
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiomic spatial landscape of innate immune cells at human
central nervous system borders
Citation for published version:
Sankowski, R, Süß, P, Benkendorff, A, Böttcher, C, Fernandez-Zapata, C, Chhatbar, C, Cahueau, J,
Monaco, G, Gasull, AD, Khavaran, A, Grauvogel, J, Scheiwe, C, Shah, MJ, Heiland, DH, Schnell, O,
Markfeld-Erol, F, Kunze, M, Zeiser, R, Priller, J & Prinz, M 2023, 'Multiomic spatial landscape of innate
immune cells at human central nervous system borders', Nature Medicine. https://doi.org/10.1038/s41591-
023-02673-1

Digital Object Identifier (DOI):
10.1038/s41591-023-02673-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Nature Medicine

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Jan. 2024

https://doi.org/10.1038/s41591-023-02673-1
https://doi.org/10.1038/s41591-023-02673-1
https://doi.org/10.1038/s41591-023-02673-1
https://www.research.ed.ac.uk/en/publications/ee2b1710-5aaa-44b1-8186-dcf295102115


Nature Medicine

nature medicine

https://doi.org/10.1038/s41591-023-02673-1Article

Multiomic spatial landscape of innate 
immune cells at human central nervous 
system borders

Roman Sankowski    1,11  , Patrick Süß    1,2,11, Alexander Benkendorff    1, 
Chotima Böttcher    3, Camila Fernandez-Zapata    3, Chintan Chhatbar1, 
Jonathan Cahueau1, Gianni Monaco1,4, Adrià Dalmau Gasull    1, 
Ashkan Khavaran1, Jürgen Grauvogel5, Christian Scheiwe5, 
Mukesch Johannes Shah    5, Dieter Henrik Heiland    5, Oliver Schnell5, 
Filiz Markfeld-Erol6, Mirjam Kunze6, Robert Zeiser    7,8, Josef Priller3,9,10 & 
Marco Prinz    1,8 

The innate immune compartment of the human central nervous system 
(CNS) is highly diverse and includes several immune-cell populations such 
as macrophages that are frequent in the brain parenchyma (microglia) 
and less numerous at the brain interfaces as CNS-associated macrophages 
(CAMs). Due to their scantiness and particular location, little is known 
about the presence of temporally and spatially restricted CAM subclasses 
during development, health and perturbation. Here we combined single-cell 
RNA sequencing, time-of-flight mass cytometry and single-cell spatial 
transcriptomics with fate mapping and advanced immunohistochemistry to 
comprehensively characterize the immune system at human CNS interfaces 
with over 356,000 analyzed transcriptomes from 102 individuals. We also 
provide a comprehensive analysis of resident and engrafted myeloid cells in 
the brains of 15 individuals with peripheral blood stem cell transplantation, 
revealing compartment-specific engraftment rates across different CNS 
interfaces. Integrated multiomic and high-resolution spatial transcriptome 
analysis of anatomically dissected glioblastoma samples shows regionally 
distinct myeloid cell-type distributions driven by hypoxia. Notably, the 
glioblastoma-associated hypoxia response was distinct from the physiological 
hypoxia response in fetal microglia and CAMs. Our results highlight myeloid 
diversity at the interfaces of the human CNS with the periphery and provide 
insights into the complexities of the human brain’s immune system.

The CNS interfaces are physical, immunological and molecular bar-
riers ensuring the structural integrity of the CNS parenchyma while 
facilitating waste disposal1. Recent evidence identified CNS interfaces 
as anatomical sites for pathogen invasion, tumor dissemination and 
neurodegeneration2–4. In line with the diverse immunological functions, 

CNS interfaces host more diverse immune populations than the CNS 
parenchyma (PC)4–6. The mouse perivascular space (PV), leptomeninges 
(LM), choroid plexus (CP) and dura mater (DM) contain myeloid cells, 
lymphoid cells and dendritic cells (DCs), whereas the PC largely con-
tains only microglia7,8. Notably, non-parenchymal PV, LM, CP and DM 
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A high degree of vascularization of the CNS interfaces makes the 
distinction between intravascular and tissue-resident cells challeng-
ing. Hence, we conducted histological validation for the main cell-type 
markers in the LM, the interface predominately included in this study. 
We detected cells expressing the pan-myeloid marker Iba1 and the 
T cell marker CD3 outside of blood vessels in considerable numbers 
(Fig. 1e). Previous work has identified homing markers for myeloid (for 
example AREG and PLAUR) and lymphoid cells (for example CD69)29. We 
therefore assessed the expression of these gene modules in our data. 
Notably, the myeloid-homing module was elevated in DM-associated 
monocytes (C20) (Fig. 1c,f). This corroborates evidence of continu-
ous monocyte-derived macrophage (MoMΦ) engraftment in the 
murine DM8. The lymphocyte-homing module was elevated in T cells 
of C8 and C21 (Fig. 1f). This analysis confirmed the presence of diverse 
tissue-resident immune cells in the LM.

Next, cluster marker analysis of the different myeloid populations 
found distinct markers for CAMs (C19 and C26: MRC1 and F13A1), Kolmer 
cells (C22: BHLHE41, APOE, SPP1 and TTR) and the DM-associated MoMΦ 
(C20: AREG, PLAUR and CD44) (Fig. 1g and Extended Data Fig. 2d). Nota-
bly, APOE and SPP1 in Kolmer cells represent so-called ‘disease-associated 
microglia’ (DAM) markers8,30. In summary, we detected a broad tran-
scriptional overlap of CAMs markers across the analyzed human CNS 
interfaces. Additionally, Kolmer cells showed a microglia-like signature 
and DM-associated MoMΦ-expressed myeloid-homing genes.

Comparison of gene signatures in murine and human CAMs
Next, we investigated the main factors distinguishing the analyzed 
anatomical compartments. Multifactorial factor analysis of 4,096 
MΦ from 22 samples using MOFA2 (ref. 31) identified seven latent 
factors (Extended Data Fig. 3a and Supplementary Table 4). While 
factors 1 and 2 were evenly distributed across all compartments, fac-
tors 3 and 7 were over-represented in DM. Gene Ontology analysis 
identified enrichment of the term leukocyte migration in factor 3 and 
extracellular matrix organization in factor 7 (Extended Data Fig. 3b). 
Factors 4 and 5 contained macrophage-enriched genes as top genes, 
including MRC1, STAB1 and LYVE1 (Extended Data Fig. 3a). Notably, 
factor 4 was over-represented in CP, PC/PV and LM, whereas factor 
5 was over-represented in CP, DM and LM. Gene Ontology analysis 
identified enrichment of major histocompatibility complex (MHC) 
II-associated terms in latent factor 5 suggesting higher immune activa-
tion in CP, LM and DM but not PC/PV (Extended Data Fig. 3b). In sum-
mary, PC/PV-derived myeloid cells show an attenuated expression of 
antigen-presentation-associated genes.

Species comparison between human CAMs and microglia with 
a published mouse dataset7 showed conserved expression of MRC1, 
F13A1, STAB1 and CD163 in CAMs across species (Extended Data Fig. 3c 
and Supplementary Table 5). Microglia displayed conserved expres-
sion of P2RY12, SLC2A5, SELPLG and SPP1. Divergently regulated genes 

macrophages represent the main immune cells at CNS interfaces8,9. Col-
lectively these cells are called CAMs or border-associated macrophages 
(BAMs)10–15. Despite their important functions11,16, their complexity in 
human brains remains unexplored.

For many years, it was thought that all CAMs originated from 
short-lived bone-marrow-derived monocytes that are continuously 
replaced postnatally17. Recent evidence established a common pre-
natal yolk sac-derived origin of CAMs9,18–20. CAMs and microglia were 
shown to be long-lived and self-renewing9,21. Despite these common 
origins, adult microglia and CAMs show distinct transcriptional phe-
notypes. Namely, mouse microglia mainly express Hexb, Tmem119 and 
P2ry12, whereas CAMs characteristically show Mrc1, Lyve1 and Ms4a7 
expression7,8,10,22,23.

Recently, we described that while microglia and LM CAMs are pre-
sent prenatally, PV CAMs only arose postnatally following the establish-
ment of the PV space24. Notably, direct cell–cell interactions between 
CAMs and smooth muscle cells was crucial for the postnatal coloniza-
tion of the PV space. These findings point to a pronounced integration 
of CAMs within their niches and major developmental plasticity.

While individual human CNS interface specimens have been ini-
tially profiled, an integrated side-by-side transcriptomic, proteomic and 
cross-species comparisons have only been conducted for the brain PC25. 
Also, a spatially resolved transcriptomic analysis of the pathophysiologi-
cally important CAM niche is still lacking. Furthermore, little is known 
about the development, fates and turnover of human CAMs. Here, we 
applied single-cell RNA sequencing (scRNA-seq), cellular indexing of 
transcriptomes and epitopes by sequencing (CITE-seq), mass cytometry 
and high-resolution spatial transcriptomics to generate a comprehen-
sive molecular census of the immune compartment at the human CNS 
interfaces during fetal development, adulthood and pathology.

Results
Homeostatic immune-cell diversity at human CNS interfaces
We profiled the immune compartment at the human CNS interfaces, 
with state-of-the-art molecular techniques (Fig. 1a). A total of 11,166 
CD45+ cells from human PC/PV space, LM, CP and DM were enriched 
by fluorescence-activated cell sorting (FACS) and analyzed using 
droplet-based scRNA-seq (Extended Data Fig. 1a,b). Cell types were 
classified using a combination of Azimuth26 and published CAM and 
microglia gene sets7,8,27. We found diverse myeloid subsets, includ-
ing CAMs, microglia, DCs and monocytes, and several lymphoid sub-
sets, including CD4+, CD8+ and proliferating T lymphocytes28 (Fig. 1b, 
Extended Data Fig. 2a–c and Supplementary Table 1). CAMs (C19 and 
C26) mostly consisted of CP, LM and DM-derived cells (Fig. 1c,d, and 
Supplementary Tables 2 and 3). In line with evidence from mice8,27, 
Kolmer cells co-clustered with activated microglia in C22 (Fig. 1c and 
Supplementary Table 2). Thus, our dataset contained diverse myeloid 
and lymphoid subsets.

Fig. 1 | Molecular census of immune cells in human CNS border regions 
under homeostasis. a, Schematic illustration of the present study, including 
representative CD45+ immunohistochemistry images of different CNS 
interfaces. Scale bar, 20 µm. An overview of biological replicates is provided 
in Supplementary Table 20. GBM, glioblastoma. b, Uniform manifold 
approximation and projection (UMAP) visualization of 11,166 FACS-sorted CD45+ 
cells from the PC/PV space (n = 3,860), LM (n = 5,039), CP (n = 1,597) and DM 
(n = 670). Color coding and numbers indicate the different clusters. NK, natural 
killer; pDC, plasmacytoid DC. c, UMAP (top) and Marimekko chart (bottom) color 
coded for the compartment of each. Statistical testing was conducted using 
one-sided hypergeometric tests with Benjamini–Hochberg multiple-testing 
adjustment. *P < 0.05; **P < 0.01; ***P < 0.001. The exact P values are found in 
Supplementary Table 2. Significance asterisks are only shown until cluster 24 
as clusters 25–31 were relatively small. d, Single-cell heat map depicting the 
expression of the top 20 cluster markers with selected genes shown on the left. 
Color coding is consistent with b. The color scale represents Pearson’s residuals 
from a regularized negative-binomial regression. e, Histological validation of 

tissue-residency of immune cells in the LM with representative CD45+ images. 
Empty arrowheads indicate intravascular areas, whereas filled arrowheads 
indicate tissue-resident cells. The dot plot shows quantifications of positive 
cells per mm of the LM with each dot representing a patient. Between n = 9 and 
n = 12 independent patients were assessed per marker. The crossbar indicates 
the mean counts per mm and the error bar indicates the s.e.m. Statistical testing 
was performed using a Kruskal–Wallis test followed by Dunn’s test for pairwise 
multiple comparisons with Holm–Bonferroni adjustment for multiple testing. 
*P < 0.05; **P < 0.01; ***P < 0.001. f, UMAP color coded for the expression of 
published myeloid (left) and lymphoid (right) homing-gene module scores29. The 
color coding represents module enrichment scores for each cell using the Mann–
Whitney U statistic. g, Heat map of the average expression of the top 12 markers 
for clusters 19, 26, 22 and 20. The color scale indicates the z score. The donut plots 
show the compartment distribution across clusters. P values were calculated 
using one-sided hypergeometric tests with Benjamini–Hochberg adjustment for 
multiple testing.
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included APOE and AXL that seemed upregulated in murine CAMs and 
in human microglia. Conversely, MAFB and MERTK seemed upregu-
lated in human CAMs and murine microglia. In summary, CAMs and 
microglia expressed evolutionary conserved gene sets with notable 
differences between mice and humans.

Multiomics reveal diversity of steady-state human CAMs
For further validation, we combined three high-dimensional tech-
nologies, scRNA-seq, CITE-seq and time-of-flight mass cytometry. The 
combination of scRNA-seq and mass cytometry previously enabled 

us to identify and characterize a hitherto unappreciated spectrum of 
human microglial states32,33.

