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ABSTRACT  

Localised corrosion in steel bars has been a long-standing issue in the durability of 
reinforced concrete structures, but a comprehensive scheme for the analysis of pitting 
corroded steel bars, especially with respect to the deformation capacity, is not currently 
available. In this study, the morphological characteristics of 27 pitting steel bars were 
captured using a 3D scanner. The measured data were used to establish the probability 
distribution model of the cross-sectional areas of the corroded bars. Uniaxial tensile 
tests were conducted, and the evolving deformation field of the corroded bars was 
recorded through Digital Image Correlation (DIC). Based on the 3D reconstructed 
model and DIC results, an analytical method for evaluating the mechanical properties 
of pitting steel bars was developed and validated. The results show that the two-
component Gaussian mixture distribution model outperforms conventional unimodal 
distribution models. Comparison of the analytical results with experimental data 
demonstrates that the proposed procedure is capable of predicting not only the ultimate 
strength but also the gauge length-dependent ultimate strain of corroded bars. 
Additionally, there exists a strengthening effect in the ultimate stress at the critical 
sections and this effect should not be ignored for accurate predictions. 

KEYWORDS 

Pitting corrosion; Mechanical properties; Gaussian mixture model; 3D scanning; 
Digital Image Correlation. 

1 Introduction 

Corrosion of reinforcement in concrete is a primary risk to the reliability and durability 
of structures. Especially for coastal buildings that have been subjected to erosion in a 
marine environment for a long time, severe localised corrosion, or in other words pitting, 
on the surface of steel reinforcing bars has been reported in previous investigations [1, 
2]. Compared with general corrosion, pitting corrosion leads to significant deterioration 
of the tensile strength and a sharp reduction of the deformation capacity of the 
reinforcement. Such deterioration in the mechanical properties of the reinforcement 
significantly impairs the overall seismic performance of the structure.  
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For effective maintenance and retrofitting of corroded structures, it is essential to 
be able to accurately estimate the residual performance of RC components or structures. 
Some researchers have attempted to directly characterize the geometric changes in 
corroded rebar at the component or structural level. Stewart [3-5], for instance, 
discretized RC structures into a series of elements, each containing unique pitting 
information such as pit depth, to assess structural reliability and vulnerability. Their 
findings suggested that the mechanical behaviour of these rebar segments has a 
significant impact on the outcome of structural analysis. Akiyama and co-workers [6-
11] employed a reduced cross-sectional area approach in finite element simulations to 
account for corrosion-induced degradation. While this method has achieved satisfactory 
results in the assessment of the load-bearing capacity, their finite element analysis still 
showed discrepancies with experimental results when it comes to deformation capacity, 
mainly because they did not consider the degradation of ductility in corroded rebar units. 
Thus, there is still a need for a material-level assessment of residual mechanical 
properties of corroded rebar, especially in terms of deformation capacity [12-14]. 

The issue of reinforcement corrosion has attracted broad interest in recent decades, 
and some important characteristics have been generally recognized among researchers. 
For instance, the nominal yield strength and nominal ultimate strength of reinforcement 
(i.e. the ratio of tensile force to the original cross-sectional area) decrease linearly with 
the increase of corrosion level [15-18], but the true yield strength and ultimate strength 
of reinforcement (i.e. the ratio of tensile force to the actual minimum cross-sectional 
area) are not affected and tend to even slightly increase in case of a high corrosion level 
[17-19]. On the other hand, however, the deformation capacity of non-uniform corroded 
steel bars has not been satisfactorily addressed in quantitative terms so far. The 
challenges to this include the following: 

i) There is no unified index to quantify the deformation capacity of corroded bars. 
Most existing studies adopted ultimate strain to represent the deformation capacity of 
reinforcement, i.e., the average elongation in a specific measured length (referred to as 
the gauge length). However, various gauge lengths have been used by different 
researchers to determine the ultimate strain of corroded specimens, such as 50mm [15, 
16], 100 mm [20], 200 mm [17], and five times [21] or ten times the diameter of the 
steel bar [22], or even the total length of the tested reinforcement [18]. In fact, due to 
uneven distribution of pitting, the axial tensile deformation is locally concentrated in 
the largest corrosion pits. Consequently, different ultimate strains can result from using 
different gauge lengths. Therefore, using ultimate strain that is associated with a 
specific gauge length as a property to evaluate the deformation capacity of non-uniform 
corroded bars is fundamentally flawed. 

ii) The corrosion morphology, reinforcement type as well as diameter all influence 
the residual capacities of the corroded bars; however, these factors have generally been 
ignored in the previous studies. Consequently, the degradation models of the strength 
and deformation capacities, with the model coefficients being derived by regression 
analysis of experimental data, vary significantly from different studies [23, 24]. 

As advanced optical technologies like X-ray [7, 11, 25] and 3D scanning [26-28] 
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techniques gain wider application in civil engineering, recent studies have emerged that 
utilize these methods to assess the morphological features of corroded bars. Akiyama 
and co-workers [7, 11, 25] used X-ray and digital image processing techniques to 

observe the evolution of rebar corrosion inside RC components so as to quantify the 
spatial growth processes of steel corrosion across the length of a RC member [6-10]. 
However, the mechanical performance of a whole piece of corroded rebar is largely 
determined by its most severely corroded section, especially within the plastic hinge 
region. As such, due to the premature failure of the pitting sections, the full mechanical 
performance of rebar in the remaining portion is often not reached. Therefore, more 
refined investigations are required to characterize the morphology of severe localized 
corrosion in the rebar and the corresponding mechanical performances.  

There have been some latest reports on the use of 3D scanners to measure the 
morphological characteristics of corroded bars. Kashani et al. [27] conducted a 
corrosion pattern analysis based on the morphological data in which the interference 
from the ribs was eliminated through signal processing, then concluded that the 
lognormal distribution model was capable of reflecting the non-uniformity of the 
residual sections along the length of bars. Tahershamsi et al. [28] applied the cubic 
splines to get rid of the fluctuation of the cross-sectional area as a result of the ribs, and 
further analysed the data based on the fitted curves. Zhang et al. [24] also studied the 
scanned residual sectional area of bars but did not remove the influence of ribs. Their 
results indicated that the probability distribution of the residual cross-sectional areas of 
corroded steel bars was not unique; with the increase of the corrosion degree it appeared 
to change from a normal distribution to a logarithmic normal distribution or a sinusoidal 
distribution, and eventually back to a normal distribution. Tang et al. [18] observed that 
the mixed normal distributions with one, two and three modes fitted well the histograms 
for the corroded steel bars. Although such distributions were supported by the statistical 
test, their application scenarios were still limited due to poor generalization ability. 

In addition to the differences in data processing methods, some of the experimental 
studies available from the literature [29, 30] adopted a laboratory simulated corrosion 
process by inducing a direct electric current in the bare bars to prepare the corroded 
specimens. Such an accelerated corrosion process tends to produce a rather uniform 
corrosion pattern [30]. It is true that some corrosion scenes in the natural environment 
do resemble a uniform corrosion pattern. However, corroded steel bar samples extracted 
from structures that have been in service for decades showed a mixed morphology with 
a combination of uniform and pitting corrosions [16, 21]. In fact, this mixed pattern of 
corrosion is common in real RC structures [31-35]. Many studies have proven that the 
localised corrosion pattern of steel bars is a more critical and hazardous scenario than 
uniform corrosion [36, 37]. However, there is still a lack of comprehensive 
investigation on significantly non-uniform corroded specimens containing noticeable 
corrosion pits. As a result, the unimodal probability distribution model proposed in 
previous studies based on laboratory experiments cannot represent realistically a pitting 
corrosion morphology.  

