/0207005
https://doi.org/10.1145/1244381.1244385
https://doi.org/10.1145/1244381.1244385
https://doi.org/10.1016/S0019-9958(85)80003-6
https://doi.org/10.1016/S0019-9958(85)80003-6
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-94-011-1793-7_4
https://arxiv.org/abs/2304.14154
https://doi.org/10.1109/LICS.2013.33
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3580371


3:28 Xueying Qin, Liam O’Connor, Rob van Glabbeek, Peter Höfner, Ohad Kammar, and Michel Steuwer

1979 (LNCS, Vol. 74), Jirí Becvár (Ed.). Springer, 108–120. https://doi.org/10.1007/3-540-09526-8_8

Tony Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580. https:

//doi.org/10.1145/363235.363259

Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. 2011. Concurrent Kleene Algebra and its Foundations. J.

Log. Algebraic Methods Program. 80, 6 (2011), 266–296. https://doi.org/10.1016/j.jlap.2011.04.005

Patricia Johann, Alex Simpson, and Janis Voigtländer. 2010. A Generic Operational Metatheory for Algebraic Effects. In

Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,

United Kingdom. IEEE Computer Society, 209–218. https://doi.org/10.1109/LICS.2010.29

Markus Kaiser and Ralf Lämmel. 2009. An Isabelle/HOL-based model of Stratego-like traversal strategies. In Proceedings of

the 11th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, September 7-9,

2009, Coimbra, Portugal, António Porto and Francisco Javier López-Fraguas (Eds.). ACM, 93–104. https://doi.org/10.1145/

1599410.1599423

Richard B. Kieburtz. 2001. A Logic for Rewriting Strategies. Electronic Notes in Theoretical Computer Science 58, 2 (2001),

138–154. https://doi.org/10.1016/S1571-0661(04)00283-X STRATEGIES 2001, 4th International Workshop on Strategies

in Automated Deduction - Selected Papers (in connection with IJCAR 2001).

James Koppel. 2023. Typed Multi-Language Strategy Combinators. In Eelco Visser Commemorative Symposium, EVCS 2023,

April 5, 2023, Delft, The Netherlands (OASIcs, Vol. 109), Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 16:1–16:9. https://doi.org/10.4230/OASIcs.EVCS.2023.16

Dexter Kozen. 1991. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. In Proceedings of the

Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991. IEEE

Computer Society, 214–225. https://doi.org/10.1109/LICS.1991.151646

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427–443. https://doi.org/10.

1145/256167.256195

Dexter Kozen. 1999. On Hoare Logic and Kleene Algebra with Tests. In 14th Annual IEEE Symposium on Logic in Computer

Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 167–172. https://doi.org/10.1109/LICS.1999.782610

Ralf Lämmel. 2003. Typed generic traversal with term rewriting strategies. J. Log. Algebraic Methods Program. 54, 1-2 (2003),

1–64. https://doi.org/10.1016/S1567-8326(02)00028-0

Ralf Lämmel. 2007. Scrap Your Boilerplate with XPath-like Combinators. In Proceedings of the 34th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL ’07). Association for Computing

Machinery, New York, NY, USA, 137–142. https://doi.org/10.1145/1190216.1190240

Ralf Lämmel, Simon Thompson, and Markus Kaiser. 2013. Programming errors in traversal programs over structured data.

Science of Computer Programming 78, 10 (2013), 1770–1808.

Ralf Lämmel and Joost Visser. 2002. Design patterns for functional strategic programming. In Proceedings of the 2002 ACM

SIGPLAN Workshop on Rule-Based Programming, Pittsburgh, Pennsylvania, USA, 2002, Bernd Fischer and Eelco Visser

(Eds.). ACM, 1–14. https://doi.org/10.1145/570186.570187

K. Rustan M. Leino. 2005. Efficient weakest preconditions. Inf. Process. Lett. 93, 6 (2005), 281–288. https://doi.org/10.1016/j.

ipl.2004.10.015

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,

Artificial Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,

Revised Selected Papers (LNCS, Vol. 6355), Edmund M. Clarke and Andrei Voronkov (Eds.). Springer, 348–370. https:

//doi.org/10.1007/978-3-642-17511-4_20

Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Information and Computation 207, 2 (2009),

284–304. https://doi.org/10.1016/j.ic.2007.12.004 Special issue on Structural Operational Semantics (SOS).

Carroll Morgan. 1994. Programming from specifications, 2nd Edition. Prentice Hall.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: A Proof Assistant for Higher-Order Logic.

LNCS, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Gordon Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In Foundations of Software Science and Computation

Structures, Furio Honsell and Marino Miculan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–24.

Gordon D. Plotkin. 1976. A Powerdomain Construction. SIAM J. Comput. 5, 3 (1976), 452–487. https://doi.org/10.1137/0205035

Xueying Qin, Liam O’Connor, Rob van Glabbeek, Peter Höfner, Ohad Kammar, and Michel Steuwer. 2023. Artifact for

Shoggoth - A Formal Foundation for Strategic Rewriting. https://doi.org/10.5281/zenodo.10125602

Alex Simpson. 2004. Computational adequacy for recursive types in models of intuitionistic set theory. Annals of Pure

and Applied Logic 130, 1 (2004), 207–275. https://doi.org/10.1016/j.apal.2003.12.005 Papers presented at the 2002 IEEE

Symposium on Logic in Computer Science (LICS).