First, we enriched CAMs for deeper characterization using CD206 
(encoded by MRC1), a conserved pan-CAM marker. Then, 1,962 CD45+

CD206+CD3−CD19−CD20− cells from 12 patients were FACS-sorted into 
multiwell plates and analyzed using the high-sensitivity mCEL-Seq2 
protocol34 (Fig. 2a). The dataset consisted of CAMs, type 2 conven-
tional DCs (cDC2) and MoMΦ (Fig. 2b and Extended Data Fig. 4a,b). 
CAMs (C0 and C1) were distributed across all analyzed compartments 
with enrichment of C0 in PC/PV, CP and DM, and C1 in LM (Fig. 2c and 
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Supplementary Table 6). cDCs (C2) were enriched in LM and PC/PV, 
whereas MoMΦ (C3) were enriched in CP and DM, underscoring contin-
uous myeloid-derived engraftment8. Gene Ontology enrichment analy-
sis showed MHC-II-associated terms in CAMs and cDC2, chemokine 
and cytokine activity terms in CAMs and fibronectin binding in MoMΦ  
(Fig. 2d and Supplementary Table 7). In summary, we found a tran-
scriptional spectrum of MHC-IIlow in C0 and MHC-IIhigh CAMs in C1. 
These analyses confirmed CD206 protein expression in CAMs, cDC2 
and MoMΦ.

Next, we assessed broader surface marker profiles of the immune 
cells analyzed in Fig. 1 using CITE-seq with 134 cell surface markers. After 
quality control, we obtained transcriptional and proteomic profiles for 
8,161 cells. CAMs (C26 and C19) showed CD304 (encoded by NRP1), 
CD88 (encoded by C5AR1) and CD169 (encoded by SIGLEC1) as markers 
(Fig. 2e and Supplementary Table 8). Differential protein expression 
analysis between the distinct myeloid cell types found separate mark-
ers for DM-associated MoMΦ (CD44, CD41 (encoded by ITGA2B) and 
CD36), CAMs (CD71 (encoded by TFRC), CD304 (encoded by NRP1) 
and CD169 (encoded by SIGLEC1)), microglia (CX3CR1, podoplanin 

(encoded by PDPN) and CD39 (encoded by ENTPD1)) and Kolmer cells 
(CD9, CD49d (encoded by ITGA4) and CD72 (Fig. 2f). Additionally, mass 
cytometry confirmed and expanded protein markers for monocytes 
(C9: CLEC12A), CAMs (C7: CD206), microglia (C1 and C3: P2RY12) and 
cDCs (C11: CCR5 and IRF8) (Extended Data Fig. 4c–f and Supplementary 
Table 9). Thus, our findings provide a combined assessment of gene 
and protein expression in human CAMs.

Spatial organization of human CAMs
Next, we examined CAMs in their anatomical niches using multifluores-
cence confocal microscopy and spatial transcriptomics through in situ 
sequencing (ISS) and the Nanostring CosMx technology.

We used collagen IV as a marker for basal lamina to confidently 
assign anatomical locations9,10,12,24. CD206 and CD163 were homo-
geneously coexpressed with Iba1 by CAMs across anatomical com-
partments, but not by microglia and Kolmer cells (Fig. 3a,b and 
Extended Data Fig. 5). Notably, CD169 was only expressed in up to 
two-thirds of CD206+ cells with the highest expression in perivascular 
CAMs. S100A6 and CD1C were very lowly expressed in the analyzed 
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compartments. Hierarchical clustering based on average expression 
of the above-mentioned proteins confirmed the phenotypic similar-
ity of microglia and Kolmer cells (Fig. 3c). Thus, we found enhanced 
expression of CD169 in PV CAMs.

For spatial transcriptome analysis, we applied ISS, a technique 
for optical detection of genes at a single-cell resolution35. The gene 
panel included cell-type markers and genes identified above with 
scRNA-seq (Supplementary Table 10). We analyzed a cortex speci-
men containing two cortical cross-sections separated by an LM layer  
(Fig. 3d). Azimuth-based cell-type annotation revealed distinct cellular 
compositions between the cortex and LM (Fig. 3d). Spatial neigh-
borhood enrichment analysis36 showed that LM CAMs preferentially 
co-occurred and interacted with fibroblasts and endothelial cells  
(Fig. 3e,f). For cell–cell interaction analysis of human PC/PV and 
LM specimens, we used the Nanostring CosMx technology with a 
1,000-plex gene panel (Supplementary Table 11). We observed an 
overlap between transcriptionally similar CAMs and microglia, with 
CD74 being the main receptor for CAM-directed neighborhood-to-cell 
interactions (Fig. 3g,h). In summary, spatial transcriptomics  
highlighted spatial interactions of CAMs.

Microenvironment shapes developing human CAM 
phenotypes
Myeloid cells enter the human CNS by post-conception week (pcw) 
4.5 (ref. 37). Although fetal human microglia have previously been 
profiled38,39, comprehensive single-cell analyses of developmental 
human CAMs are unavailable. Hence, we conducted single-nucleus 
RNA-seq on 59,053 cells from 32 frozen human PC/PV, LM and CP sam-
ples between pcw 7 to 23 and postnatal PC/PV and LM specimens. Addi-
tionally, we integrated our immune-cell transcriptomes with published 
data (Fig. 4a). We FACS-sorted NeuN−Olig2− nuclei and obtained 59,053 
nuclei from major neuroectodermal, structural and immune-cell types 
(Fig. 4b,c and Supplementary Table 12). For comparative analysis, the 
immune cells were integrated with published transcriptomes from 
human first-trimester PC/PV and adult control CP2,39. This approach 
yielded an anatomically dissected dataset of 13,807 immune-cell 
transcriptomes spanning the period of CNS myeloid cell engraftment 
through adulthood. We mainly found myeloid cells with a compara-
tively large proportion of proliferating cells (Fig. 4d and Extended Data  
Fig. 6a,b). Notably, the proliferating C9 contained two subpopulations 
expressing either microglia or CAM genes (Extended Data Fig. 6a). 
Tracking cluster composition chronologically revealed microglia and 
CAM developmental dynamics. Before pcw 10, microglia were mainly 
C1 and C2 (Fig. 4e). C3, C4 and C5 became the majority after birth. For 
LM and CP CAMs, both before and after birth, the main clusters were C0 
and C10. Kolmer cells (C8) were not observed before pcw 20, potentially 
due to under-sampling. Differential gene expression analysis high-
lighted LYVE1, CD163 and F13A1 in CAMs (C0, C10 and C13) (Extended 

Data Fig. 6c). Kolmer cells (C8) mainly expressed PADI2 and SORL1, 
also found in adult microglia (C4 and C5). Notably, first-trimester 
microglia (C1, C2 and C7) expressed chemokines and the DAM genes 
SPP1 and APOE. Similar DAM gene module expression was previously 
observed39 (Extended Data Fig. 6d,e). Notably, even when excluding the 
Braun et al. data, a statistically significant time-dependent reduction 
in the DAM signature within microglia was evident, unlike in CAMs or 
Kolmer cells (Extended Data Fig. 6f). In summary, CAMs and microglia 
exhibited distinct transcriptional profiles early on, with the so-called 
DAM microglia signature inversely correlating with brain maturation.

We utilized cell–cell interaction analysis to uncover molecular 
mediators shaping CNS myeloid cell phenotypes. We merged the inte-
grated immune-cell dataset with the non-immune-cell types from  
Fig. 4b and ran NICHES40 to infer interactions toward CAMs, microglia 
and Kolmer cells, respectively. To avoid sampling issues, we binned 
prenatal time points and compared them to the postnatal ones. Dif-
ferential analysis identified transferrin receptor (TFRC) among the 
top prenatal receptors in all three cell types (Fig. 4f). CITE-seq analysis 
confirmed prenatal CD71 (encoded by TFRC) upregulation in these 
cells (Fig. 4g and Extended Data Fig. 6g–i). Postnatal cells upregulated 
immune mediators, including HLA-DR. Gene Ontology analysis iden-
tified hypoxia-related terms in prenatal CAMs and Kolmer cells and 
autophagy in CAMs and microglia (Fig. 4h and Supplementary Table 13).  
These results corroborate the importance of TFRC in hypoxia41. Post-
natal CAMs were involved in vascular biological processes. In conclu-
sion, we highlight the fetal brain milieu influencing gene and protein 
expression in brain myeloid cells with CAMs, microglia and Kolmer cells 
displaying a response to physiological prenatal hypoxia.

Compartment-dependent turnover rates of CNS myeloid cells
Turnover of CAMs by circulating cells has been investigated in 
mice9,10,24 but not in humans. Hence, we established in situ fate map-
ping in human brain tissues from 15 sex-mismatched peripheral 
blood stem cell transplantation (PBSCT) recipients42. This analysis 
involved quantifying Y chromosome-positive (Y+) immune cells and 
genome-wide single-nucleus transcriptome profiling (Fig. 5a). Pseu-
dotime analysis43 of intravascular and homing monocytes (C7 and 
20 from Fig. 1b) revealed sequential transcriptional changes during 
myeloid cell engraftment (Fig. 5b). This was marked by an upregula-
tion of chemokine and myeloid homing (CXCL8, AREG and PLAUR)29 
and iron-scavenging genes (TFRC, FTL and FTH1) (Fig. 5c and Supple-
mentary Table 14).

Next, we quantified bone-marrow-derived engrafted cells at 
the CNS interfaces of female patients who received sex-mismatched 
PBSCT to treat hematological diseases (Supplementary Table 20). 
Notably, we observed donor-derived Y+Iba1+ cells within all examined 
CNS interfaces and the brain PC (Fig. 5d). Correlation analysis between 
the percentage of Y+Iba1+ cells and all Iba1+ cells in PC/PV, CP, LM and 

Fig. 3 | Spatial profiling of human CAMs in situ and their cellular interactions. 
a, Representative immunofluorescence across human CNS interfaces. DAPI 
(4′,6-diamidino-2-phenylindole) and collagen IV show positions of nuclei 
and basal lamina. Filled arrowheads indicate double-positive cells and empty 
arrowheads indicate single-positive cells. b, In situ quantification of selected 
markers across different compartments. Crossbars indicate medians. Outlier 
values confirmed by the Grubbs’s test were removed, resulting in at least n = 7 
and at most n = 18 biologically independent samples analyzed per compartment 
and reaction. Each dot represents a patient. Indicated P values were derived 
from pairwise two-sided Mann–Whitney U-tests with pvMΦ as the reference cell 
type. MG, microglia; pvMΦ, perivascular macrophage; cpMΦ, choroir plexus 
macrophage; CP epi, epiplexus macrophage/Kolmer cells; lmMΦ, leptomengeal 
macrophage; dmMΦ, dura mater macrophage. c, Dendrogram showing the 
hierarchical clustering of the analyzed cell types based on average expression of 
CD206, SIGLEC1, CD163, S100A6 and CD1C. d, Spatial plot of a control section 
(frontal cortex) analyzed using ISS. Color coding represents different cell types. 

On the right, the different anatomical regions are annotated. The bar plot on 
the bottom shows the cell-type distribution in the PC and LM. Representative 
of cortical sections analyzed from four individuals. Astro, astrocytes; Oligo, 
oligodendrocytes. e, Heat map, color coded for the neighborhood enrichment 
scores of the different cell types calculated with a permutation-based test36. The 
color coding of the cell types is consistent with d. f, Heat map, color coded for 
the cell-type interaction scores in LM (left) and PC/PV (right). Color coding is 
consistent with d. g, Spatial plot of a tissue section (occipital cortex) analyzed 
using Nanostring CosMx. Color coding is consistent with d and e. Representative 
of 14 analyzed fields of view from 4 control samples. h, Dot plot showing the 
spatial cell–cell interactions of the dataset from f. The y axis indicates receiving 
cell types. The x axis labels show the ligand expressed by neighboring cells 
followed by the receptor. Color scale represents the average expression of 
ligand–receptor pairs. The dot size represents the percentage of cells expressing 
the receptor.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02673-1

DM clearly demonstrated a time-dependent increase of Y+Iba1+ cells  
(Fig. 5e). Of note, T50, the time to reach a 50% exchange rate of Y+Iba1+ 
cells, displayed significant variability across compartments ranging 
from 51.52 d (95% confidence interval 31.9–97.1) in the CP to 264.55 d 
(95% confidence interval 145.9–563.9) for the brain PC (Fig. 5f). Notably, 

the T50 exhibited substantial dispersion, particularly within the paren-
chyma, suggesting influence from interindividual characteristics. Given 
CD206 expression in nearly all CAMs whereas SIGLEC1 was only present 
in a subset (Fig. 3b), we wondered whether Y+CD206+ and Y+SIGLEC1+ 
cells were found at different rates. Indeed, at late post-transplantation 
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Fig. 4 | Region-dependent transcriptional dynamics of human CNS border 
macrophages during development. a, Schematic overview of the included time 
points and compartments color coded for the studies from which immune-cell 
data were integrated with the present data. b, UMAP visualization of single-nucleus 
RNA-seq data from 59,053 single-nucleus transcriptomes generated for the present 
study, color coded for Seurat v.4 clusters. c, Single-cell heat map depicting the  
gene expression of the top 20 marker genes per cluster of the cells shown in  
b. Selected genes are shown on the left-hand side. Color coding of the clusters is 
consistent with b. The color scale represents Pearson’s residuals from a regularized 
negative-binomial regression. d, UMAP visualization of single-nucleus RNA-seq 
data for immune cells generated and integrated immune-cell data from published 
studies2,39. The colors indicate the results of graph-based re-clustering using Seurat 
v.4. e, Marimekko charts showing the cluster contributions of the macrophage 
populations from d to the respective time points. Each macrophage population is 
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f, Volcano plots showing differential gene expression testing of ligand–receptor 
pairs of the indicated macrophage populations from d. Selected representative 
ligand–receptor pairs are highlighted. A two-sided unpaired Wilcoxon rank-sum 
test was performed with Bonferroni correction for multiple testing. The color 
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time points (218, 453 and 1,018 d) Y+SIGLEC1+ cells were present in 
approximately half of the Y+Iba1+ and Y+CD206+ cells (Fig. 5g,h).