In this paper, a comprehensive study on the correlation between the pitting 
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corrosion morphology and the residual mechanical properties of corroded bars is 
presented. A set of mixture probability distribution models are developed to 
quantitatively characterise the pitting corrosion morphology along the steel bars and 
establish the relationship with the residual mechanical performance of corroded bars. 
In the study, firstly 27 pitting corrosion steel bars were produced by the semi-immersion 
electrified method, and then a 3D optical scanner was employed to measure the surface 
morphological features. A Gaussian mixture model (GMM) was adopted to describe the 
effective cross-sectional area of the non-uniform corroded bars, and the parameters of 
the GMM was determined from the experimental data using the Expectation-
Maximization (EM) algorithm. Meanwhile, tensile tests were carried out to determine 
the mechanical properties of the corroded bars. The Digital Image Correlation (DIC) 
technique was employed to capture the detailed deformation field of the corroded bars 
during the tensile process. In conjunction with the DIC results, an analytical method for 
the calculation of the residual mechanical properties of the corroded bars considering 
the corrosion geometrical profiles was proposed. The proposed method was verified 
against the experimental data and compared with other degradation prediction models. 
Finally, a regression analysis of the GMM parameters was carried out, and a general 
flowchart was provided for the estimation of the residual performance of corroded bars 
in the entire lifecycle. 

2 Experimental program 

2.1 Accelerated corrosion procedure 

In laboratory experiments, both low-current wet-dry cycling and semi-immersion 
galvanostatic methods have been found to induce significantly non-uniform corrosion 
on steel bars [38, 39]. As the primary aim of this study has been focused on the 
degradation of mechanical properties of corroded steel bars, rather than examining bond 
degradation or the correlation between corrosion levels and crack width in concrete, the 
semi-immersion accelerated corrosion method was selected to achieve the desired level 
of corrosion in a shorter time. Fig. 1(a) shows the overall configuration of the 
accelerated corrosion setup.  

For this investigation, 30 “reinforced” concrete (RC) specimens of the same gross 
dimension, 150×150×300 mm, were prepared. The RC specimens were cast with C30 
concrete. The specific proportions of the concrete mix are listed in Table 1. The steel 
bars were embedded in concrete with a nominal top cover of 20 mm. The steel bars had 
an extended portion of 50mm at both ends to connect the anode of DC power. Hot-
rolled ribbed steel bars HRB400 were adopted. All steel bars had the same length of 
400mm, with three different nominal diameters, namely 8 mm, 16 mm, and 25 mm. 
There were 10 bars in each diameter group. The corrosion region of all bars had the 
same length of 200mm, while a protected region of 100mm was set at each end of the 
bars to facilitate clamping in the later tensile test. The treated steel bars are shown in 
Fig. 1(b).   
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Table 1. Mixing proportions for concrete. 

Water-binder 

Ratio 

Sand 

ratio 
Cement Flyash 

Mineral 

fines 
Water Sand 

Crushed 

stone 
Admixture 

(/) (/) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

0.49 0.42 249 46 60 174 765 1045 6.04 

As shown in Fig. 1, each specimen was placed horizontally in a plastic tank and 
the bottom of the specimen was raised by two wooden blocks. A stainless steel mesh 
was positioned directly underneath and connected to the power cathode. Then the 
chloride solution (of 5% NaCl concentration) was injected into the tank, and the liquid 
level was kept 50 mm below the embedded bar.  

The corrosion conditions were designed with an aim to achieve three corrosion 
levels among all the steel bars, namely level A, B, and C, with a target corrosion rate 
(μt) being 10%, 20%, and 30%, respectively. To account for the uncertainty of corrosion, 
3 specimens (marked as 1, 2, and 3) were prepared for each diameter of steel bars and 
at each corrosion level. Thus, for diameter 25mm steel bars at corrosion level of 10% 
(level A), the first specimen is designated as 25A1, the second specimen 25A2, and so 
forth.  

 
Fig. 1. Schematic diagram of the semi-immersion accelerated corrosion: (a) Elevation 

view (b) Preparation of steel bars before casting (c) Corrosion in progress. 

In order to achieve the three targeted corrosion levels, the electrified time was 
initially set to 10 days, 20 days and 30 days respectively, and the current density was 
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accordingly determined using Faraday’s law, to be 0.45 mA/cm2, 0.90 mA/cm2, and 1.4 
mA/cm2 for the 8mm, 16mm, and 25mm steel specimens, respectively. Considering the 
potential loss of current during the electrification process, a reference steel bar was 
added in each diameter group. The reference bar was extracted from concrete after 
corroding for exactly 10 days to examine the actual corrosion level as measured by the 
mass loss rate μmass, which was determined by: 

0

0( / )
cor

mass
cor total

m m

l l m
 

                          (1) 

where m0 and mcor denote the mass of the rebar before and after corrosion over the 
length of ltotal, respectively. ltotal is the total length of the steel bar, which is 400mm. lcor 
represents the length of the corroded section of the rebar. Considering that the corrosion 
length of each rebar may not be exactly the same, for simplicity a standardized value 
of 200mm is adopted here. By comparing the result with the target corrosion level (10%) 
and observe the difference, the actual electrified times for all specimens were adjusted 
by extrapolation. 

After the required electrified times, the RC specimens were forced to break and 
the corroded bars were carefully extracted from the concrete. The extracted bars were 
then cleaned with an acid solution following the standard requirements [40]. After the 
corroded bars were completely dry, the weight of each corroded bar was weighted and 
μmass was determined accordingly. The results of corroded bars are listed in columns 2-
6 in Table 2. All the corroded bars were then stored in a closed container filled with 
carbon dioxide to prevent secondary corrosion before mechanical testing.  

In the process of electrified corrosion, the RC specimens cracked due to the 
expansion of corrosion products. The NaCl solution infiltrated into the concrete through 
the corrosion-induced cracks, and even some mixture liquid exuded from the top 
surface of the RC specimens, as can be seen in Fig. 1(c). As a result, a current circuit 
with lower resistance was formed between the ends of the corrosion region and the 
NaCl solution, and this accelerated the localised corrosion of the reinforcement, leading 
to a typical corrosion pit, as shown in Fig. 2. Similar phenomena have been observed 
in other experiments [41- 43]. It should be noted that some localised corrosion pits with 
the above-mentioned formation mechanism have discovered at some cracks in actual 
structures under the coupling effect of load and chloride corrosion [1, 32].  

 

Fig. 2. The corroded specimens and the phenomenon of pitting corrosion. 
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Table 2. Details of corroded steel bars. 