Jeff Smits and Eelco Visser. 2020. Gradually typing strategies. In Proceedings of the 13th ACM SIGPLAN International

Conference on Software Language Engineering, SLE 2020, Virtual Event, USA, November 16-17, 2020, Ralf Lämmel, Laurence

Tratt, and Juan de Lara (Eds.). ACM, 1–15. https://doi.org/10.1145/3426425.3426928

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.

https://doi.org/10.1007/3-540-09526-8_8
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1145/1599410.1599423
https://doi.org/10.1145/1599410.1599423
https://doi.org/10.1016/S1571-0661(04)00283-X
https://doi.org/10.4230/OASIcs.EVCS.2023.16
https://doi.org/10.1109/LICS.1991.151646
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1109/LICS.1999.782610
https://doi.org/10.1016/S1567-8326(02)00028-0
https://doi.org/10.1145/1190216.1190240
https://doi.org/10.1145/570186.570187
https://doi.org/10.1016/j.ipl.2004.10.015
https://doi.org/10.1016/j.ipl.2004.10.015
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1137/0205035
https://doi.org/10.5281/zenodo.10125602
https://doi.org/10.1016/j.apal.2003.12.005
https://doi.org/10.1145/3426425.3426928


Shoggoth: A Formal Foundation for Strategic Rewriting 3:29

Matthieu Sozeau. 2014. Proof-relevant rewriting strategies in Coq. In At Coq Workshop. https://www.irif.fr/~letouzey/

types2014/abstract-13.pdf

J.E. Stoy. 1985. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press. https:

//books.google.co.uk/books?id=jM0mAAAAMAAJ

Wouter Swierstra and Tim Baanen. 2019. A Predicate Transformer Semantics for Effects (Functional Pearl). Proc. ACM

Program. Lang. 3, ICFP, Article 103 (jul 2019), 26 pages. https://doi.org/10.1145/3341707

Eelco Visser. 2001. Stratego: A Language for Program Transformation Based on Rewriting Strategies System Description

of Stratego 0.5. In Rewriting Techniques and Applications (LNCS, Vol. 2051), Aart Middeldorp (Ed.). Springer, 357–361.

https://doi.org/10.1007/3-540-45127-7_27

Eelco Visser, Zine El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Optimizers with Rewriting

Strategies. In Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),

Baltimore, Maryland, USA, September 27-29, 1998, Matthias Felleisen, Paul Hudak, and Christian Queinnec (Eds.). ACM,

13–26. https://doi.org/10.1145/289423.289425

Eelco Visser and Zine El-Abidine Benaissa. 1998. A Core Language for Rewriting. Electronic Notes in Theoretical Computer

Science 15 (1998), 422–441. https://doi.org/10.1016/S1571-0661(05)80027-1 International Workshop on Rewriting Logic

and its Applications.

Guido Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. 2014. Language Design with the Spoofax Language Workbench.

IEEE Softw. 31, 5 (2014), 35–43. https://doi.org/10.1109/MS.2014.100

Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra Silva. 2022. Concurrent NetKAT -

Modeling and analyzing stateful, concurrent networks. In Programming Languages and Systems - 31st European Symposium

on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2022, Munich, Germany, April 2-7, 2022, Proceedings (LNCS, Vol. 13240), Ilya Sergey (Ed.). Springer, 575–602. https:

//doi.org/10.1007/978-3-030-99336-8_21

Victor L. Winter and Mahadevan Subramaniam. 2004. The transient combinator, higher-order strategies, and the distributed

data problem. Sci. Comput. Program. 52 (2004), 165–212. https://doi.org/10.1016/j.scico.2004.03.006

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 3. Publication date: January 2024.

https://www.irif.fr/~letouzey/types2014/abstract-13.pdf
https://www.irif.fr/~letouzey/types2014/abstract-13.pdf
https://books.google.co.uk/books?id=jM0mAAAAMAAJ
https://books.google.co.uk/books?id=jM0mAAAAMAAJ
https://doi.org/10.1145/3341707
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1145/289423.289425
https://doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1007/978-3-030-99336-8_21
https://doi.org/10.1007/978-3-030-99336-8_21
https://doi.org/10.1016/j.scico.2004.03.006

	Abstract
	1 Introduction
	2 The Syntax of System S
	3 The Semantics of System S
	3.1 The Plotkin Powerdomain
	3.2 Formalised Denotational Semantics
	3.3 Formalised Big-Step Operational Semantics
	3.4 The Denotational Semantics is Equivalent to The Big-Step Operational Semantics

	4 Location-Based Weakest Precondition Calculus
	4.1 Modelling Traversals
	4.2 The Calculus
	4.3 The Soundness of the Weakest Precondition Calculus w.r.t. the Formal Semantics

	5 Reasoning About Strategies with Weakest Precondition Calculus
	5.1 Reasoning About Termination
	5.2 Reasoning About Well Composed Strategies
	5.3 Reasoning About Beta-Eta Normalisation
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