For a deeper profiling of engrafted cells, we conducted single- 
nucleus mRNA profiling from formalin-fixed paraffin-embedded (FFPE) 
tissues of the above-mentioned three post-transplantation samples and 
age-matched controls. We FACS-sorted NeuN−Olig2− nuclei from PC/PV 
and adjacent LM sections, yielding 9,035 single-nucleus transcriptomes 
of the major brain, vascular and immune-cell types (Extended Data  
Fig. 7a,b). Subclustering 363 myeloid cells identified two adjacent 
clusters (C3 and C0) enriched in control and transplanted patients, 
respectively (Fig. 5i). Both clusters included C1QA and C1QB among 
top markers, indicative of microglia and tissue-resident macrophages 
(Extended Data Fig. 7c and Supplementary Table 15). The control- 
enriched C3 expressed the microglia-enriched genes BHLHE41 and 
P2RY12, whereas the post-transplantation-enriched C0 showed upre
gulation of CD163 and PLTP, implying an activated phenotype (Fig. 5j).

Given the potential comorbidities in PBSCT patients, we analyzed 
the immune phenotype of resident microglia and CAMs using in situ 
fate mapping analysis of PC cells (Fig. 5k). Notably, 90% of Y+ cells 
were double-positive for Iba1, but only about 20% of Y+ cells expressed 
microglia core markers P2RY12, GLUT5 and TMEM119 (Fig. 5l). When 
analyzing the percentage of Y+ cells among all Iba1+, P2RY12+, TMEM119+ 
and GLUT5+ cells in the same three cases, we found no major differences 
between brain-resident and engrafting cells (Extended Data Fig. 7d). 
In summary, we described patterns of human brain myeloid-derived 
cell engraftment and evidenced compartment-specific engraftment 
rates across different CNS interfaces. High-dimensional profiling was 
constrained by the scarcity of these regions, we revealed that cells 
engrafting in the parenchyma maintained an activated phenotype.

Context-dependent CAM signatures in human patients with 
glioblastoma
Glioblastoma are malignant brain tumors with a complex immune 
microenvironment33,44. We profiled 11,681 CAMs from 21 anatomically 
dissected glioblastoma and control samples using scRNA-seq, CITE-seq 
and spatial transcriptomics (Fig. 6a). Alongside normal brain cell types, 
tumor samples contained tumor-associated macrophages (TAMs)33,44 
in C2 and C4 (Fig. 6b,c and Supplementary Table 16). C2 cells expressed 
microglia genes, whereas C4 showed macrophage gene expression, 
corresponding to microglia TAMs (mgTAMs) and monocyte-derived 
TAMs (moTAMs), respectively (Extended Data Fig. 8a). Additionally, 
the tumor-enriched C15 contained homing monocytes resembling 
transitory moTAMs (Tr. moTAMs)44 (Extended Data Fig. 8b and Sup-
plementary Table 16). Label transfer of our clusters onto published 
data44 confirmed Tr. moTAMs in C15, mgTAMs in C2 and hypoxic and 
lipid moTAMs in C4 (Extended Data Fig. 8c). Notably, so-called SEPP1hi 

moTAMs were indistinguishable from control CAMs in C17, mirroring 
their high SELENOP expression (previously known as SEPP1)44 (Fig. 1d, 
Extended Data Fig. 8d and Supplementary Table 17).

Cluster analysis assessed PC/PV and LM contributions to each 
cluster. Besides intravascular lymphoid cells, LM contained cDC (C21) 
and Tr. moTAM (C15) (Fig. 6d and Supplementary Table 18). TAMs (C2 
and C4) were enriched in PC/PV, suggesting some CAM involvement 
in the glioblastoma microenvironment.

To dissect distinct transcriptional variations within the glioblas-
toma immune microenvironment, we focused on tumor-associated 
myeloid cells and employed MOFA2. Among TAMs, latent factors 1, 2 
and 5 were expressed (marker genes NRP1, FTL and HIF1A-AS3) (Fig. 6e 
and Supplementary Table 19). Notably, PC/PV and LM CAMs were pri-
marily characterized by latent factor 1, whereas latent factor 3 (marker 
genes CLEC12A and CD36) explained the variability in Tr. moTAMs. 
Microglia variability was mainly explained by latent factor 6 (marker 
gene HIF1A-AS3). Notably, latent factor 4 (marker genes CCL4, IL1B and 
ICAM1) was found in LM-derived cells, highlighting the role of the LM 
as gateway for engraftment. Gene Ontology analysis of latent factors 
yielded terms associated with the cell matrix and vasculature for latent 
factor 1, hypoxia for factors 2, 4 and 5, and immune activation for fac-
tors 3 and 4 (Fig. 6f). Considering the influence of hypoxia on TAM tran-
scriptional profiles, we analyzed their distribution within the tumor. 
ISS on a tumor section spanning several mm2 identified nine hypoxic 
regions with focal VEGFA expression amid cellular tumor regions  
(Fig. 6g). Spatial trajectory analysis from the periphery to the hypoxic 
center of area nine unveiled decreasing PLP1 and EGFR expression, 
followed by a focal peak of VEGFA at the rim and FTL expression at the 
core (Fig. 6h). Corresponding with FTL expression in MOFA2 latent 
factor 2, more moTAM were in hypoxic area 9 than the surrounding 
tumor (Fig. 6i).

To further dissect the perinecrotic area, we employed Nanostring 
CosMx technology. This revealed a significant rise of moTAMs and Tr. 
moTAMs toward the necrosis (Fig. 6j). Mirroring ISS, spatial trajec-
tory analysis demonstrated the downregulation of neuroectodermal 
genes and the upregulation of myeloid genes at the perinecrotic area 
(Extended Data Fig. 8e,f).

To identify protein markers, we conducted differential expres-
sion analysis of the CITE-seq data. Tumor-associated microglia down-
regulated CX3CR1 but upregulated CD112, CD58 and CD33 (Fig. 6k). 
Tumor-associated CAMs downregulated CD163 and upregulated 
CD304 (encoded by NRP1). NRP1 as one of the markers of MOFA2 
latent factor 1, was also upregulated in TAMs and microglia, but 
not Tr. moTAMs. Mass cytometry with additional markers, demon-
strated unchanged levels of CD206 but reduced CD169, MS4A7 and 
CD64 in glioblastoma-associated CAMs (Extended Data Fig. 8g–j). 

Fig. 5 | Compartment-specific turnover of human CNS border macrophages. 
a, Schematic workflow representation. IHC, immunohistochemistry; CISH, 
chromogen in situ hybridization. b, UMAP of C7 and C20 from Fig. 1b connected 
by a transcriptional trajectory. The color coding represents the log10 transformed 
P value indicating the overrepresentation of the trajectory compared to 
randomization43. The color of the cluster symbol encodes transcriptional entropy. 
c, Heat map showing stepwise gene expression along the trajectory. The color 
scale encodes z scores. d, Representative Iba1 immunohistochemistry and Y 
chromosome CISH. Filled arrowheads mark double-positive cells and empty 
arrowheads indicate single-positive cells. n ≥ 50 CAMs were analyzed per patient. 
Scale bars, 10 µm. e, Correlation between time after PBSCT and percentage of 
engraftment for n = 5 to n = 18 independent samples per compartment and one 
patient per dot. Adjusted R2 coefficients and one-sided t-test P values are given. 
f, Dot-whisker plots of the duration after PBSCT until 50% engraftment for the 
data from e. Whiskers indicate 95% confidence intervals around the predicted 
mean value. P values were calculated from pairwise comparisons using estimated 
marginal means with Tukey’s multiple testing adjustment. g, Representative 
immunohistochemistry of PV and LM. Filled arrowheads indicate double-positive 

cells and empty arrowheads indicate single-positive cells. Scale bars, 10 µm. 
n ≥ 3 fields of view per patient were quantified. h, Quantification of the dataset 
in g. n = 3 biologically independent samples were analyzed per compartment. 
P values indicate pairwise two-sided t-tests with Holm–Bonferroni multiple 
testing adjustment. i, UMAP of single-nucleus fixed mRNA profiling of n = 363 
myeloid cells color coded for clusters. The Marimekko chart (bottom) indicates 
the distribution of conditions per cluster. Significant one-sided hypergeometric 
test P values with Benjamini–Hochberg multiple-testing adjustment are shown. 
j, Volcano plot showing differentially expressed genes between the control-
enriched C3 and PBSCT-enriched C0. Two-sided unpaired Wilcoxon rank-sum 
tests with Bonferroni multiple testing adjustment were performed. The color 
coding is explained below the graph. NS, not significant. k, Representative 
immunohistochemistry in the PC. Filled arrowheads indicate double-positive cells 
and empty arrowheads indicate single-positive cells. Gray arrowheads indicate 
single-positive Y+ cells. n ≥ 3 fields of view per patient were quantified. Scale 
bars, 10 µm. l, Quantification of the dataset in k. n = 3 independent samples were 
analyzed per compartment and one patient per dot. P values were calculated using 
pairwise two-sided t-tests with Holm–Bonferroni multiple-testing adjustment.
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Fig. 6 | Multimodal analysis reveals common activation programs of CAMs 
and microglia in human glioblastoma. a, Schematic workflow representation. 
b, UMAP of n = 11,681 FACS-sorted cells color coded for clusters. CP and DM 
samples were not available from glioblastoma. c, UMAP (top) and Marimekko 
chart (bottom) color coded for the underlying diagnosis. The Marimekko chart 
represents the distribution of diagnoses per cluster. One-sided hypergeometric 
tests with Benjamini–Hochberg multiple testing adjustment were performed. 
*P < 0.05; **P < 0.01; ***P < 0.001. Exact P values are found in Supplementary 
Table 16. For improved readability, significance asterisks are shown until C24. 
C25–C29 represent relatively small cell numbers. d, Equivalent of c analyzed for 
anatomical compartments. Exact P values are found in Supplementary Table 18. 
e, Heat map of MOFA2 latent factors of glioblastoma-associated macrophage 
populations present in both compartments. The color-coded data and the 
values of variance explained are indicated in each heat map tile. Representative 
genes are presented per factor. f, Gene Ontology analysis of the top 100 marker 
genes per MOFA2 factor. Dot sizes indicate the gene ratio per cluster. Color 
coding of the dot encodes the Benjamini–Hochberg-adjusted P value based on 

a one-sided Fisher’s exact test. Reg., regulation; Resp., response. g, Spatial plot 
of a glioblastoma section analyzed with ISS and color coded for cell types (top) 
and histological subtypes (left). The numbered areas represent hypoxic regions. 
Samples from four patients were analyzed. Representative hematoxylin and 
eosin staining is shown on the right. h, Spatial plot color coded for the cellular 
composition of hypoxic area 9 from g. The arrow represents a spatial trajectory 
from the periphery to the hypoxic core. The heat map (center) shows stepwise 
gene expression along the trajectory with representative genes (right). i, Bar 
plots of the cell-type compositions of cellular tumor and hypoxic regions 
representative of sections analyzed from two individuals. j, Spatial plot of the 
transition from hypoxia to necrosis analyzed with Nanostring CosMx. Color 
coding is specified in h. The bar plots show the cell-type distribution. The data are 
representative of eight regions from two glioblastoma samples. k, Mean marker 
expression heat map of CITE-seq data from microglia, CAMs and monocyte-
derived macrophages shown in b. The compartments and diagnoses of the cells 
are color coded.
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Glioblastoma-associated microglia reduced P2Y12 and increased 
HLA-DR, CD11c and TGFβ expression.

In summary, glioblastoma contained varied myeloid populations, 
abundant in hypoxic and necrotic tumor areas. Within microglia, CAMs 
and TAMs we observed CD304 (encoded by NRP1) upregulation, a fea-
ture absent in Tr. moTAMs. LM TAMs displayed enhanced chemokine 
and integrin expression, potentially linked to LM’s role as gateway to the 
tumor. Our comprehensive spatial profile deepens the understanding 
of the glioblastoma-associated myeloid compartment.

Discussion
This study provides a comprehensive exploration and functional analy-
sis of human CNS interfaces during development, homeostasis and 
glioblastoma (Extended Data Fig. 9). Different scRNA-seq protocols, 
CITE-seq, mass cytometry and high-resolution spatial transcriptom-
ics unveiled diverse immune-cell interactions within human PC/PV, 
LM, CP and DM. CAMs consistently exhibit a core macrophage signa-
ture (MRC1, LYVE1 and F13A1). CP contains microglia-like Kolmer cells, 
whereas transitory monocytes predominate in CP and DM, sustaining 
myeloid-derived engraftment. Histological validation confirms var-
ied CD169 (encoded by SIGLEC1) expression across compartments. 
Cross-species comparison underscored evolutionary CAM marker con-
servation in humans and mice. High-resolution spatial transcriptom-
ics implied CAMs crosstalk within their niche. Investigation of in vivo 
engraftment dynamics at CNS interfaces revealed varying engraftment 
rates across compartments.

Comparing fetal and adult CNS myeloid cells uncovered distinct 
populations. Fetal CAMs and microglia were already transcriptionally 
distinct at pcw 5. Fetal CAMs, microglia and Kolmer cells expressed 
attenuated immune-mediator proteins and heightened hypoxia markers 
(CD71). Likewise, glioblastoma-associated LM and PC/PV CAMs exhib-
ited hypoxia-responsive traits, with FTL and NRP1 (encoding CD304) 
upregulation. High-resolution spatial analysis highlighted a differential 
distribution of myeloid population across glioblastoma regions.