Specimens m0(g) mcor(g) μt Corrosion time/day μmass μarea μmax 

25-A1 1476.5 1396.4 10% 12.5 10.90% 9.98% 26.20% 

25-A2 1476.5 1410.8 10% 12.5 8.90% 9.23% 32.20% 

25-A3 1476.5 1395.6 10% 12.5 11.00% 9.97% 25.90% 

25-B1 1476.5 1329.6 20% 25 19.90% 20.43% 45.00% 

25-B2 1476.5 1304.1 20% 25 23.40% 23.75% 35.90% 

25-B3 1476.5 1328.4 20% 25 20.10% 21.20% 46.40% 

25-C1 1476.5 1283.8 30% 37.5 26.10% 28.21% 48.60% 

25-C2 1476.5 1252.4 30% 37.5 30.40% 30.68% 48.90% 

25-C3 1476.5 1264.5 30% 37.5 28.7% 29.08% 48.80% 

16-A1 625.3 594.4 10% 12.5 9.90% 8.06% 17.20% 

16-A2 625.3 591.4 10% 12.5 10.80% 9.59% 15.00% 

16-A3 625.3 593.8 10% 12.5 10.10% 6.17% 28.10% 

16-B1 625.3 567.3 20% 25 18.50% 16.96% 40.00% 

16-B2 625.3 575.1 20% 25 16.00% 15.67% 43.60% 

16-B3 625.3 573 20% 25 16.70% 15.37% 51.00% 

16-C1 625.3 528.9 30% 37.5 30.80% 29.84% 78.70% 

16-C2 625.3 540.8 30% 37.5 27.00% 26.66% 49.60% 

16-C3 625.3 535.4 30% 37.5 28.80% 26.61% 46.00% 

8-A1 158.6 152.5 10% 12.5 7.70% 5.29% 8.80% 

8-A2 158.6 152.2 10% 12.5 8.10% 5.83% 9.40% 

8-A3 158.6 142.9 10% 12.5 19.70% 13.63% 40.20% 

8-B1 158.6 141.4 20% 25 21.70% 21.10% 32.40% 

8-B2 158.6 145.5 20% 25 16.50% 15.21% 29.40% 

8-B3 158.6 147.2 20% 25 14.40% 13.85% 29.70% 

8-C1 158.6 141.3 30% 37.5 21.80% 20.60% 37.70% 

8-C2 158.6 139.6 30% 37.5 23.90% 22.46% 78.20% 

8-C3 158.6 145.5 30% 37.5 16.50% 16.57% 37.70% 

2.2 Non-uniform corrosion morphology characterisation with 3D scanning 
technique 

Compared to conventional measurement methods, the 3D scanning technique has the 
advantages of high efficiency, high precision, and no damage to the surface of the object. 
It is appropriate for reconstructing the virtual model of a corroded bar. In this study, a 
hand-held 3D scanner (HandyScan 300 from Creaform) with a scanning accuracy of 
0.02 mm was employed to capture the corrosion morphology of the steel bars. The 
overall scanning setup is shown in Fig. 3(a). The measured data can be acquired in real-
time by Geomagic software. 
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Fig. 3. (a) 3D scanning device for corroded steel bars (b) post-processing process. 

After obtaining the point cloud file (i.e. STL file) containing the 3D spatial 
coordinate information of the corroded bars, a series of operations were still required, 
as shown in Fig. 3 (b), to obtain the cross-sectional areas data of the corroded bars. 
Considering the need for a reliable description of corrosion morphology and the 
requirement for sample size in statistical analysis, finally the residual cross-sectional 
areas of the corroded bars were extracted at 1mm intervals on the 3D model by 
Pro/Engineer software. The same interval was also used in other studies [18, 28, 38]. 
The distributions of residual cross-sectional areas for all corroded bars are shown in 
Fig. 4.  

From the 3D scanning results, almost all the bars exhibited a significant pitting 
corrosion pattern, except for 8A1 and 8A2. For the 16mm and 25mm diameter bars, the 
corrosion pits were mainly located at the ends of the corroded zone, whereas for the 
8mm diameter bars, the pits were distributed more randomly along the entire corrosion 
zone. It was evident that the actual corroded length was slightly larger than 200mm, so 
the mass loss rate μmass determined by a uniform length of 200mm is generally greater 
than the average sectional area loss rate μarea, as shown in Table 2, where μarea is 
determined by: 

1

0
area 

( )
1

lcorn

cor
i

ave lcor

A i

A n
 


 


                         (2) 

where Acor(i) is the residual sectional area of the corroded bar at segment i; nlcor is the 
total number of segment along the actual corroded length lcor, taking the length where 
the sectional area on the corroded bar is less than the minimum sectional area of the 
original bar; A0ave is the average cross-sectional area of the original bar. As corroded 
bars usually rupture in the section with the greatest loss of section during the tensile 
process, it is desirable to determine the maximum sectional area loss rate μmax for each 
bar:  
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max
0

min( ( ))
1 cor

ave

A i

A
                            (3) 

The μarea and μmax of all corroded bars are presented in columns 7-8 in Table 2. 
Noting that 3D scanning has been extensively applied to the characterisation of 
corroded morphology and that its accuracy and reliability have been recognized by 
previous studies [18, 24, 27, 28], μarea is adopted as the average corrosion loss rate μave 
of the corroded bars in the subsequent sections of this paper. 

 

Fig. 4. Distribution of residual cross-sectional areas of (a) 8mm (b) 16mm (c) 25mm 
corroded bars along the longitudinal direction. 
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In order to quantitatively compare the corrosion morphology of corroded bars 
prepared by different studies [1, 24, 29], the correspondences between μave and μmax for 
corroded specimens are plotted in Fig. 5. The reference line (in blue colour) represents 
the ideal condition of perfect uniform corrosion, i.e. the maximum corrosion rate is 
equal to the average corrosion rate. In contrast, the data from a total of 14 corroded bars 
collected from 7 RC beams exposed to the marine environment under sustained load 
for 1.6 years to 28 years [1], plotted with “*” symbol and the corresponding regression 
relationship plotted in brown dash line, appear to represent a potential upper bound for 
the degree of non-uniform corrosion that could occur in actual structures. The data from 
present study and two other previous studies [24, 29] all fall within the above upper and 
lower bounds. It can therefore be argued that the degree of non-uniformity of the 
corroded specimens produced using laboratory accelerated corrosion with impressed 
current is within a realistic range.  

It is worth noting that there is a lack of generally recognised criteria in the literature 
for classifying the degree of non-uniform corrosion. Since the regression relationship 
between μave and μmax for corroded bars provides a quantitative measure of the ratio 
between the maximum and average area loss for corroded bars at different corrosion 
levels, it could serve as a rational indicator to identify the degree of non-uniform 
corrosion. Establishing the correspondence between such a corrosion indicator and the 
erosion environment, as will be discussed later, could assist engineers in selecting a 
reasonable degradation model for evaluating the residual mechanical properties of bars 
in practice. 

 
Fig. 5. Relationship between the average sectional area loss rate and the maximum 

sectional area loss rate. 

2.3 Tensile testing and results 

Monotonic uniaxial tensile tests were carried out on all corroded bars in accordance 
with the standard procedure [44]. A 100-ton universal testing machine was used in the 
test, and the load was applied under displacement control. The loading rate in the elastic 
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stage was set as 0.5 mm/min and then adjusted to 2 mm/min with the development of 
plastic deformation of steel bars. The force and total displacement applied by the testing 
machine were recorded. Considering that the traditional extensometer with fixed gauge 
length can only reflect the elongation of corroded bars at a specific distance and it needs 
to be removed before the specimen reaching the ultimate stage, this study adopted DIC 
technology to measure the entire deformation field of corroded bars. The overall 
loading and testing setup is shown in Fig. 6.  

The DIC system used in this study consists of a pair of binocular stereo-vision 
cameras and post-processing software. The system captures the position information by 
two cameras simultanuously at the same acquisition frequency (1Hz in this study), and 
distinguishes the 3D coordinates of the point in the predefined coordinate system 
established by a priori calibration procedure for cameras. To improve the accuracy and 
efficiency of data acquisition, a layer of speckle on the surface of the corroded bars 
should be sprayed to form a high-contrast random pattern before the test, as shown in 
Fig. 6(c). From the captured information the surface deformation of the measured 
specimen in the whole vision field can be identified. Fig. 6(d) shows a representative 
deformation field of the 25C2 corroded bar under the maximum load.  

 

Fig. 6. Tensile testing and DIC set-up: (a) test system used for axial tensile tests (b) 
binocular stereo-vision camera (c) specimens treated by speckle (d) the strain 

distribution results by DIC. 

For a verification of the accuracy of the DIC setup, a calibration test was 
performed on an HRB400 steel bar with a diameter of 8mm where three strain 
instruments, namely DIC, strain gauge and extensometer, were used simultaneously to 
measure the strain results. The stress-strain curves obtained from three measurements 
are shown in Fig. 7. It is noted that the nominal strain is determined by the ratio of the 
elongation over the extensometer gauge length to its original length. The stress-strain 
curves exhibit excellent agreement among the different measurement methods. 
However, due to the measurement range limitations, both strain gauges failed before 
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reaching a strain of 5%. The extensometer was removed from the specimen to avoid 
damage from premature fracture. Neither of the above two traditional methods could 
record the complete tensile process of the steel bar, while the DIC system captured not 
only the whole deformation process but also detailed distribution of deformation along 
the length of the specimen.  