In summary, our study significantly advances our understanding 
of human CNS myeloid cells: (1) providing comprehensive transcrip-
tomic and proteomic profiles across human microglia and CAMs along 
with spatial profiling of the LM and PC/PV niches; (2) offering direct 
evidence of in vivo peripheral myeloid cells engraftment into human 
CNS parenchyma and interfaces with concurrent transcriptomic pro-
filing of these cells; (3) highlighting distinct gene and surface protein 
expression patterns between fetal and postnatal CAMs; and (4) con-
ducting a spatially resolved profiling of the PC/PV and LM glioblastoma 
microenvironments.

Unlike microglia10,45 few studies have explored immune cells at 
human CNS interfaces. Previous comprehensive transcriptomic pro-
filing of CNS interfaces occurred in mice7,8. Limited CAM populations 
are reported in separate human and murine PV4–6 and DM46 datasets. 
We have recently shown that PV CAMs are postnatally derived from 
LM CAMs, implying functional similarity24. Functionally, PV CAMs 
have been linked to cerebrovascular scavenging and dysfunction47–50 
supported by our findings of enhanced CD169 scavenging receptor 
expression in PV.

Distinct CAMs and microglia populations are present in first- 
trimester human brains. Fetal hypoxia seemed pivotal in shaping mye-
loid cell phenotypes. Notably, glioblastoma-associated CAMs and TAMs 
exhibited genes linked to metal iron homeostasis and angiogenesis. 
Disrupted iron metabolism is a hallmark of cancer-associated hypoxia 
and anticancer defense3,41. Previous research has shown fetal-like 
progenitor cell states in glioblastoma51. We and others reported 
hypoxia-responsive states in glioblastoma-associated32,33,52 and mul-
tiple sclerosis-associated53 microglia, highlighting a potentially generic 
reactive myeloid cell state.

Assessing in vivo engraftment of bone-marrow-derived cells into 
the adult human CNS is challenging. While microglial engraftment is 

established in mice42,54,55, insights into human CNS interface engraft-
ment is lacking. We quantified Y+Iba1+ donor-derived MΦ in female 
PBSCT autopsy cases showing varying time-dependent engraft-
ment rates. Transcriptional analysis indicated sustained activation 
in engrafted cells. Our findings demonstrate human CNS interface 
myeloid cell engraftment, suggesting PBSCT as a potential CNS-wide 
myeloid cell replacement strategy for disorders associated with mye-
loid cell abnormalities10.

Despite several strengths, our study has limitations. The rarity 
of CAMs at CNS interfaces necessitated enrichment strategies for 
adequate cell numbers. Tissue scarcity was another limiting factor, 
particularly for DM, CP and fetal specimens. Transcriptional conver-
gence of moMΦ and CAMs under pathological conditions renders 
these cell types difficult to distinguish7. We addressed these issues 
through a semi-supervised cell classification approach using published 
transcriptional signatures27,32,44; however, lineage-tracing in transgenic 
mice surpasses this approach7,9,22. Additionally, our study is limited by 
the inherent biases in scRNA-seq56.

To conclude, we comprehensively profiled human CNS mye-
loid cells, focusing on CAMs during homeostasis and disease. We 
detail the transcriptional spectra of human CAMs and moMΦ states, 
surface protein profiles, species comparison and perform various 
validation experiments. Furthermore, we uncover distinct tran-
scriptional profiles of fetal CAMs and identify some similarities to 
glioblastoma-associated CAMs, driven by different pathophysiological 
contexts. Notably, myeloid cell engraftment at human CNS interfaces 
opens the doors to potential CAM replacement therapies for diseases 
rooted in CAM dysfunction.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41591-023-02673-1.

References
1.	 Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity 

and its function in maintenance of the central nervous system in 
health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

2.	 Yang, A. C. et al. Dysregulation of brain and choroid plexus cell 
types in severe COVID-19. Nature 595, 565–571 (2021).

3.	 Chi, Y. et al. Cancer cells deploy lipocalin-2 to collect limiting iron 
in leptomeningeal metastasis. Science 369, 276–282 (2020).

4.	 Yang, A. C. et al. A human brain vascular atlas reveals diverse 
mediators of Alzheimer’s risk. Nature https://doi.org/10.1038/
s41586-021-04369-3 (2022).

5.	 Winkler, E. A. et al. A single-cell atlas of the normal and 
malformed human brain vasculature. Science 375, eabi7377 
(2022).

6.	 Vanlandewijck, M. et al. A molecular atlas of cell types and 
zonation in the brain vasculature. Nature 554, 475–480 (2018).

7.	 Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell 
subsets with distinct fates during neuroinflammation. Science 
363, eaat7554 (2019).

8.	 Van Hove, H. et al. A single-cell atlas of mouse brain 
macrophages reveals unique transcriptional identities shaped by 
ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 
(2019).

9.	 Goldmann, T. et al. Origin, fate and dynamics of macrophages 
at central nervous system interfaces. Nat. Immunol. 17, 797–805 
(2016).

10.	 Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and 
central nervous system-associated macrophages—from origin to 
disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02673-1
https://doi.org/10.1038/s41586-021-04369-3
https://doi.org/10.1038/s41586-021-04369-3


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02673-1

11.	 Kierdorf, K., Masuda, T., Jordão, M. J. C. & Prinz, M. Macrophages 
at CNS interfaces: ontogeny and function in health and disease. 
Nat. Rev. Neurosci. 20, 547–562 (2019).

12.	 Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of 
evolving concepts. Cell 179, 292–311 (2019).

13.	 Herz, J., Filiano, A. J., Smith, A., Yogev, N. & Kipnis, J. Myeloid cells 
in the central nervous system. Immunity 46, 943–956 (2017).

14.	 Prinz, M., Erny, D. & Hagemeyer, N. Ontogeny and homeostasis of 
CNS myeloid cells. Nat. Immunol. 18, 385–392 (2017).

15.	 Colonna, M. & Butovsky, O. Microglia function in the central 
nervous system during health and neurodegeneration. Annu. Rev. 
Immunol. 35, 441–468 (2017).

16.	 Munro, D. A. D., Movahedi, K. & Priller, J. Macrophage 
compartmentalization in the brain and cerebrospinal fluid system. 
Sci. Immunol. 7, eabk0391 (2022).

17.	 Aguzzi, A., Barres, B. A. & Bennett, M. L. Microglia: scapegoat, 
saboteur, or something else? Science 339, 156–161  
(2013).

18.	 Gomez Perdiguero, E. et al. Tissue-resident macrophages 
originate from yolk-sac-derived erythro-myeloid progenitors. 
Nature 518, 547–551 (2015).

19.	 Kierdorf, K. et al. Microglia emerge from erythromyeloid 
precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 
16, 273–280 (2013).

20.	 Schulz, C. et al. A lineage of myeloid cells independent of myb 
and hematopoietic stem cells. Science 336, 86–90 (2012).

21.	 Tay, T. L. et al. A new fate mapping system reveals 
context-dependent random or clonal expansion of microglia. Nat. 
Neurosci. 20, 793–803 (2017).

22.	 Masuda, T. et al. Novel Hexb-based tools for studying microglia in 
the CNS. Nat. Immunol. 21, 802–815 (2020).

23.	 Mrdjen, D. et al. High-dimensional single-cell mapping of central 
nervous system immune cells reveals distinct myeloid subsets in 
health, aging, and disease. Immunity 48, 380–395 (2018).

24.	 Masuda, T. et al. Specification of CNS macrophage subsets 
occurs postnatally in defined anatomical niches. Nature  
https://doi.org/10.1038/s41586-022-04596-2 (2022).

25.	 Siletti, K. et al. Transcriptomic diversity of cell types across the 
adult human brain. Science 382, eadd7046 (2023).

26.	 Hao, Y. et al. Integrated analysis of multimodal single-cell data. 
Cell 184, 3573–3587 (2021).

27.	 Sankowski, R. et al. Commensal microbiota divergently affect 
myeloid subsets in the mammalian central nervous system during 
homeostasis and disease. EMBO J. 40, e108605 (2021).

28.	 Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell 
cycle and differentiation programs upon aging of hematopoietic 
stem cells. Genome Res. 25, 1860–1872 (2015).

29.	 Travaglini, K. J. et al. A molecular cell atlas of the human lung 
from single-cell RNA sequencing. Nature 587, 619–625  
(2020).

30.	 Keren-Shaul, H. et al. A unique microglia type associated with 
restricting development of Alzheimer’s disease. Cell 169, 
1276–1290 (2017).

31.	 Argelaguet, R. et al. MOFA+: a statistical framework for 
comprehensive integration of multi-modal single-cell data. 
Genome Biol. 21, 111 (2020).

32.	 Sankowski, R. et al. Mapping microglia states in the human brain 
through the integration of high-dimensional techniques. Nat. 
Neurosci. 22, 2098–2110 (2019).

33.	 Friedrich, M. et al. Tryptophan metabolism drives dynamic 
immunosuppressive myeloid states in IDH-mutant gliomas. Nat. 
Cancer 2, 723–740 (2021).

34.	 Herman, J. S., Sagar & Grün, D. FateID infers cell fate bias in 
multipotent progenitors from single-cell RNA-seq data. Nat. 
Methods 15, 379–386 (2018).

35.	 Qian, X. et al. Probabilistic cell typing enables fine mapping of 
closely related cell types in situ. Nat. Methods 17, 101–106  
(2020).

36.	 Palla, G. et al. Squidpy: a scalable framework for spatial omics 
analysis. Nat. Methods 19, 171–178 (2022).

37.	 Monier, A. et al. Entry and distribution of microglial cells in human 
embryonic and fetal cerebral cortex. J. Neuropathol. Exp. Neurol. 
66, 372–382 (2007).

38.	 Kracht, L. et al. Human fetal microglia acquire homeostatic 
immune-sensing properties early in development. Science 369, 
530–537 (2020).

39.	 Braun, E. et al. Comprehensive cell atlas of the first-trimester 
developing human brain. Science 382, eadf1226 (2023).

40.	 Raredon, M. S. B. et al. Comprehensive visualization of cell–cell 
interactions in single-cell and spatial transcriptomics with 
NICHES. Bioinformatics 39, btac775 (2023).

41.	 Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. 
Nat. Rev. Cancer 13, 342–355 (2013).

42.	 Shemer, A. et al. Engrafted parenchymal brain macrophages 
differ from microglia in transcriptome, chromatin landscape and 
response to challenge. Nat. Commun. 9, 5206 (2018).

43.	 Grün, D. et al. De novo prediction of stem cell identity using 
single-cell transcriptome data. Cell Stem Cell 19, 266–277  
(2016).

44.	 Pombo Antunes, A. R. et al. Single-cell profiling of myeloid 
cells in glioblastoma across species and disease stage reveals 
macrophage competition and specialization. Nat. Neurosci. 24, 
595–610 (2021).

45.	 Masuda, T. et al. Spatial and temporal heterogeneity of mouse 
and human microglia at single-cell resolution. Nature 566, 
388–392 (2019).

46.	 Wang, A. Z. et al. Single-cell profiling of human dura and 
meningioma reveals cellular meningeal landscape and insights 
into meningioma immune response. Genome Med. 14, 49 (2022).

47.	 Pires, P. W. et al. Improvement in middle cerebral artery structure 
and endothelial function in stroke-prone spontaneously 
hypertensive rats after macrophage depletion. Microcirculation 
20, 650–661 (2013).

48.	 Faraco, G. et al. Perivascular macrophages mediate the 
neurovascular and cognitive dysfunction associated with 
hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

49.	 Santisteban, M. M. et al. Endothelium-macrophage crosstalk 
mediates blood-brain barrier dysfunction in hypertension. 
Hypertension 76, 795–807 (2020).

50.	 Drieu, A. et al. Parenchymal border macrophages regulate the 
flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 
(2022).

51.	 Neftel, C. et al. An integrative model of cellular states, plasticity, 
and genetics for glioblastoma. Cell 178, 835–849 (2019).

52.	 Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating 
neoplastic cells at the migrating front of human glioblastoma. 
Cell Rep. 21, 1399–1410 (2017).

53.	 Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in 
chronic active multiple sclerosis. Nature 597, 709–714 (2021).

54.	 Bennett, F. C. et al. A combination of ontogeny and CNS 
environment establishes microglial identity. Neuron 98, 1170–1183 
(2018).

55.	 Xu, Z. et al. Efficient strategies for microglia replacement in the 
central nervous system. Cell Rep. 32, 108041 (2020).