After the tensile tests of all corroded bars were completed, the DIC post-processing 
software was employed to calculate the deformation field. The strain results are 
determined with a uniform gauge length of 210mm, and the nominal stress of the 
corroded rebar is calculated with the average cross-section area of the original bar to 
enable easy comparison.  

 

Fig. 7. Comparison of stress-strain curves from three measurements. 

Fig. 8 shows the stress-strain curves of corroded rebar specimens for the three 
diameter groups, respectively. As the loading became unstable after the occurrence of 
necking during the test, the results are shown up to the end of the hardening stage for 
all bars. The ultimate strength and deformation refer to the force (stress) and the 
displacement (strain) of steel bars at the moment of the maximum load. It should be 
noted that the test data of specimen 16C2 is excluded from the subsequent mechanical 
property analysis because of the abnormal results, which were caused by some slip at 
the clamping end of the steel bar during the test. Three original bars for each diameter 
group are also tested, and the average results are used to represent the constitutive 
relationship of the original steel bars. Table 3 summarises the characteristic values of 
the mechanical properties of the original steel bars of the three diameters, respectively. 

Table 3. Mechanical properties of original steel bars. 
Diameter Yield stress Yield strain Ultimate stress Ultimate strain 

/mm /MPa /ε /MPa /ε 
25 428.03  0.0023  647.64  0.1236  
16 453.29  0.0025  633.71  0.1361  
8 341.37  0.0022  578.38  0.1298  
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Fig. 8. Tensile test results for (a) 8mm (b) 16mm (c) 25mm corroded specimens. 
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3 Characterisation of non-uniform corrosion morphology 

The morphological characteristics of corroded steel bars have been studied by many 
researchers using a statistical approach. However, due to the uncertainty of corrosion 
effects and the differences in the corrosion conditions, various probability distribution 
functions have been proposed by different studies, such as normal distribution [18], 
lognormal distribution [27], sinusoidal distribution [24], and Gumbel extreme value 
distribution [19, 42]. These probability distribution functions have not been classified 
into the applicable corrosion scenarios, and this leads to confusion in subsequent 
applications. Moreover, the above mentioned probabilistic functions are generally 
unsuitable for characterising the corrosion patterns with significant pitting due to the 
fact that the associated probability density curves are unimodal.  
 

 
Fig. 9. The fitting analysis: (a) corrosion distribution along the rebar axis (b) 

histogram of residual cross-sectional area of steel bars and the corresponding fitting 
probability density curves. 

In the present study ten common probability density functions were firstly tried to 
carry out the fitting analysis on representative pitting bars including specimens 25A2, 
16B2 and 8C2, and five of these probabilistic functions with the smallest fitting errors 
were then selected, with the results plotted in Fig. 9. As the actual distributions are 
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dominated by the primary region around which most of the residual cross-section areas 
situate, the fitted distribution curves tend to be more biased towards the primary region 
of the sectional areas, whereas the region with larger corrosion pits (hence smaller 
cross-section area) is essentially omitted, as can be seen from Fig. 9 (b). However, in 
reality the mechanical properties of the corroded bars are generally governed by the 
minimum cross section, which means a realistic representation of the probability in the 
smaller residual cross section region is crucial. Based on this consideration, in this study 
we propose the adoption of a mixture probability model to depict the cross-section 
distribution characteristics of pitting steel bars. 

3.1 Gaussian mixture model 

The Gaussian mixture model (GMM) has been extensively used in the field of statistical 
analysis [45], which can give a more precise depiction of complicated data distribution. 
GMM is formed by a linear superposition of multiple Gaussian distributions, and can 
approximate any continuous distribution curve by employing a sufficient number of 
components and altering the coefficients (i.e., weight, mean and covariance) in the 
linear combination. The probability density function of GMM is generally written as: 
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where x is a random variable; M is the number of components of GMM; μk and σk are 
the mean and standard deviation of the k-th Gaussian distribution, respectively; wk is 
the weight coefficients of x up to the k-th Gaussian component, which represents the 
relative rate at which the observed sample belongs to the cluster of the k-th Gaussian 
component, and should satisfy the requirement that 0<wk<1, together with 
w1+w2+…+wM =1. The expectation of GMM is: 
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where each Gaussian density N(xi; μk; Σk) refers to a component of GMM and has its 
own mean μk and covariance Σk.  

3.2 Parameter estimation for GMM  

The parameters of a Gaussian mixture model are generally estimated using the 
expectation maximization algorithm (EM), i.e. for a given Gaussian mixture model, the 
objective is to obtain the value of the maximized likelihood function with respect to the 
parameters by iterative computation. The specific steps are as follows [45]： 

1) Initialize the mean μk, covariance Σk and weight coefficients wk, and calculate 
the initial values of the log-likelihood function. 

2) E (expectation) step to calculate the responsibilities based on the current model 
parameters: 
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3) M (maximization) step to re-estimate the parameters using the current 
responsibilities: 
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where 
( )k
ij is the expectation generated by the k-th Gaussian component; w

i
new , new

i , 

new
i are the corresponding parameter estimate, respectively. 

4) Calculate the value of the logarithmic maximum likelihood function: 
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Keep iterating steps 2) to 4) until the amount of change in the likelihood function 
is less than the error value or the number of iterations (the iteration error set in this 
study is 2E-16, and the maximum number of iterations is 500), the iteration ends, 
otherwise, return to step 2). 

3.3 Evaluation for goodness-of-fit 

In order to evaluate the goodness of fit between the determined GMM by the EM 
algorithm and the histogram of the cross-sectional distribution of pitting bars, it is 
crucial to select suitable evaluation metrics. Previous studies have routinely employed 
metrics such as coefficient of determination (R2) and root mean square error (RMSE), 
and the essence of these metrics is to calculate the difference between the fitted and 
actual values. However, the actual values are dependent on the selection of the group 
spacing in the case of fitting data distributions. Different group spacing would directly 
affect the value of the probability density, and hence the results of the above error 
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metrics. For this reason, in this paper we adopt the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC) [46] in selecting the model and 
determining the model parameters. Both AIC and BIC are comprised of two parts, the 
first of which reflects the complexity of the model as a penalty term, and the second 
reflects the accuracy of the model, as expressed in the following: 

2 2AIC m L                             (11) 

ln( ) 2BIC m n L                          (12) 

where m represents the count of model parameters, n is the number of fitted data, and 
L is the value of the log-likelihood function of the model, which can be determined by 
Eq. 10.  

In general, the higher the accuracy of the model fit, the smaller values of AIC and 
BIC correspondingly, and the model is better; however, when the values L of different 
models are close, the first part of Eqs. 11 and 12 would play a decisive role, thus the 
model is more simple, which is better. The applications of AIC and BIC can avoid the 
evaluation errors caused by different group spacing; besides that, BIC takes into account 
the influence of sample size in the penalty term, which can prevent the phenomenon of 
excessive model complexity arising from a high model accuracy. 

As an exploration, different probability models, including GMMs with varying 
cluster numbers, are employed to fit the residual cross-section area distribution of 25A2, 
16B2 and 8C2 bars. The corresponding values of AIC and BIC are determined and 
compared in Fig. 10 via bar charts, where norm_n represents the number of components 
in GMM. Compared to the unimodal probability distribution model, the fitting accuracy 
of the model is significantly improved with GMM when two or more components are 
involved, i.e. a significant decrease in the value of AIC. It can also be observed that 
introducing more components in the GMM results in an increased value of the BIC, 
whereas the value of AIC decreases only slightly, which means the fitting accuracy of 
the model is not improved substantially. Considering that a larger number of 
components in GMM leads to an increase in the complexity of the model, the GMM 
with two components appears to realize a good balance between the fitting accuracy 
and model complexity, and therefore can serve the best probability model for 25A2, 
16B2 and 8C2 steel bars.  

A comparison of the probability density curves of the two-component GMM with the 
histograms of the residual cross-section area of 25A2, 16B2 and 8C2 steel bars are 
shown in Fig. 11. The comparison results illustrate excellent agreement. In the two 
clusters of GMM, the two Gaussian components depict the cross-section area 
distribution of the uniform and pitting corroded sections of the bars, respectively. 
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Fig. 10. The values of AIC and BIC for different probability models. 
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Fig. 11. Histograms of residual cross-sectional area of representative corroded 

bars and the corresponding fitting probability density curves with two-component 
GMM.  

3.4 Probability model of residual cross-section distribution of pitting bars 

From the experimental results, the residual cross-sectional areas of each corroded bar 
can be obtained through the process described in Section 2.3. These data are normalized 
(divided by the average cross-section area of the original steel bar) and subsequently 
treated as a random variable for cluster analysis based on the EM algorithm. A Gaussian 
mixture model with the optimum number of components is determined by comparing 
the AIC and BIC values. For example, GMM with different components is used to fit 
nine corroded bars in the 8mm diameter group, and the corresponding AIC and BIC 
values of the models are shown in Fig. 12. It is evident that when the number of 
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components is greater than 1, there is a significant decrease in the AIC and BIC values, 
i.e. a significant increase in model accuracy; when the number of components is greater 
than 2 or 3, the AIC values varies only slightly, and the BIC values increase rapidly due 
to the increase in parameters. Similar trends can be observed for 16mm as well as 25mm 
corroded bars. 

 
Fig. 12. The values of AIC and BIC for 8mm diameter corroded bars fitted by 

GMM with different number of components. 

From the above analysis, it is clear that a GMM with two or three components is 
suitable for depicting the cross-sectional area distribution of most corroded steel bars 
in terms of the model accuracy. However, three additional parameters (i.e., weight 
coefficient, mean and variance) are required for each additional Gaussian component. 
Considering a good balance between the fitting accuracy and the complexity of the 
model, as well as the consistency of the subsequent analysis, a GMM with two 
components is employed to depict the cross-sectional area distributions of all corroded 
bars. In addition, the two-component GMM has a clearer physical meaning than the 
other models. The Gaussian component with a greater weight and a higher mean 
represents the cross-sectional distribution of the uniformly corroded portion in the steel 
bars, while another Gaussian component with a lower weight and mean reflects the 
cross-sectional distribution of the pitting corroded portion in the steel bars. This way, a 
direct link between the six parameters in the two-component GMM and the 
morphological characteristics of the corroded bars is established. The two weight 
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coefficients, w1 and w2, are related to the proportion of pitting segments among the 
overall length, while the two mean coefficients, m1 and m2, are related to μave and μmax 
respectively, and the two variance coefficients, v1 and v2 determine the specific shape 
of the distribution. The values of the parameters determined by the EM algorithm are 
presented in Table 4. 

Table 4. The parameters of two-component GMM for corroded specimens. 
Specimens μave μmax w1 m1 v1 w2 m2 v2 

25A1 0.0998  0.2618  0.9143  0.9111  -7.8530  0.0857  0.7838  -6.8365  

25A2 0.0923  0.3215  0.8609  0.9218  -8.2930  0.1391  0.8206  -5.2349  

25A3 0.0997  0.2590  0.8844  0.9115  -8.8924  0.1156  0.8143  -6.3211  

25B1 0.2043  0.4501  0.8387  0.8171  -8.3171  0.1613  0.6848  -5.1830  

25B2 0.2375  0.3586  0.7911  0.7765  -8.0214  0.2089  0.7095  -6.4995  

25B3 0.2120  0.4644  0.7942  0.8142  -7.4363  0.2058  0.6870  -5.0568  

25C1 0.2821  0.4858  0.9287  0.7298  -6.8483  0.0713  0.5620  -6.4718  

25C2 0.3068  0.4885  0.8669  0.7120  -6.7305  0.1331  0.5708  -5.9603  

25C3 0.2908  0.4884  0.7027  0.7333  -7.3852  0.2973  0.6522  -5.7156  

16A1 0.0806  0.1717  0.6357  0.9331  -8.2475  0.3643  0.8956  -7.0414  

16A2 0.0959  0.1504  0.5598  0.9133  -8.3721  0.4402  0.8969  -7.7535  

16A3 0.0617  0.2813  0.9251  0.9489  -7.9876  0.0749  0.8081  -5.3940  

16B1 0.1696  0.3997  0.8108  0.8482  -6.7604  0.1892  0.7542  -5.1097  

16B2 0.1567  0.4355  0.9173  0.8569  -7.3917  0.0827  0.6926  -5.0515  

16B3 0.1537  0.5100  0.8149  0.8895  -7.8063  0.1851  0.6561  -4.1709  

16C1 0.2984  0.7873  0.9241  0.7304  -5.8242  0.0759  0.3508  -4.1661  

16C2 0.2666  0.4961  0.7281  0.7758  -6.9097  0.2719  0.6197  -5.6797  

16C3 0.2661  0.4604  0.5526  0.7622  -5.5392  0.4474  0.6989  -5.3220  

8A1 0.0529  0.0883  0.5455  0.9610  -9.3490  0.4545  0.9303  -9.2456  

8A2 0.0583  0.0943  0.5256  0.9559  -9.0172  0.4744  0.9259  -8.9347  

8A3 0.1363  0.4024  0.9368  0.8759  -6.7388  0.0632  0.6820  -5.4162  

8B1 0.2110  0.3238  0.6782  0.8149  -7.5211  0.3218  0.7345  -7.1031  

8B2 0.1521  0.2941  0.6931  0.8701  -7.3319  0.3069  0.7978  -6.3549  

8B3 0.1385  0.2968  0.9381  0.8682  -7.6827  0.0619  0.7597  -6.5802  

8C1 0.2060  0.3769  0.7286  0.8249  -6.0758  0.2714  0.7110  -5.9396  

8C2 0.2246  0.7824  0.8521  0.8149  -6.1831  0.1479  0.5478  -3.3356  

8C3 0.1657  0.3776  0.9146  0.8450  -5.8655  0.0854  0.7195  -5.3489  

Note: The parameters of v1 and v2 in the table are logarithmically processed values. 

4 Prediction for the mechanical properties of pitting bars 

Most previous studies have developed semi-empirical equations to estimate the 
deterioration degree of the mechanical properties of corroded bars. However, these 
results have significant drawbacks, as mentioned before. In this section, a simplified 
theoretical method is proposed for assessing the residual mechanical properties of 
corroded bars in conjunction with the study of the cross-sectional area distribution 
characteristics of pitting bars in Section 3. 
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4.1 Theoretical calculation method for the evaluation of the deformation capacity 
of corroded bars 

Several investigations have reported that the influence of corrosion on steel bars can be 
regarded as the loss in cross-section only, without inducing a change in the material 
intrinsic properties [47, 48]. Therefore, the residual load bearing capacity of a corroded 
reinforcing bar depends mainly on its minimum remaining cross-sectional area, while 
the tensile deformation capacity need to be determined by the residual cross-sectional 
areas of the whole reinforcing bar [49]. A simplified theoretical method for calculating 
the deformation capacity of corroded bars is therefore proposed based on the above 
assumptions, and the specific steps are as follows: 

(1) Determine the actual cross-sectional area of corroded bars at an appropriate 
interval, herein using 1 mm, and calculate the stress values for individual sections under 
the current tensile force at each loading step according to Eq. 13： 

j
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A
                                (13) 

where Fj is the total tensile force on the steel bar at step j; Ai is the residual sectional 
area of the i-th section of the steel bar; σij is the nominal stress produced by the external 
load Fj at the corresponding section. The maximum value of Fj is the maximum load 
value during the real tensile test of the corresponding corroded bar. 

(2) The intrinsic mechanical properties of the corroded bars are assumed to be 
unchanged. The strain value εi for the corresponding incremental segment i (of 1-mm 
length herein) is determined by the value of σij obtained in step (1) and the stress-strain 
relationship for the original steel bar. It should be noted that at the moment of maximum 
load, some regions of the corroded bar, especially those near the corrosion pits, may 
already exhibit the phenomenon of necking. This means the actual stress σij calculated 
in some small segments may be greater than the ultimate stress fu defined in the stress-
strain curve of the original bar. Considering the uncertainties in the cross-section area 
around a necking location and for a conservative consideration, when σij > fu, the strain 
value εij is taken equal to the ultimate strain εu of the original steel bar. 