56.	 Sankowski, R., Monaco, G. & Prinz, M. Evaluating microglial 
phenotypes using single-cell technologies. Trends Neurosci. 45, 
133–144 (2022).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41586-022-04596-2


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02673-1

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative 
Commons license, unless indicated otherwise in a credit line to 

the material. If material is not included in the article’s Creative 
Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will  
need to obtain permission directly from the copyright holder.  
To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

1Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 2Department of Molecular Neurology, Friedrich Alexander 
University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany. 3Neuropsychiatry Unit and Laboratory of Molecular Psychiatry, 
Charité, Universitätsmedizin Berlin and DZNE, Berlin, Germany. 4Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of 
Freiburg, Freiburg, Germany. 5Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 6Department of Gynecology, 
Obstetrics, and Perinatology, Faculty of Medicine, University Hospital, Freiburg, Germany. 7Department of Internal Medicine I, Faculty of Medicine, 
Medical Center-University of Freiburg, Freiburg, Germany. 8Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. 
9Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany. 10University of 
Edinburgh and UK DRI, Edinburgh, UK. 11These authors contributed equally: Roman Sankowski, Patrick Süß. 
  e-mail: roman.sankowski@uniklinik-freiburg.de; marco.prinz@uniklinik-freiburg.de

http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:roman.sankowski@uniklinik-freiburg.de
mailto:marco.prinz@uniklinik-freiburg.de


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02673-1

Methods
Prospective tissue collection
Experiments on human tissue samples were performed in accordance 
with the Declaration of Helsinki. Tissues from different sources were 
analyzed in the present study. The analyzed anatomical compartments 
include LM (n = 55), PC/PV (n = 52), CP (n = 23), and DM (n = 8). Overall, 61 
donors were female and 41 were male. An overview of the sample char-
acteristics is provided in Supplementary Table 20. In short, single-cell 
and single-nucleus RNA-seq analyses of fresh or fresh-frozen postnatal 
samples were conducted under the oversight of the local Research Ethics 
Committee of the University Freiburg Medical Center under the protocol 
numbers 472/15 and 253/17. Patients or their legal guardians provided 
written informed consent before tissue collection. Analysis of fetal tissues 
from the University of Freiburg Medical Center and the Human Develop-
mental Biology Resource (HDBR) were conducted under the oversight 
of local Research Ethics Committee of the University Freiburg Medical 
Center under the protocol number 253/17 and the National Research Eth-
ics Service in the United Kingdom. The embryonal and fetal samples were 
collected under the supervision of specialists and lay persons. Tissue for 
the HDBR is donated voluntarily after providing informed consent from 
collaborating clinics in the United Kingdom. Analyses of the adult autopsy 
tissues were conducted under the oversight of local Research Ethics 
Committee of the University Freiburg Medical Center under the protocol 
numbers 10008/09 and 472/15 and the local committees associated with 
the National Institutes of Health (NIH) bio banks with written informed 
consent provided by the patients or their legal guardians.

Radiologically healthy or tumor tissues obtained at University 
of Freiburg Medical Center were placed in ice-cold PBS after surgical 
removal. Macroscopically, control tissues from focal epilepsy, pri-
mary and secondary brain neoplasm surgeries were selected based 
on radiological appearance and >2 cm distance from the lesion. Con-
trol cases that passed pathological examination were included in the 
study. To assess glioma-associated molecular changes, IDH-wild-type 
glioblastoma, CNS World Health Organization grade 4 were included 
(Supplementary Table 20). For single-nucleus RNA-seq, fresh-frozen 
biobanked tissues were used. No statistical methods were used to 
predetermine sample sizes, but our sample sizes are similar to those 
reported in previous publication44,57,58. The study was not designed to 
detect sex differences and no analyses were performed regarding this 
question. Sex was derived from records.

Immunofluorescence
Data collection and analysis were performed blind to the conditions 
of the experiments. FFPE sections were blocked and permeabilized 
with PBS containing 5% normal donkey serum and 0.5% Triton-X 100 
for 1 h at room temperature (RT). Primary antibodies were incubated 
overnight with combinations of Iba1 (WACO), Iba1 (Synaptic Sys-
tems), MRC1 (also known as CD206) (Abnova), CD1C (Abcam), CD163 
(Sigma-Aldrich), S100A6 (Sigma-Aldrich), SIGLEC1 (also known as 
CD169) (Sigma-Aldrich) and collagen IV (Sigma-Aldrich,). Second-
ary antibodies were added as follows: Alexa Fluor 488 1:500 dilution 
(Thermo Fisher Scientific), Alexa Fluor 568 1:500 dilution (Thermo 
Fisher Scientific), Alexa Fluor 647 1:500 dilution (Thermo Fisher Sci-
entific) and Alexa Fluor 647 ( Jackson ImmunoResearch Laboratories) 
1:500 dilution for 2 h at RT. Nuclei were counterstained with DAPI 
(Carl Roth) when necessary. Images were taken using conventional 
fluorescence microscopes (Olympus BX-61 and Keyence BZ-9000) 
and confocal pictures were taken with a Leica TCS SP8 (Leica). Image 
quantification was conducted in Adobe Photoshop. Outlier values were 
identified using Grubbs’s test in R and removed.

Tissue dissection for single-cell suspensions and flow 
cytometry
Before flow cytometry, tissues were digested in Accumax (Sigma- 
Aldrich) for 30 min at RT with orbital shaking at 800 r.p.m. LM were 

removed from PC samples and digested separately. All subsequent 
processing steps were performed on ice. After digestion, tissue samples 
were suspended in ice-cold Hank’s balanced salt solution (Thermo 
Fisher Scientific) containing 10 mM glucose (Thermo Fisher Scientific) 
and 10 mM HEPES (Thermo Fisher Scientific) and mechanically dis-
sociated using glass shearing with a 10-ml Potter–Elvehjem pestle and 
glass tube homogenizer (Merck). Larger tissue debris were removed 
by filtering through a 70-µm cell strainer (BD Bioscience). After cen-
trifugation, cell pellets were cryopreserved in fetal calf serum:DMSO 
(9:1; Merck) until further processing. To minimize batch effects, experi-
ments were conducted in a blocked manner with tissues from different 
regions and control and diseased tissues processed together using 
commercial multiplexing kits (10x Genomics, see below for details). 
Also, where possible several control tissues were processed on the same 
day. Single-cell sorting was performed on a MoFlo Astrios (Beckman 
Coulter). Anti-CD45 (clone HI30, APC, BD Bioscience) antibodies were 
used for droplet-based single-cell RNA-seq (Extended Data Fig. 1a). The 
following antibodies were used for Cel-Seq2 sorting: anti-CD45 (1:100 
dilution, clone HI30, APC, BD Bioscience), anti-MRC1/CD206 (1:400 
dilution, clone 15-2, APC-Cy7, BioLegend), anti-CD3 (1:100 dilution, 
clone SP34-2, PE-Cy7), anti-CD11b (1:800 dilution, clone M1/70, eBio-
science), anti-CD19 (1:100 dilution, clone SJ25C1, PE-Cy7, BioLegend) 
and anti-CD20 (1:400 dilution, clone 2H7, PE-Cy7, BioLegend). Before 
surface staining, Fc receptors were blocked using Human TruStain FcX 
(BioLegend). DAPI staining was used for dead cell removal.

Single-nucleus preparations from frozen tissues for flow 
cytometry
For single-nucleus RNA-seq from fresh-frozen tissues, we utilized 
an adaptation of the Frankenstein community protocol (www.pro-
tocols.io/view/frankenstein-protocol-for-nuclei-isolation-from-f-
5jyl8nx98l2w/v3). All steps were performed at 4 °C. Briefly, a tissue 
piece the size of a grain of rice was mechanically dissociated in Nuclei 
EZ Lysis Buffer (Merck) using a pellet pestle (Merck). The resulting 
homogenate was incubated on ice and filtered with a 70-µm cell strainer 
(Merck). Subsequently, cells were centrifuged at 500g for 5 min and 
incubated for 5 min with Nuclei EZ Lysis Buffer, centrifuged again and 
incubated for 5 min in nuclei resuspension buffer (PBS supplemented 
with 1% BSA solution (Miltenyi Biotec) and 0.2 U μl−1 RNase inhibi-
tor (New England Biolabs)). After two wash steps with nuclei resus-
pension buffer, nuclei were incubated for 20 min with a master mix 
containing DAPI (10 µg ml−1), anti-NeuN (clone 1B7, Alexa-647, Novus 
Biologicals) and anti-Olig2 (clone 211F1.1, Alexa-488, Merck). Single 
DAPI+NeuN−Olig2− nuclei were sorted on a MoFlo Astrios (Beckman 
Coulter) or BD FACSAria III machines (BD Bioscience) to enrich for 
non-neuroectodermal cell types (Extended Data Fig. 1a). To minimize 
batch effects, experiments were conducted in a blocked manner with 
tissues from different regions and control and diseased tissues pro-
cessed together using commercial multiplexing kits (10x Genomics, 
see below for details).

Surface protein profiling
CITE-seq was conducted using a commercially available human anti-
body cocktail (TotalSeq-B Human Universal Cocktail, v.1.0, BioLeg-
end). The lyophilized cocktail was dissolved in Cell Staining Buffer  
(BioLegend) following the manufacturer’s instructions. After Fc recep-
tor blocking, cell suspensions were incubated with the dissolved anti-
body solution for 30 min and washed twice.

Sample multiplexing using lipid-conjugated cell-multiplexing 
oligonucleotides
Sample multiplexing with the 3′ CellPlex kit (10x Genomics) was applied 
for cost efficiency to pool up to 12 samples per 10x reaction. Cell and 
nucleus suspensions were incubated on ice for 20 min followed by 
three washes.
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Fixed RNA profiling
Nuclei were extracted from FFPE tissues using the demonstrated pro-
tocol supplied by the manufacturer (10x Genomics, CG000632, Rev A). 
Briefly, three 50-µm sections were cut from FFPE blocks, deparaffinated 
with xylene (Merck) and rehydrated with an ethanol dilution row. After a 
wash step with PBS, 100 µl dissociation mix (1 mg ml−1 Liberase (Merck) 
in RPMI medium (Merck)) was added, and the samples were mechani-
cally dissociated with a pellet pestle followed by enzymatic digestion 
at 37 °C for 30 min on a radial shaker (800 r.p.m.). Then the sample was 
triturated with a pipette and passed through a 30-µm filter. Cells were 
washed with tissue resuspension buffer (0.5 ml) and incubated with an 
antibody master mix containing anti-NeuN (clone 1B7, Alexa-647, Novus 
Biologicals) and anti-Olig2 (clone 211F1.1, Alexa-488, Merck). After 
two additional washes, single DAPI+NeuN−Olig2− nuclei were sorted 
on a MoFlo Astrios machine (Beckman Coulter). From each sample, 
200,000 nuclei were sorted into LoBind tubes (Eppendorf) and pooled 
into a control and transplanted sample, respectively.

The following steps were conducted following the 10x Genomics 
protocol entitled ‘Chromium Fixed RNA Profiling Reagent kits for 
Single-plexed Samples’ (CG000477 | Rev D). Briefly, sorted nuclei 
were resuspended in quenching buffer and centrifuged. The sorted 
pellet was resuspended in hybridization buffer containing Human WTA 
Probes BC001 (10x Genomics). After 20 h of hybridization at 42 °C the 
nuclei were repeatedly washed and counted using a hemocytometer. 
Up to 40,000 nuclei were loaded per reaction. Unused nuclei were 
stored at −80 °C in storage buffer (0.1 volume Enhancer in Post-Hyb 
Resuspension Buffer and 10% glycerol). A total of two pooled control 
and three pooled post-transplantation libraries were prepared from 
the same nuclei pools due to low yields.

10x Genomics droplet-based single-cell/single-nucleus library 
preparation
Up to 40,000 sorted cells or nuclei per reaction were loaded on a Chro-
mium controller (10x Genomics). Complementary DNA amplification 
and library preparation were performed according to the user guide for 
the Chromium Next GEM Single Cell 3′ Reagent kits v.3.1 (CG000204 or 
CG000390). Additionally, the 3′ Feature Barcoding kit (10x Genomics) 
was used for library preparation of multiplexed and CITE-seq samples. 
The libraries were sequenced on a NextSeq 550 or NextSeq 1000/2000 
machines (Illumina) with a sequencing depth appropriate to reach 
20,000 reads per cell. The targeted sequencing depth for multiplex-
ing and feature barcoding/CITE-seq libraries were 5,000 reads per cell 
for each modality. Transcriptome alignment to the GENCODE human 
genome release 33 was performed with CellRanger v.7.1.0 on a Linux 
workstation. The CellRanger multi workflow was applied for sample 
demultiplexing, transcript and surface protein quantification.

Fixed RNA-profiling libraries were generated using the protocol 
for single-plexed samples (CG000477). Reference probe set alignment 
and quantification was conducted using CellRanger v.7.1.0 on a Linux 
workstation with the CellRanger multi workflow.

Integration and analysis of the 3′ mRNA 10x single-cell and 
single-nucleus transcriptome data
Data collection and analysis were performed in an unsupervised man-
ner, but not blind to the conditions of the experiments. Filtered counts 
matrices were loaded with Seurat v.4.3.0 (ref. 26). Cells with at least 
500 and fewer than 4,000 detected genes and below 20% mitochon-
drial transcripts were included. Doublet detection and removal were 
achieved using a combination of the scDblFinder v.1.10.0 and Single-
CellExperiment v.1.18.1 packages.

The control 10x dataset consisted of samples with only transcrip-
tome data and samples with transcriptome and CITE-seq informa-
tion. The glioblastoma data contained transcriptome and CITE-seq 
information. We used the Azimuth algorithm26 to impute missing 
CITE-seq information. To this end, data from a reference experiment 

containing brain PC, LM and CP cells were normalized and scaled with 
10,000 most-variable features using the SCTransform Seurat func-
tion. The other three control datasets were aligned to this reference 
using the FindNeighbors and FindTransferAnchors Seurat functions. 
Next, cell-surface-marker expression values were imputed using the 
MapQuery Seurat function.

For multimodal mapping, the transcriptome data from different 
experiments were merged into one Seurat object, then normalized and 
scaled on 10,000 most-variable features. Then, the different experi-
ments within the Seurat object were integrated using the Harmony R 
package v.0.1.1 with ‘experiment’ as integration variable59. In the next 
step, the surface receptor data were normalized using a centered log 
ratio transformation as the normalization method and scaled on all 
available features. Dimensionality reduction was achieved using the 
RunPCA Seurat function. Then, multimodal mapping was conducted 
using the FindMultiModalNeighbors Seurat function with the top 30 
components of the transcriptome and top 18 components of the sur-
face receptor data. UMAP embedding was generated from the resulting 
weighted nearest-neighbor graph. Next, cell clusters were identified 
using the FindClusters Seurat function with the algorithm parameter 
set to the smart local moving algorithm and otherwise default settings.

Analysis of the fixed mRNA-profiling single-nucleus data
A total of 9,035 nuclei with above 50 and below 1,000 transcripts were 
imported into a Seurat object. Doublet detection and removal were 
achieved using a combination of the scDblFinder v.1.10.0 and Sin-
gleCellExperiment v.1.18.1 packages. The data were normalized and 
scaled using the SCTransform function. After dimensionality reduction 
with RunPCA, UMAP embedding, nearest-neighbor identification and 
clustering were conducted from 30 principal components with default 
parameters.

mCEL-Seq2 single-cell RNA amplification and library 
preparation
The following antibodies were used for FACS sorting: anti-CD45 (clone 
HI30, APC, BD Bioscience), anti-CD206 (also known as MRC1, clone 15-2, 
APC-Cy7, BioLegend), anti-CD3 (clone SP34-2, PE-Cy7, BD Bioscience), 
anti-CD19 (clone SJ25C1, PE-Cy7, BioLegend) and anti-CD20 (clone 2H7, 
PE-Cy7, BioLegend). On a MoFlo Astrios machine, CD45+CD206+Lin− 
(CD3, CD19 and CD20) cells were sorted into 384-well plates (Bio-Rad 
Laboratories) (Extended Data Fig. 1b). scRNA-seq was conducted 
using the mCEL-Seq2 protocol34,60 on a mosquito nanoliter-scale 
liquid-handling robot (SPT Labtech). Eight libraries with 192 cells 
each were sequenced per lane on an Illumina HiSeq 3000 sequencing 
system (pair-end multiplexing run) at a depth of ~130,000–200,000 
reads per cell.

Fastq files were aligned using STAR v.2.7.10a with default parame-
ters to the human GENCODE human genome release 33 (ref. 61). The left 
read contains the barcode information; the first six bases represented 
the unique molecular identifier (UMI) followed by six bases with the 
cell specific barcode. A poly-T stretch comprised the remainder of the 
left read that was therefore not used for quantification.

Analysis of the mCEL-Seq2 scRNA-seq data
Data collection and analysis were performed in an unsupervised 
manner, but not blind to the conditions of the experiments. Over-
all, 17 mCEL-Seq2 libraries were sequenced and after quality control, 
2,490 cells were analyzed. Cells with at least 200 and fewer than 
4,000 detected genes and below 20% mitochondrial transcripts 
were included. Doublet detection and removal were achieved using 
a combination of the scDblFinder v.1.10.0 and SingleCellExperiment 
v.1.18.1 packages. Data integration was performed using the Seurat 
v.4 algorithm running the multimodal reference mapping workflow 
with 10,000 features26. Briefly, data from each library were normalized 
and scaled using the SCTransform Seurat function. Then, each library 
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was aligned to multimodal human peripheral blood mononuclear cell 
(PBMC) data as a reference using the FindNeighbors and FindTransfer-
Anchors Seurat functions. We used PBMCs as a reference to confidently 
distinguish intravascular cells that are commonly present in human 
samples that cannot be perfused. This was necessary, as human cDC2 
are expected in the CD206 gate due to known high MRC1 expression 
in these cells44. The top 50 components of the supervised principal 
component dimensionality reduction were used to calculate the UMAP 
embedding and identify the nearest neighbors for cluster assignment. 
Clusters were calculated with the resolution parameter set to 0.3.

Re-ordering of clusters
The default cluster ordering of Seurat is based on cluster size with 
the largest cluster first. To sort the clusters based on transcriptional 
similarity, we performed hierarchical clustering of the average gene 
expressions in each cluster. Similarly, cell types were ordered based 
on transcriptional similarity.

Cell doublet identification and exclusion
Doublets were excluded using the scDblFinder package v.1.10.0. Briefly, 
the counts slot of the Seurat object was transformed into a SingleCell-
Experiment object, the scDblFinder function was run on the new object 
and the original Seurat object was filtered for cells classified as ‘singlet’.

Cell type and state classification based on gene module 
expression scoring
Cell-cycle scoring and quantification of cell type and functional gene 
expression modules were conducted based on published gene signa-
tures28 (Supplementary Table 21). Gene module scores were calculated 
using the UCell R package v.2.0.1 based on the Mann–Whitney U statis-
tic62. Briefly, a cell type or cell state-associated gene list was passed to 
the ScoreSignatures_UCell function. The resulting cell-wise scores were 
added to the Seurat object using the AddMetadata Seurat function. 
Cell-cycle modules were scored in Seurat using the CellCycleScor-
ing function, which is a wrapper for the AddModuleScore function. 
Low-quality cells were identified based on the percentage of mito-
chondrial across all genes and the expression of the KCNQ1OT1 gene43.

Dendrograms showing the similarity of the identified cell types 
were prepared using Ward’s method for hierarchical clustering63.

Reference-based cell-type assignment
Cell-type assignment was performed using the Azimuth algorithm26. 
Briefly, newly generated data were normalized and scaled using the 
SCTransform Seurat function. Then, they were aligned to multimodal 
human PBMC data as a reference using the FindNeighbors and Find-
TransferAnchors Seurat functions. The use of PBMCs as a reference 
was primarily chosen to confidently assign intravascular cells that 
are commonly present in human samples that cannot be perfused. 
The cell-type assignments were added to the original Seurat objects 
using the MapQuery Seurat function. Tissue-resident cell types not 
present in the dataset, such as CAMs or microglia were manually added 
based on the gene module expression of published marker genes (Sup-
plementary Table 21)7,27,32,44. Also, transitory cells traversing from the 
blood vessels into the tissue were classified based on the expression of 
published cell-type homing-gene expression modules (Supplementary 
Table 21)28. To this end, the cluster-wise expression of the respective 
gene module calculated using the UCell package was assessed and the 
respective cell type was assigned accordingly.

Cell-type assignment in the fetal tissues was conducted using 
reference mapping with a subset of the Braun et al. dataset for PC/PV 
and Yang et al. dataset for CP cells2,39.

Differential gene expression analysis
Differentially expressed genes were determined using the FindAllMark-
ers Seurat function with default settings. For side-by-side comparisons 

of clusters or conditions were achieved by running the FindMakers 
Seurat function with logfc.threshold = 0.01 and min.pct = 0.01.

Cluster enrichment analysis
Hypergeometric testing with the phyper base R function was used to 
calculate enrichment of a given condition in a cluster based on the 
overall number of cells from this condition in the dataset. The calcu-
lated value stands for the probability that number n or more cells from 
a given condition are found in a cluster by chance. 0.05 was chosen as 
cutoff for statistical significance. The Benjamini–Hochberg method 
was used for multiple testing correction of the calculated P values 
for all conditions. The code for Marimekko plots was modified from 
R. Scavetta.

MOFA2 latent factor analysis
Latent factors underlying the transcriptional differences between 
conditions were identified using the MOFA2 algorithm31. To this end, we 
adopted the ‘integration of a time-course single-cell RNA-seq dataset’ 
workflow. mCEL-Seq2 as specified under the following vignette: raw.
githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/scRNA_
gastrulation.html. Briefly, the cell types of interest were extracted 
from the Seurat object (CAMs, microglia and transitory monocytes 
(clusters 9 and 21) from the control and CAMs, microglia, TAMs and 
Trans. moTAMs from the tumor dataset, respectively). The data were 
normalized and rescaled. Then, the MOFA object was created from the 
RNA slot of the Seurat object and grouped by the compartments for 
the control data and composite variables consisting of the compart-
ment and cell types for the tumor data. The convergence mode was set 
to fast. The number of latent factors was set to 10. After convergence 
of the MOFA model, the variance explained was visualized using the 
plot_variance_explained MOFA2 function. The weights for each latent 
factor were extracted using the get_weights function. The genes with 
the top 100 weights were extracted and comparative Gene Ontology 
analysis between the latent factors was performed using the compare-
Cluster function from the clusterProfiler R package v.4.4.4 (ref. 64). The 
factor-wise Gene Ontology terms were visualized using the dot-plot 
function of the clusterProfiler package.

Species comparison between human and mouse
For cross-species analysis, a previously published control CAMs data-
set7 was analyzed using Seurat v.4 in an analogous way as the human 
data in the present study. Differentially expressed genes were sepa-
rately assessed between CAMs and microglia in mice and humans 
using the FindMarkers Seurat function. Orthologous genes between 
human and murine samples were obtained using the biomaRt v.2.52.0 
R package. For visualization, a scatter-plot shows the correlation of the 
average log2 fold change values between both datasets with positive 
values showing genes differentially expressed in CAMs and negative 
values for microglia genes. Human log2 fold change values are shown 
on the x axis and the murine ones are shown on the y axis.

Pseudotime analysis
Pseudotime analysis was performed using the StemID analysis within 
the RaceID v.0.2.4 and FateID v.0.2.2 R packages34,43. We followed the 
vignette published by the package authors. Briefly, the gene the counts 
object of the Seurat object was transformed into a RaceID object. Then 
a lineage graph was calculated. Based on the suggested links a trajec-
tory was chosen. Genes with at least one UMI in at least ten cells were 
included in the trajectory. Genes with a correlation coefficient of 0.85 
or above were summarized into gene expression modules and modules 
of at least five cells were included in the analysis.

Gene Ontology enrichment analysis
Gene Ontology term analysis was conducted using the clusterProfiler 
v.4.4.4 R package64. Cluster marker genes were obtained using the 
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FindAllMarkers Seurat function. The top 25 of these markers were 
transformed into entrez IDs and passed to the compareCluster func-
tion of the clusterProfiler package.

Data analysis and visualization
Data collection and analysis were performed in an unsupervised man-
ner, but not blind to the conditions of the experiments. Data analy-
sis was conducted using the R programming language v.4.0.2. The 
tidyverse R package was used for data processing and visualization 
(CRAN.R-project.org/package=tidyverse).

Cell–cell interaction analysis
Cell–cell interaction analysis between different cell types in the 
single-nucleus RNA-seq samples was performed using the NICHES 
R package v.1.0.0 (ref. 40). following a published vignette at github.
com/msraredon/NICHES/blob/master/vignettes/01%20NICHES%20
Spatial.Rmd. Briefly, the combined immune-cell object containing 
published fetal PC/PV and postnatal CP immune cells2,39 was merged 
with the non-immune single-nucleus data from Fig. 5b. To account for 
the abundance of neuronal cell types in the non-immune dataset, it was 
downsampled to up to 500 distinct cells per cell type. The resulting 
Seurat object was passed to the RunNICHES function and the System-
ToCell interactions were analyzed using the fantom5 ligand–receptor 
database. These data consist of the interactions between the respec-
tive cell types and all other cell types in the data. We were particularly 
interested in the differential interactions of pre- and postnatal cell 
macrophage subsets. To this end we ran differential expression analysis 
of ligand–receptor pairs using the FindMarkers R function and visual-
ized to top differentially expressed pairs using volcano plots with the 
EnhancedVolcano R package v.1.14.0.

In situ analysis using CARTANA technology
Four frozen OCT-embedded control and two glioblastoma samples 
were cryosectioned (10-μm thickness) and placed onto SuperFrost 
Plus glass slides (Thermo Fisher) and shipped on dry ice to CARTANA 
(part of 10x Genomics) for processing.

Samples were fixed (with 4% formaldehyde) permeabilized (with 
0.1 mg ml−1 ± pepsin in 0.1 M HCl (P7012 Sigma-Aldrich)) before library 
preparation. For tissue section mounting, Slow Fade Antifade Mountant 
(Thermo Fisher) was used for optimal handling and imaging.

For library preparation, chimeric padlock probes (targeting  
directly RNA and containing an anchor sequence as well as a gene- 
specific barcode) for three predefined panels (CNS Glia, Immune Gen-
eral and Immune Oncology) as well as a custom panel of 50 genes 
(Supplementary Table 10 for all genes) were hybridized overnight at 
37 °C, then ligated before the rolling circle amplification is performed 
overnight at 30 °C using the HS Library Preparation kit for CARTANA 
technology and following manufacturer’s instructions. All incubations 
were performed in SecureSealTM chambers (Grace Biolabs). Before 
final library preparation, optimal RNA integrity and assay conditions 
were assessed using Malat1 and Rplp0 housekeeping genes only using 
the same protocol.

Quality control of the library preparation was performed by apply-
ing anchor probes to detect simultaneously all rolling circle amplification 
products from all genes in all panels. Anchor probes are labeled probes 
with Cy5 fluorophore (excitation at 650 nm and emission at 670 nm).

All samples passed the quality control and were sent to CARTANA 
Sweden, for in situ barcode sequencing, imaging and data processing. 
Briefly, adaptor probes and sequencing pools (containing four differ-
ent fluorescent labels: Alexa Fluor 488, Cy3, Cy5 and Alexa Fluor 750) 
were hybridized to the padlock probes to detect the gene-specific 
barcodes, through a sequence-specific signal for each gene-specific 
rolling circle amplification product. This was followed by imaging 
and performed six times in a row to allow for the decoding of all genes  
in the panel.

Raw data consisting of ×20 or ×40 images from five fluorescent 
channels (DAPI, Alexa Fluor 488, Cy3, Cy5 and Alexa Fluor 750) were 
each taken as a z stack and flattened to two dimensions using maxi-
mum intensity projection. After image processing and decoding, the 
results were summarized in a csv file and gene plots were generated 
using MATLAB.