(3) Calculate the elongation of each incremental segment under each tensile load 
according to Eq. 14, and the total elongation Δtotal of the corroded bar by accumulating 
the deformation values of all segments, as  

1

corl

total i i i
i

l 


   △                         (14) 

Thus the load-displacement curve of the corroded rebar is established. 

Three representative corroded bars (25C2, 16A1, 8B2) are taken from all bar 
specimens to illustrate the analysis process and results. The load-displacement curves 
for these corroded bars are computed according to the above procedure and then 
compared with the direct results from the tensile tests. The computed load is divided 
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into 300 steps from 0kN to the maximum test load. The load-displacement curves are 
converted into nominal stress-strain curves to facilitate comparison across specimens 
of different diameters. The nominal stress of the corroded bar is calculated by dividing 
the tensile load by the average cross-sectional area of the original bar, and the nominal 
strain is calculated by dividing the displacement by the gauge length which is taken as 
210 mm.  

The comparison results are shown in Fig. 13. The curves obtained by the 
theoretical calculation method are drawn with dashed lines, and the stress-strain curves 
from the tests are drawn with solid lines. It can be seen that the shapes of the computed 
curves match very well with the test curves, and yield and ultimate stages of the 
computed results also fit the direct test results with good accuracy. The computed 
ultimate deformation capacity of the bars appears to be lower than the actual test values. 
Although the difference is not significant from the view point that the ultimate 
deformation could vary quite markedly even between different specimens of the same 
original bars, the fact that the computed deformation always appears to be lower is 
something worth investigating. In what follows, the strain distribution data along the 
length of the corroded bar at the moment of the maximum load is extracted to analyse 
the reason for this situation. 

 
Fig. 13. Comparison between the test results of corroded bars and theoretical results. 

Fig. 14 shows the distribution of (real) strains along the length of the bar specimens, 
in which extracted strain distributions from the actual tensile tests by the DIC technique 
are shown in orange curves, while the computed strain distributions by the theoretical 
method are shown in blue curves. In addition, the distributions of the residual cross-
sectional areas of the corroded bars are also included, shown in grey curves, for an 
observation. It is apparent that the strain distribution determined using the theoretical 
calculation method is in general agreement with the actual test curves. It can be noted 
that in the vicinity of the critical section, i.e., the smallest cross-sectional area, the 
computed strain has a cap due to the imposed limit of stress, σimax, at the ultimate stress 
fu of the original bar. In the actual test, the local necking of the steel bar at the critical 
pitting locations resulted in a higher stress and higher strain. Zhou et al. [43] determined 
the precise strain values along the corrosion pits using numerical simulation. But for 
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plastic materials, especially steel bars, it is generally known that after reaching the 
necking stage, small cavities are formed inside the bars due to microscopic defects 
within the material; as the deformation proceeds, these microscopic holes expand, 
gather and merge to form an elliptical crack, which eventually spreads to the entire neck 
resulting in the fracture of the bar [50]. Indeed, the state of the reinforcement at this 
stage is unstable, and fracture may occur at any time. From this point of view, it is not 
considered to be meaningful to attempt to fit the extra strains arising from the 
occurrence of necking. Nevertheless, the above analysis provides a further assurance 
that the computed stress-strain results essentially fits very well the actual test results 
even in terms of the nominal ultimate strain.  

 
Fig. 14. Axial strain distribution for three corroded bars at the moment of ultimate load. 

4.2 GMM-based evaluation method for the mechanical properties of pitting bars 

From the analyses in the previous section, the residual mechanical properties of the 
corroded bars depend primarily on the stress-strain relationship of the original bars and 
the specific value of the residual cross-sectional areas after corrosion, while the 
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sequence of the arrangement of the cross-sectional area does not have a considerable 
effect on the ultimate deformation capacity of the corroded bars. Therefore, following 
a satisfactory verification of the above theoretical calculation method for the residual 
cross section area by the DIC technique, this method is further developed for the 
assessment of the mechanical properties of corroded bars by statistical means to reduce 
the dependence on actual morphological data. 

4.2.1 Assessment for the ultimate load capacity  

An accurate assessment of the ultimate load capacity of pitting bars is a fundamental 
prerequisite for further predicting their deformation behaviour. For pitting steel bars, at 
the moment of maximum tensile external force, a portion of the bar has prematurely 
reached the necking stage in the vicinity of a localised corrosion pit. The real axial stress 
at the critical section is strengthened under a multi-axial stress condition. Consequently, 
when the stress in the section is determined by adopting the minimum residual cross-
sectional area, a slightly increasing tendency is observed at the moment of maximum 
loading of the pitting bars compared with the corresponding original bars [17-19]. 

As the steel bar reaches the plastic hardening stage after yielding, even a minor 
stress enhancement can generate a large increment in the overall deformation or 
nominal strain. Thus the ultimate-stress-strengthening effect of pitting bars cannot be 
disregarded. The ultimate-stress-strengthening coefficient k for corroded bars is defined 
according to Eq. 15: 
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where Tmax is the maximum load value in the tensile test; fu0 is the ultimate stress value 
of the original steel bar. The values of k for the pitting bars prepared in this study are 
calculated based on Eq. 15 and presented in Table 5. 

Table 5. The ultimate-stress-strengthening coefficient k for corroded bars. 

Diameter A1 A2 A3 B1 B2 B3 C1 C2 C3 Mean value St-dev 

25mm 1.13 1.19 1.15 1.20 1.11 1.19 1.17 1.13 1.16 1.16  0.03  

16mm 1.05 1.04 1.07 1.13 1.11 1.12 1.11 NA 1.04 1.08  0.03  

8mm 0.96 1.12 1.18 1.04 1.07 1.00 1.02 NA 1.06 1.06  0.06  

Mean value 1.10  1.11 1.10  
1.10  0.06  

St-dev 0.07  0.06  0.05  

In Table 5, the specimens are classified in terms of diameter and corrosion rate μt. 
The mean value of k obtained from the different corrosion rates is almost unchanged 
and remains around 1.1, indicating that there is no significant correlation between k and 
the corrosion rate. In contrast, when the test data is classified according to diameter, the 
mean value of k increases from 1.06 to 1.16 with increasing diameter of bars, and the 
standard deviation (St-dev) is lower compared to the results classified by μt. These 
results demonstrate that for larger diameter bars, the multi-axial stress condition tends 
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to get more enhanced, and as a result the overall tensile deformation capacity of the 
corroded bar becomes more pronounced. 

A regression between the mean values of k and the bar diameter curve is fitted 
which can be expressed by: 

0.008 0.965k D                            (16) 

Subsequently, the GMM is considered for generating the cross-sectional 
information for pitting bars in the absence of the actual test values, and from there the 
minimum cross-sectional area Âmin is picked. The ultimate load capacity Fmax of the 
pitting bars can then be calculated following Eq.17 and Table 5: 

max min 0
ˆ

uF k A f                              (17) 

Take the real test value of the pitting bars as the x-coordinate and the predicted 
value as the y-coordinate and plot a scatter diagram to observe the comparison. Fig. 15 
(a) and (b) show the predictions without and with the ultimate-stress-strengthening 
coefficient k, respectively. It can be seen that the ultimate load capacity of 16mm and 
25mm pitting bars is notably underestimated when the ultimate-stress-strengthening 
effect is not taken into account. After multiplying the corresponding mean value of k 
determined by different diameters of steel bars, the predictions are significantly 
improved and all scatter dots are closer to the reference line y = x. These demonstrate, 
on the one hand, the necessity to consider stress strengthening effect and, on the other 
hand, the reliability of the values of k obtained according to the diameter classification 
in Table 5.  

 
Fig. 15. Comparison between the test ultimate strengths and the predicted values (a) 

without and (b) with the consideration of the ultimate-stress-strengthening effect. 

4.2.2 Assessment for the deformation capacity with different gauge lengths 

For the analysis of the plastic deformation capacity of RC members involving corroded 
bars, an accurate calculation of the ultimate deformation capacity of the corroded bars 
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across the plastic region is a key. As the size (length) of the plastic region can vary in 
different applications, it is important that any dependency of the normalised 
deformation capacity (nominal strain) of corroded bars to the gauge length, over which 
the nominal strain is evaluated, be clearly established. 

From the results in previous sections, the strain distribution along the length of 
pitting bars under tension is not uniform, therefore the nominal ultimate strain is 
dependent upon the gauge length. In this section, the elongation of the pitting bars is 
derived by employing the GMM fitted in Section 3.4 to generate a set of sectional areas 
for the corroded bars. Three gauge lengths, i.e., 50mm, 100mm and 210mm, are set to 
demonstrate the correlation of the normalised ultimate strain with the gauge length. 

 
Fig. 16. Setup of the DIC virtual extensometer. 

It is noted that the clamping range of the extensometer in the tensile test is required 
to cross the failure zone of the steel bar [44]. Therefore the virtual extensometers with 
three gauge lengths are set up in the DIC post-processing software, the exact locations 
of which are shown in Fig. 16. As the gauge length decreased, massive uniformly 
corroded pieces of reinforcement are excluded, while pitting pieces of reinforcement 
are still retained. The proportion of the pitting segment changes significantly within the 
clamping range of the 50mm and 100mm virtual extensometers. The parameters w1 and 
w2 of the corresponding GMM in Table 4 were thus corrected according to Eq. 18： 
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where lcor is the corrosion length of the corroded bars, which is taken as 210mm 
uniformly; lgauge is the gauge length, and w1’ and w2’ are the corrected weight 
coefficients, respectively. 

The cross-sectional data with 50, 100 and 210 are randomly generated by python, 
in accordance with the method in section 4.2.1 to determine the ultimate load and 
following the steps in section 4.1 to evaluate the ultimate deformation of the pitting 
bars over the whole gauge length. Similarly, the comparison results are plotted in scatter 
diagrams and shown in Fig. 17, where GL indicates Gauge length. The elongations of 
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the pitting bars are well predicted by the theoretical method, regardless of whether the 
gauge length is 50 mm, 100 mm or 210 mm. The predicted values for most of the bars 
are slightly smaller than the test values for the reasons analysed in section 4.1. The 
contrast results demonstrate that the theoretical method developed in this section is 
capable of assessing the ultimate deformation capacity of corroded bars with arbitrary 
lengths. On the other hand, it also indicates that the randomly generated pitting bar 
cross-section data by GMM is close to the original cross-section data, and the GMM 
can well characterise the probability distribution of the cross-sectional areas of pitting 
bars. 

 
Fig. 17. Comparison between the test ultimate elongations and the predicted 

values with (a) 50mm (b) 100mm (c) 210mm gauge length. 

4.2.3 Comparison with available prediction models  

For a comparison with other prediction models available in the literature, Table 6 
summarises two models proposed by other researchers. In the table, αuc and αεc denote 
the ratio of the nominal ultimate strength and nominal ultimate strain of the corroded 
bar to the corresponding properties of the original bar, respectively. μave and μmax bear 
the same meaning as defined in this paper and they represent the overall corrosion and 
pitting levels. 

Table 6. Summary of two other prediction models of corroded bars. 

Authors Diameter/mm Gauge length/mm αuc αεc 

Zhang et al. 

 [23] 

6/8/10/12 

16/ 25 
50 αuc =1-1.201μave αεc =exp(-3.789μave) 

Zhang et al. 

[24] 

8/10/12 

14/16 
5*D αuc =1-1.405μave 

αεc =-0.287+1.251exp(-3.492μave) 

αεc =-0.046+1.032exp(-3.673μmax) 

Using these models, the ultimate loads and the tensile deformation corresponding 
to 50 mm, 100 mm and 210 mm gauge lengths are calculated for the pitting bars 
prepared in this study. All the results are shown in Fig. 18, where the predictions 
obtained from the theoretical method of this study (referred to as the GMM method) 
are shown in blue solid circle symbols, while the predictions determined from the other 
models are shown in different coloured hollow circle symbols. It can be clearly 
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observed that the ultimate loads predicted by the GMM method are notably closer to 
the actual test values comparing with the results determined by the other models, 
although all results appear to be consistent with the test results in terms of the trend. 
When it comes to the prediction of the ultimate deformation capacity of the steel bars 
(Fig. 18 (b), (c) and (d)), however, the GMM method shows considerable improvement 
from the other models not only in terms of the trend but also the accuracy.  

 
Fig. 18. Comparison between test and predicted values by different methods: ultimate 
load (a) and ultimate elongations with different gauge lengths (b) 50mm (c) 100mm 

(d) 210mm. 

The prediction accuracy between different models is further examined using four 
error indices, namely Pearson correlation coefficient (Rpearson), root mean square error 
(RMSE), mean absolute percentage error (MAPE), and symmetric mean absolute 
percentage error (SMAPE), expressed as follows: 


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where ˆiy  is the predicted value and yi is the corresponding test value. Rpearson reflects 

the correlation between the predicted and tested values, and its value ranges between 1 
and -1; A value closer to 1 means that the two data sets are positively correlated, closer 
to -1 means that they are negatively correlated, and closer to 0 means that they are not 
correlated. The other three metrics directly reflect the magnitude of the error between 
the predicted values and the actual values, with larger values indicating larger errors. 
The error results are compared in Table 7 and Table 8 for the ultimate stress and strain, 
respectively. 

Table 7. Error between predicted and tested values of maximum load on pitting bars. 

Method Rpearson RMSE/kN MAPE/% SMAPE/% 

GMM-method 0.997 6.94 6.53 7.42 

Zhang et al. [23] 0.975 27.0 28.8 22.3 

Zhang et al. [24] 0.972 23.7 25.4 20.1 

Table 8. Error between predicted and tested values of maximum elongations on 
pitting bars. 

Method 
Gauge 

length/mm 
Rpearson RMSE/mm MAPE/% SMAPE/% 

GMM-method 

50 0.902 1.16  26.4 34.9 

100 0.955 1.46  23.7  32.5  

210 0.973  2.27  21.9  29.5  

Zhang et al. [23] 

50 -0.129  2.11  43.9  42.9  

100 -0.0767  4.00 68.4  46.9  

210 -0.0750  9.21  113  57.0  

Zhang et al. [24]-crt 

50 0.0158  3.01  54.5  81.9  

100 0.0745  4.52  47.0  65.5 

210 0.0457  8.68  55.1  64.8  

Zhang et al. [24]-avg 

50 -0.130  2.53  45.2  56.1  

100 -0.0788  4.23  63.2  57.8  

210 -0.0772  8.97  96.3  63.4  

For the maximum load capacity of the corroded bars, the Rpearson values are all 
larger than 0.95, indicating that all three methods predict the trend of the load capacity 
with good accuracy, with the GMM method showing the least errors. For the prediction 
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of the deformation capacity, however, the three models show distinctive performances, 
with the GMM method exhibiting considerable improvement over the other two models. 
It should be noted that a main reason for the large errors in the predictions with the 
other two models lies in the fact that a fixed gauge was applied in the corresponding 
experiments. For example, Zhang et al. [23] measured the ultimate strain of 
reinforcement using a 50 mm gauge length. The corresponding model shows the 
smallest prediction error when it is applied to the same gauge length, but when the 
gauge length is increased from 50mm to 210mm, the MAPE value increases sharply 
from 43.9% to 113.1%.  

5 GMM-based method for time-varying mechanical properties of pitting bars 

 
Fig. 19. The correlation matrix of GMM parameters. 