Image segmentation of the ISS data was performed with the docker 
image of the Baysor tool (v.0.4.2.)65, using the following modified 
parameters for the configuration file: min-molecules-per-cell,10; scale, 
50; scale-std, 50%; and min-molecules-per-segment, 2. The Baysor 
analysis was also run using a prior segmentation performed in ImageJ 
Fiji. The segmentation was performed with the watershed algorithm 
on an DAPI image indicating nuclei position, using local thresholding 
when needed. The parameter value used for the prior segmentation 
confidence was 0.8.

Analysis of the in situ sequencing data
The cell counts matrix and the cell coordinates obtained from image 
segmentation analysis with Baysor were loaded into the SPAtial Tran-
scriptomic Analysis R package (SPATA2) v.0.1.0. with the initiateS-
pataObject_CountMtr function. Tissue segmentation of anatomical 
areas in control samples was anatomically drawn in the SPATA2 viewer 
after calling the createSegmentation function. For hypoxic areas in 
the tumor, we visualized in the gene set RCTM_CELLULAR_RESPONSE_
TO_HYPOXIA in the SPATA2 viewer. Then, the segments were manually 
drawn around areas with high expression of the gene set. Similarly, 
spatial trajectory analysis was performed using the createTrajectories 
function and manually drawing a trajectory from an area of cellular 
tumor into the hypoxic area. The top ten up- and downregulated genes 
along the trajectory were identified using the assessTrajectoryTrends 
and extracted using the filterTrajectoryTrends functions. Visualization 
of the resulting smoothed gene expressions was conducted using the 
plotTrajectoryHeatmap function. Representative genes were visualized 
using the plotSurfaceComparison function.

Cell-type classification was conducted using label transfer via the 
Azimuth algorithm. Briefly, the SPATA2 object was converted into a 
Seurat object using the transformSpataToSeurat function. The data 
were normalized and scaled on all available genes. For the control sam-
ples, LM and PC/PV cells were separately classified with single-nucleus 
RNA-seq datasets from the LM and PC/PV. The reference datasets were 
subset to the genes contained in the ISS panel and nuclei with more than 
ten transcripts were kept. Then, the ISS dataset was integrated with the 
reference dataset using the FindTransferAnchors Seurat function with 
the dims parameter set to 1:10. Cell-type labels were transferred using 
the TransferData with the dims parameter set to 1:10. For the glioblas-
toma samples, the strategy was slightly adjusted. To account for the 
predominance of tumor cells in the reference single-nucleus sequencing 
dataset, it was downsampled to up to 200 distinct cells per cell type. 
Then we ran the FindTransferAnchors and TransferData Seurat functions 
with dims set to 1:30. The cell-type classifications were controlled based 
on differentially expressed genes and manually adjusted, if needed.

Spatial neighborhood analysis
Spatial neighborhood enrichment analysis was performed using the 
Squidpy algorithm v.1.3.0 (ref. 36) as previously described (www.
sc-best-practices.org/spatial/neighborhood.html). Neighborhood 
enrichment scores of the respective cell types were calculated using 
the nhood_enrichment function. Subsequently, the interaction_matrix 
function was used to obtain spatial interaction scores of the cell types. 
Plotting was performed using Scanpy v.1.9.3 (ref. 66) functionality.

CosMx tissue processing, image acquisition, cell 
segmentation and data analysis for 1,000-plex RNA profiling
FFPE tissue blocks with control and tumor samples were sectioned to 
consecutive 5-µm slices using a microtome and shipped to NanoString 
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Technologies for processing. Sample processing, staining, imaging and 
cell segmentation were performed as previously described67. Briefly, tis-
sue sections were placed onto VWR Superfrost Plus Micro slides for opti-
mal adherence. Slides were then dried at 37 °C overnight, followed by 
deparaffinization, antigen retrieval and proteinase-mediated permea-
bilization (nanostring.com/products/cosmx-spatial-molecular-imager/
single-cell-imaging-overview). Then,1 nM RNA-ISH probes were applied 
for hybridization at 37 °C overnight. After a stringent wash, a flow cell 
was assembled on top of the slide and cyclic RNA readout on CosMx was 
performed (16-digit encoding strategy). After all cycles were completed, 
additional visualization markers for morphology and cell segmentation 
were added, including pan-cytokeratin, CD45, CD3, CD298/B2M and 
DAPI. Twenty-four 0.985 mm × 0.657 mm fields of view (FOVs) were 
selected for data collection in each slice. The CosMx optical system has 
an epifluorescent configuration based on a customized water objective 
(×13, NA 0.82) and uses widefield illumination with a mix of lasers and 
light-emitting diodes (385 nm, 488 nm, 530 nm, 590 nm and 647 nm) 
that allow imaging of DAPI, Alexa Fluor 488, Atto-532, Dyomics Dy-605 
and Alexa Fluor 647, as well as removal of photocleavable dye compo-
nents. The camera was a FLIR BFS-U3_200S6M-C based on the IMX183 
Sony industrial CMOS sensor (pixel size 180 nm). A three-dimensional 
multichannel image stack (nine frames) was obtained at each FOV 
location, with a step size of 0.8 µm. Registration, feature extraction, 
localization, decoding of the presence individual transcripts and 
machine-learning-based cell segmentation (developed upon Cellpose) 
were performed as previously described67. The final segmentation 
mapped each transcript in the registered images to the corresponding 
cell, as well as to subcellular compartments (nuclei, cytoplasm and 
membrane), where the transcript is located.

Tissue segmentation and trajectory analysis was conducted 
similarly to the ISS data described above using the SPATA2 R pack-
age. Also, cell-type classification was conducted with the reference 
single-nucleus sequencing datasets subset to the genes contained in 
the 1,000-plex gene panel.

Spatially resolved cell–cell interaction analysis
Spatially resolved cell–cell interaction analysis between different cell 
types was performed on the GeoMx data using the NICHES R pack-
age v.1.0.0. following a published vignette at github.com/msrare-
don/NICHES/blob/master/vignettes/01%20NICHES%20Spatial.
Rmd. Briefly, missing gene expression values were imputed using 
the Adaptively-thresholded Low Rank Approximation algorithm on 
the Seurat object68. The resulting Seurat object was passed to the 
RunNICHES function and the NeighborhoodToCell interactions were 
analyzed using the fantom5 ligand–receptor database. These data 
consist of the interaction between the respective cell types in the data 
and their neighboring cells. The differentially expressed interactions 
were visualized.

Human sex-mismatched PBSCT autopsy cases
All human brain autopsy samples were derived from the case archive 
of the Institute of Neuropathology, University of Freiburg. Brains and 
DM of autopsy cases were transferred into 4% paraformaldehyde within 
less than 48 h after death and fixed for at least 1 week. After fixation, 
representative tissue from several brain regions of the left hemisphere 
was dissected and embedded in paraffin. Among the 15 female patients 
with a history of male donor-derived PBSCT, paraffin-embedded sam-
ples the frontal cortex and cerebellum were available in 14 cases and the 
hippocampus was available in 13 cases. Hippocampal samples derived 
from nine patients contained parts of the CP. In nine cases, LM were 
amenable for analysis as they were well preserved and confounding 
neuropathological diagnosis was absent. In five female sex-mismatched 
PBSCT patients and four control cases, the DM adjacent to the frontal 
branch of the medial meningeal artery was resected and processed for 
further histological analysis.

Chromogenic in situ hybridization of human brain samples
To investigate CAM engraftment, IHC and CISH labeling the Y chromo-
some in samples of female sex-mismatched PBSCT patients was per-
formed using 10-µm thick sections as previously described42. Briefly, 
IHC was carried out using Liquid Permanent Red Substrate-Chromogen 
(Agilent Dako) for antigen visualization. Subsequently, CISH was 
performed using the ZytoDot CISH Implementation kit (ZytoVision) 
according to the manufacturer’s instructions with the following modi-
fications. Sections were incubated in EDTA at 95 °C for 15 min and 
treated with pepsin solution at 37 °C for 6 min. After dehydration, 
12 µl of ZytoDot CEN Yq12 digoxigenin-linked probe (ZytoVision) was 
added for at least 20 h at 37 °C. After washing and blocking steps, sec-
tions were incubated in mouse anti-digoxigenin antibody solution, 
treated with HRP-conjugated anti-mouse antibody at 37 °C for 30 min 
and bound to DAB at 37 °C for 45 min. Nuclei were counterstained with 
hematoxylin.

Engraftment analysis
Sections were analyzed using a MikroCam II with a UPlan FLN ×40/0.75 
NA objective on a BX40 microscope (Olympus). To scan for the Y 
chromosome the focus plain was carefully moved through the whole 
nucleus of each cell analyzed.

First, the detection rate of Y chromosomes was determined for 
each CAM compartment in n = 3 male control samples. For each com-
partment and marker, several FOVs were analyzed. The mean Y chro-
mosome detection rate for each CNS myeloid cell niche and marker 
was calculated.

Next, samples derived from female sex-mismatched PBSCT cases 
were analyzed. In each compartment, at least 50 CAMs per patient were 
analyzed. Myeloid cell engraftment rates were calculated by dividing 
the resulting percentage of Y+ cells in each compartment by the cor-
responding Y chromosome detection rate previously determined in 
male control tissue.

T50, the duration after PBSCT required for a turnover of 50% of 
CAMs by donor-derived cells, was inferred by a linear regression analy-
sis between log10-transformed time interval after PBSCT and Pearson’s 
correlation coefficient. The values for the confidence intervals were 
added based on the estimated upper and lower bounds of the correla-
tion coefficient.

Assessment of marker regulation in donor- and host-derived 
cells
To investigate expression of CAM markers in donor-derived cells of 
the LM and PV space, three patients with long survival after PBSCT and 
consecutively high numbers of engrafting donor-derived cells were 
chosen. In these patients, at least 100 perivascular and leptomeningeal 
Y+ cells pooled from cortical, hippocampal and cerebellar samples were 
assessed for Iba1 (Abcam, clone EPR 16588), CD206 (Abnova, clone 
5C11) and Siglec1 expression. For microglia quantification, cortical 
samples were assessed for Iba1 (Abcam, clone EPR 16588), P2RY12 
(Sigma-Aldrich, polyclonal), TMEM119 (Abcam, polyclonal) and GLUT5 
(Sigma-Aldrich, polyclonal).

Intracellular barcoding for mass cytometry
Percoll-isolated myeloid cells were fixed with fixation/stabilization 
buffer69 (Smart Tube) and frozen at −80 °C until analysis by mass cytom-
etry. Cells were thawed and subsequently stained with premade com-
binations of six different palladium isotopes: 102 Pd, 104 Pd, 105 Pd, 
106 Pd, 108 Pd and 110 Pd (Cell-ID 20-plex Pd Barcoding kit, Fluidigm). 
This multiplexing kit applies a 6-choose-3 barcoding scheme that 
results in 20 different combinations of three Pd isotopes. After 30 min 
staining (at RT), individual samples were washed twice with cell stain-
ing buffer (0.5% bovine serum albumin in PBS, containing 2 mM EDTA). 
All samples were pooled together, washed and further stained with 
antibodies.
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Antibodies
Anti-human antibodies (Supplementary Table 9) were purchased either 
preconjugated to metal isotopes (Fluidigm) or from commercial sup-
pliers in purified form and conjugated in-house using the MaxPar X8 
kit (Fluidigm) according to the manufacturer’s protocol. For surface 
and intracellular staining, after cell barcoding, washing and pelleting, 
the combined samples were resuspended in 100 µl antibody cock-
tail against surface markers (Supplementary Table 9) and incubated 
for 30 min at 4 °C. Then, cells were washed twice with cell staining 
buffer. For intracellular staining, the stained (non-stimulated) cells 
were then incubated in fixation/permeabilization buffer (Fix/Perm 
Buffer, eBioscience) for 60 min at 4 °C. Cells were then washed twice 
with permeabilization buffer (eBioscience). The samples were then 
stained with antibody cocktails against intracellular molecules in 
permeabilization buffer for 1 h at 4 °C. Cells were subsequently washed 
twice with permeabilization buffer and incubated overnight in 2% 
methanol-free formaldehyde solution. Fixed cells were then washed 
and resuspended in 1 ml iridium intercalator solution (Fluidigm) for 
1 h at RT. Next, the samples were washed twice with cell staining buffer 
and then twice with ddH2O (Fluidigm). Cells were pelleted and kept at 
4 °C until CyTOF measurement.

CyTOF measurement
Cells were analyzed using a CyTOF2 upgraded to Helios specifica-
tions, with software v.6.5.236. The instrument was tuned according to 
the manufacturer’s instructions with tuning solution (Fluidigm) and 
measurement of EQ four element calibration beads (Fluidigm) con-
taining 140/142Ce, 151/153Eu, 165Ho and 175/176Lu served as a quality 
control for sensitivity and recovery. Directly before analysis, cells were 
resuspended in ddH2O, filtered (20 µm Celltrix, Sysmex), counted and 
adjusted to 3–5 × 105 cells ml−1. EQ four element calibration beads were 
added at a final concentration of 1:10 of the sample volume to be able 
to normalize the data to compensate for signal drift and day-to-day 
changes in instrument sensitivity.

Samples were acquired with a flow rate of 300–400 events s−1. The 
lower convolution threshold was set to 400, with noise reduction mode 
on and cell definition parameters set at event duration of 10–150. The 
resulting flow cytometry standard (FCS) files were normalized and ran-
domized using the CyTOF software’s internal FCS-Processing module 
on the non-randomized (‘original’) data. Settings were used according 
to the default settings in the software with time interval normalization 
(100 s per minimum of 50 beads) and passport v.2. Intervals with fewer 
than 50 beads per 100 s were excluded from the resulting fcs file.

Mass cytometry data processing and analysis
Cytobank was used for initial manual gating on intact single cells. Nucle-
ated single cells were manually gated by DNA intercalators 191Ir/193Ir and 
event length. For de-barcoding, Boolean gating was used to decon-
volute individual sample according to the barcode combination. For 
gated cells from different individuals, expression levels of each marker 
were assessed and visualized in dot plots and/or histograms. After 
de-barcoding, each sample was exported as individual .fcs file from 
Cytobank. We performed the visualization and clustering analysis of 
the data using the k-nearest-neighbor density-based algorithm X-shift 
on the VorteX Clustering Environment (github.com/nolanlab/vortex/).

Data analysis and visualization
Data analysis and visualization was mainly conducted in the R v.4.2.0 
programming environment using the tidyverse package suite v.2.0.0. 
and specialized visualization packages, including ComplexHeatmap 
v.2.12.1 (refs. 70–73).

Statistics and reproducibility
No statistical method was used to predetermine sample size. The exper-
iments were not randomized. The investigators were blinded during 

the analysis of microscopy analyses. For single-cell and single-nucleus 
RNA-seq, cells with fewer than 500 and more than 4,000 detected genes 
and more than 20% mitochondrial transcripts were excluded. The 
presented CITE-seq data only contain cells with more than 50 counts 
per cell. For Cel-Seq2 data, cells with fewer than 200 and more than 
4,000 detected genes and more than 20% mitochondrial transcripts 
were excluded. Furthermore, clusters with biologically uninformative 
low-quality cells were excluded after evaluation. The exclusion criteria 
were in line with previously applied strategies for Cel-Seq2 data32,43. For 
fixed RNA-profiling samples, cells with fewer than 50 and more than 
1,000 detected genes were excluded. ISS data only contain cells with 
five or more counts per cell.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The processed data for this project are available under GSE245311. 
The raw sequencing files are access-restricted and can be accessed 
at the European Genome–phenome Archive under the accession 
number EGAS50000000030 (https://ega-archive.org/studies/
EGAS50000000030). Access to the data will require a Data Transfer 
Agreement. The raw data for the mass cytometry experiments can be 
found under flow repository ID FR-FCM-Z6S6. Published counts data26 
for reference mapping of the immune cells were downloaded from atlas.
fredhutch.org/data/nygc/multimodal/pbmc_multimodal.h5seurat. 
Published counts data2 for control human CP single-nucleus RNA-seq 
samples were downloaded under the accession code GSE159812. Pub-
lished counts39 data for reference mapping and comparative analy-
ses for prenatal immune cells were downloaded from github.com/
linnarsson-lab/developing-human-brain/. Published counts data44 for 
comparative analyses of the glioblastoma samples were downloaded 
from www.brainimmuneatlas.org/data_files/toDownload/filtered_ 
feature_bc_matrix_HumanGBMciteSeq.zip and their metadata are at 
www.brainimmuneatlas.org/data_files/toDownload/annot_Human_
TAM_DC_Mono_citeSeq.csv. Source data are provided with this paper.

Code availability
The computer code for this project can be found and explored at www.
brain-immunity.de.
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Extended Data Fig. 1 | FACS gating strategies. a. Representative FACS plots of 
cell suspensions for 10x single-cell analysis (top figure panel). Cells were gated i. 
on singlets followed by ii. collection of DAPI- and CD45+ cells. The middle figure 
panel shows the gating strategy for single-nucleus RNA sequencing. The bottom 

figure panel shows the gating strategy for single-nucleus fixed RNA profiling. 
Cells were sorted into 1.5 ml tubes. b. For the enrichment of CD206+ cells, i. 
singlets were selected followed by ii. exclusion of DAPI + CD3 + CD19 + CD20+ 
cells. iii-iv-. CD45 + CD206+ cells were sorted into 384-well plates.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Overview of cell type-enriched gene expression 
signatures and cell cycle scores. a. Cell type assignment of the dataset using the 
Azimuth human PBMC reference dataset. b. UMAP visualizations color coded for 
the expression of gene modules enriched in the indicated cell types. The color 
coding represents gene module expression scores for each cell using the Mann-
Whitney U statistic. c. UMAP visualizations color coded for cell cycle scoring. The 

color coding represents gene module expression scores for each cell using the 
Mann-Whitney U statistic. The module score classification is based on published 
gene expression signatures27.d. UMAP visualizations color coded for the 
expression of the published gene module29. The color coding represents module 
enrichment scores for each cell using the Mann-Whitney U statistic.
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Extended Data Fig. 3 | Conserved and distinct signatures of tissue resident 
myeloid cells in CNS interfaces between mouse and man. a. Heatmap 
visualization of latent factors determined by multiomic factor analysis (MOFA)2 
analysis of macrophages across the indicated compartments. The color scale 
indicates the percentage of variance explained across the compartments. 
For enhanced readability, the respective values are indicated in each heat 
map tile. Selected top genes for each latent factor are presented to the right 
of the heat map. PC/PV: parenchyma/perivascular space, CP: choroid plexus, 
LM: leptomeninges, DM: dura mater. b. Dotplot showing gene ontology term 
enrichment analysis across the top 100 differentially enriched genes in the 
MOFA2 latent factors from panel a. The dot size indicates the gene ratio of genes 
differentially expressed in each cluster over the genes in the indicated gene 
ontology terms. The color coding of the dot indicates the Benjamini–Hochberg 
adjusted p value based on a one-sided Fisher’s exact test.c. Dot plot depicting the 
cross-species comparison of differentially expressed orthologue genes between 
CAMs and microglia in humans and mice. On the x-axis, adjusted average 

log2-fold changes from the comparison of murine MHC-IIlow and MHC-IIhigh are 
signed positively if they are upregulated in the former and negatively if they 
are upregulated in the latter. The y-axis contains the adjusted average log2-fold 
changes of the human counterparts. The log2-fold changes were calculated using 
two-sided unpaired Wilcoxon Rank-Sum tests followed by Bonferroni correction 
for multiple testing. Orthologue genes in the top right and bottom left quadrants 
are differentially expressed in the same direction. Orthologue genes in the top 
left and bottom right quadrants are showing opposite directions of differential 
expression. Orthologue genes positioned along the axes are only upregulated in 
one species. The color coding indicates the directionality of the gene expression 
across species. Blue genes were upregulated in mice and humans; red genes were 
downregulated in mice and humans; green genes were upregulated in humans 
and downregulated in mice; violet genes were differentially regulated in humans, 
but not in mice; orange genes were differentially regulated in mice but not in 
humans.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Cell type gene module expression of mCEL-Seq2 data 
and validation with mass cytometry. a. UMAP visualizations color coded for 
the expression of gene modules enriched in the indicated cell types. The color 
coding represents module enrichment scores for each cell using the Mann-
Whitney U statistic. b. UMAP visualization color coded for the expression of 
published myeloid (left) and lymphoid cell homing gene modules28. The color 
coding represents module enrichment scores for each cell using the Mann-
Whitney U statistic. c. Spider visualization of 1,999 CD45+ cells analyzed using 
mass cytometry. The plots are color coded for K-nearest-neighbor density-based 
X-shift algorithm-based cluster assignment. The indicated cell type assignment 
is based on the expression of published cell type markers31. The cells labeled as 

‘others’ did not show CD45 expression. Numbers indicate the different clusters. 
d. Spider presentation of the cells from panel f color coded for the compartment 
the cells were extracted from. The right bottom panel is showing a Marimekko 
chart of the distribution of compartments per cluster. CP: choroid plexus, 
LM: Leptomeninges, PV/PC: perivascular space and parenchyma. e. Spider 
visualization of the cells from panel f color coded for the expression of selected 
genes. The color scale represents Pearson’s residuals from a regularized negative-
binomial regression. f. Single-cell heatmap of the protein expression in each 
cluster depicted in panel f. The color scale represents Pearson’s residuals from a 
regularized negative-binomial regression.
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Extended Data Fig. 5 | In-situ validation of immunohistochemistry markers identified in the scRNA-Seq data. Filled arrowheads indicate double-positive cells, 
empty arrowheads indicate single-positive cells. Scale bars correspond to 100 µm. At least 3 images per patient were analyzed.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Single-nucleus and single-cell profiling of fetal and 
postnatal tissues. a. UMAPs color coded for the expression of cell type-enriched 
gene modules. The color coding represents gene module scores using the Mann-
Whitney U statistic. b. UMAPs color-coded for cell cycle scoring calculated using 
the Mann-Whitney U statistic. The underlying gene modules were previously 
described27. c. Heatmap of the average expression of the 7 top markers in the 
indicated cell types. The color scale indicates the z-score. The dendrogram 
represents the hierarchical clustering based on Euclidean distances. d. UMAP 
color-coded for the expression of the published antigen-presentation and DAM 
modules7,29. The color coding represents gene module scores using the Mann-
Whitney U statistic. e. UMAP (top) and Marimekko chart (bottom) color-coded 
for the dataset of each cell. The Marimekko chart represents the contribution of 
each dataset to the respective cluster. Asterisks indicate statistical significance 
from one-sided hypergeometric tests with Benjamini–Hochberg adjustment 
for multiple testing. **p < 0.01; ***p < 0.001. Note that for enhanced readability, 

asterisk are only indicated up to C17. f. Dot-line plots showing the average 
expression of the macrophage (top), microglia (middle) and DAM modules per 
cell type across the developmental stages. To avoid pseudo-replication, gene 
expression was averaged for each cell type and patient. Each dot represents one 
donor. The lines indicate linear regression results with the confidence intervals 
displayed as shaded areas. Pearson correlation coefficient and p value are given 
at the top of each plot. g. UMAP of 4,332 FACS-sorted CD45+ cells from the PC/PV, 
LM and CP of a fetus from pcw 23 and adult controls. The color coding indicates 
Seurat clusters. The cell-type assignment is based on published datasets2,38. h. 
UMAP (top) and Marimekko chart (bottom) color-coded for the anatomical 
compartment each cell was derived from. The Marimekko chart represents 
the contribution of each compartment to the respective cluster. The postnatal 
samples are from 5 individuals with 2 samples each from the PC/PV, CP and LM. i. 
Equivalent of figure panel h color-coded for developmental timepoints.
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Extended Data Fig. 7 | Profiling of engrafting myeloid cells. a. UMAP 
visualization of 9,035 color-coded for Seurat v4 clustering results. Cell type 
assignment was conducted based on published gene expression signatures. 
Marimekko chart of the contribution of control and transplanted patient to 
each cluster. Asterisks indicate the results of statistical testing using one-sided 
hypergeometric tests. Adjustment for multiple testing was done using the 
Benjamini–Hochberg method. **p < 0.01; ***p < 0.001. b. Single-cell heatmap 
depicting the gene expression of the top 7 cluster marker genes per cluster of the 
cells shown in panel a. The genes are shown at the left-hand side of the heatmap. 

Color-coding of the cluster is consistent with panel a. The color scale represents 
Pearson’s residuals from a regularized negative-binomial regression. c. Single-
cell heatmap depicting the gene expression of up to top 10 cluster marker genes 
per cluster of the myeloid cell cluster from Fig. 4 i. d. Comparative analysis of the 
percentage of Y+ positive cells among all identified Iba1 + , P2RY12 + , TMEM119+ 
and GLUT5+ cells in the cortex. Positivity for the pan-myeloid marker Iba1 was 
considered as the maximum achievable percentage of engrafting myeloid cells. 
The lines connect the dots between results from the same patients. The indicates 
p values were calculated using paired t-tests.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Validation of control vs GBM-associated immune cells 
assessed by single-cell RNA-Seq and mass cytometry. a. UMAP color-coded for 
the expression of the indicated modules scores. Module scores are based on the 
Mann-Whitney U statistic. The cell cycle module genes are published27. b. UMAP 
color-coded for DAM and myeloid cell homing module expression28,29. Module 
scores are based on the Mann-Whitney U statistic. c. Marimekko chart showing 
the integration results of the present dataset with published data43. Cluster 
assignments of the present data were transferred on the Antunes et al dataset. 
Asterisks indicate statistical significance from one-sided hypergeometric tests 
with Benjamini–Hochberg adjustment for multiple testing. *p < 0.05; **p < 0.01; 
***p < 0.001. d. Single-cell heatmap showing the expression of the top 20 cluster 
markers with selected genes shown on the left. Cluster colors are consistent 
with panel b. The color scale represents Pearson’s residuals from a regularized 
negative-binomial regression. e. Spatial plot of hypoxia (red) and adjacent 
necrosis (orange) analyzed with Nanostring CosMX. The white arrow indicates a 

spatial trajectory shown in panel f. The shown data is representative of 8 analyzed 
fields from 2 glioblastoma samples. f. Spatial trajectory heatmap showing 
the smoothed gene expression along the trajectory from figure panel e with 
representative genes on the right. g. Spider visualization of mass cytometry data 
from 2,439 CD45+ glioblastoma-derived cells color-coded for clusters. Cell type 
assignment is based on published cell type marker expression. CD45- cells are 
labeled as ‘others’. h. Spider presentation (top) and Marimekko chart (bottom) 
showing the distribution of diagnoses per cluster. i. Protein expression single-cell 
heatmap of the cells in panel e. The color scale represents Pearson’s residuals 
from a regularized negative-binomial regression. j. Dot-line plot depicting the 
expression of selected proteins between tumor-associated and control CAMs 
in C7 from panel e (top) and microglia from C1 (bottom). The indicated p values 
were calculated using unpaired two-sided t-tests with Benjamini–Hochberg 
multiple testing adjustment. Each symbol represents one cell. Medians are 
indicated.
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Extended Data Fig. 9 | Graphical abstract of the present study. The identified markers were chosen based on the combined findings of the modalities.
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