To facilitate the application of the probabilistic models presented in Section 3.4, a 
series of regression analyses on the GMM parameters are carried out and the time-
varying results are presented in this section. The two-component GMM involves a total 
of six parameters, namely w1, w2, m1, m2, v1 and v2. To explore the correspondence 
among the GMM parameters and μave as well as μmax, the Rpearson values of the above 
eight parameters are calculated one-to-one according to Eq. 19, and the correlation 
matrix is plotted in Fig. 19. The red squares represent positive correlations between the 
two parameters and the blue squares indicate negative correlations. The depth of the 
colour reflects the degree of correlation between the two parameters, with the specific 
Rpearson values marked in the centre of the squares. 
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It is apparent that m1 and v1 show a stronger correlation with μave, with Rpearson 
values of -0.99 and 0.73, respectively. m2 and v2 exhibit a stronger correlation with μmax, 
with Rpearson values of -0.96 and 0.88, respectively. These results validate the hypothesis 
proposed in Section 3.4.  

Based on the above observation, regression analyses are conducted for m1 and v1 
with μave as the independent variable, and for m2 and v2 with μmax as the independent 
variable. The corresponding regression equations are given in Fig. 20 and Table 9. 

 

Fig. 20. The regression analysis of GMM parameters. 

Table 9. The regression equations of GMM parameters. 
Parameters/y Arguments/x Regression equation 

μmax μave y=1.69x+0.08 
m1 μave y=-0.93x+1.01 
v1 μave y=9.33x-9.17 
m2 μmax y=-0.72x+1.00 
v2 μmax y=6.76x-8.57 

The two weight coefficients, w1 and w2, are related to the proportion of pitting 
segments in the overall length and have no direct relation to the corrosion rate, with an 
absolute value of Rpearson only 0.17 and 0.45. Due to w1+w2=1, they satisfy a strictly 
negative correlation with the Rpearson value of -1. Therefore, the values of w1 and w2 can 
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be set flexibly according to engineering application or structural analysis requirements, 
as further discussed in Section 4.2.2. As a reference, the mean values of w1 and w2 for 
the 27 pitting bars prepared in this study are 0.7876 and 0.2124, respectively. 

Based on the above analysis and results, it is feasible to estimate the degree of 
corrosion of the steel in RC structure under different service times and determine the 
degraded properties. A typical RC building located close to the coast and exposed to 
marine splash is taken as an example to comprehensively illustrate the utilization of the 
developed GMM and the realization of the whole calculation process. It is assumed that 
concrete cover xc is 25 mm, the reinforcement diameter is 8 mm and the water cement 
ratio w/c is 0.5. The reinforcement corrosion in concrete consists of two main stages, 
namely the corrosion initiation stage and the corrosion propagation stage. Initial 
corrosion time is determined by the Duracrete model [51]: 
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             (23) 

Due to the various uncertainties involved in corrosion analysis, consider 
performing the Monte Carlo simulations with 50,000 samples to solve Eq. 23. The 
definition and the statistical distribution of each parameter in Eq. 23 can be found in 
[12, 52]. The mean value of results, 16.7 years, is taken as the time of corrosion 
initiation for the RC structure. Assume that the density of steel remains constant and 
the cross-sectional area of the bars decreases uniformly along the circumference. The 
average mass loss rate of the reinforcement can then be derived from Eqs. 24-26: 
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where Dcor (t) is the effective diameter of the bar at time t, D0 is the original bar diameter, 
ecor (t) is the average corrosion depth of the bar at time t, and icor (t) represents the 
corrosion current density at time t. Thereafter, following the regression equations 
provided in Table 9, a time-varying distribution model of the geometric properties of 
the corroded bars can be developed. Fig. 21 shows the time-varying GMMs for the 
distribution of reinforcement cross-sections during 50 years in service for the given 
building. 
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Fig. 21. The time-variant probabilistic density curves of GMM.  

After the values of the GMM parameters are obtained, this calculation method 
allows for an adaptable determination of stress-strain relationships for reinforcement 
bars for any suitable (gauge) length an analyst or engineer chooses to use with respect 
to specific applications. Based on the calculation procedure in Section 4.2, a 
straightforward calculation flow chart is produced, as shown in Fig. 22. The calculation 
procedure is only for one point on the stress-strain curve of the corroded bar. In fact, 
the determined Fmax can be divided equally into numerous nodes and then the procedure 
in Fig. 22 is repeatedly performed on these nodes to obtain the complete stress-strain 
curve for the corresponding corroded bar. Fig. 23 illustrates the deterioration of the 
tensile behaviour for the reinforcement in the service period.  

It is worth noting that the GMM reflects a harsh corrosion scenario. Engineers can 
adjust the values of the coefficients in the GMM or even choose another probability 
model, such as the log-normal distribution model [27], depending on the possible 
corrosion pattern of the reinforcement. The analysis framework developed in this paper 
allows engineers to create more realistic uncertainty models for the reliability analysis 
of corroded RC structures and predict the cross-sectional loss as well as the residual 
mechanical properties of corroded reinforcement in a general way. 
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Fig. 22. Numerical scheme for evaluating the mechanical properties of corroded bars 
based on the corrosion morphology. 

 

Fig. 23. Results of time-variant stress-strain curves. 

6. Conclusions 

In this paper, 27 non-uniform corrosion bars were prepared by the semi-immersion 
accelerated method. The corrosion morphology was precisely mapped using 3D 
scanning technology and then described with the Gaussian mixture model. The profile 
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analyses were conducted to evaluate the residual mechanical properties of corroded 
bars. The main conclusions can be summarized below:  

(1) The semi-immersion accelerated corrosion method is suitable to produce 
corroded rebar specimens with a corrosion pattern similar to what occurs in real RC 
structures in a corrosive environment. The regression relationship between the 
maximum cross-sectional loss rate and the average cross-sectional loss rate, derived 
from these specimens, can be used to identify the non-uniform corrosion degree of steel 
bars under different corrosion conditions.  

(2) Compared with classical unimodal distribution models, the two-component 
GMM can well characterise the residual cross-sectional distribution of pitting bars. The 
first Gaussian component with a higher weight (in a range of 0.6 to 0.9) represents the 
cross-sectional distribution of uniformly corroded segments, while the second Gaussian 
component with a lower weight (in a range of 0.1 to 0.4) represents the cross-sectional 
distribution of the pitting segments. The corresponding regression equations based on 
the corrosion level are provided. 

(3) The tensile process of corroded bars can be well reproduced with a simplified 
theoretical method involving accumulating the deformations from all micro-segments 
based on the cross-sectional areas of the corroded rebar. The predicted values of the 
ultimate stress and strain from the theoretical analysis tends to be lower than the 
deformation values from the experiments, but the margin - generally within 20% - is 
considered as reasonable and this puts the predicted values on a reasonably conservative 
side for engineering applications. 

(4) The degradation of the mechanical properties of corroded bars is mainly 
attributed to the loss of the effective cross-sectional area, while the intrinsic material 
properties remain unchanged. However, there exists a strengthening effect in the 
ultimate stress at the ultimate stage and this is not negligible. This enhancement effect 
is more significant as the diameter of the reinforcement increases. 

(5) A GMM-based analytical method for evaluating the mechanical properties of 
pitting bars is proposed. Compared with the conventional method, this method 
incorporates the effects of the corrosion morphology, the original constitutive 
relationship and the bar diameter, thus enabling a more reliable prediction of the 
ultimate load capacity and the corresponding elongation for any sample (gauge) length 
of corroded bars. 

The method proposed in this paper is of general applicability for the description 
of the mechanical properties of corroded steel bars. It should be noted that different 
corrosive environments and physical states of the RC components will affect the 
corrosion patterns of the steel bars, but these can be represented in specific parameters 
of the corrosion-related probability model. The subsequent research is to establish 
comprehensive probabilistic models with respect to the geometrical and mechanical 
properties of corroded bars for particular corrosive environments through a 
combination of actual structural data and laboratory simulation.  
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