

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

The effect of ϵ -aminocaproic acid on blood product requirement, outcome and thromboelastography parameters in severely thrombocytopenic dogs

Citation for published version:

Wolf, J, Ruterbories, LK, Handel, I & Hansen, B 2024, 'The effect of ε-aminocaproic acid on blood product requirement, outcome and thromboelastography parameters in severely thrombocytopenic dogs', *Journal of Veterinary Internal Medicine*, pp. 1-9. https://doi.org/10.1111/jvim.16977

Digital Object Identifier (DOI):

10.1111/jvim.16977

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Journal of Veterinary Internal Medicine

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

The effect of ε-aminocaproic acid on blood product requirement, outcome and thromboelastography parameters in severely thrombocytopenic dogs

Journal:	Journal of Veterinary Internal Medicine
Manuscript ID	JVIM-23-169.R3
Wiley - Manuscript type:	Standard Article
Keywords (You can enter any word desired, do not have to use from the list):	antifibrinolytics, ε-aminocaproic acid, hyperfibrinolysis, thrombocytopenia, platelets, thromboelastography

1		
2 3		
4	1	The effect of ε-aminocaproic acid on blood product requirement, outcome and thromboelastography
5		
6	2	parameters in severely thrombocytopenic dogs
7		
8	3	
9 10	4	Johanna Wolf
11	5	https://orcid.org/0000-0002-7726-1845
12	6	The University of Edinburgh, Royal Dick School of Veterinary Studies, Clinical Sciences
13	7	Roslin, Midlothian
14	8	United Kingdom of Great Britain and Northern Ireland
15	9	Lours K. Buterberies
16 17	10	Laura K. Ruterbories
18	11 12	North Carolina State University, Department of Clinical Sciences Raleigh, North Carolina
19	12	United States
20	15	United States
21	15	lan Handel
22	16	The University of Edinburgh, Royal Dick School of Veterinary Studies, Clinical Sciences
23 24	17	Roslin, Midlothian
24 25	18	United Kingdom of Great Britain and Northern Ireland
26	19	
27	20	Bernie Hansen, Corresponding Author
28	21	https://orcid.org/0000-0002-5617-5825
29	22	North Carolina State University, College of Veterinary Medicine, Clinical Sciences
30	23	4700 Hillsborough Street, Raleigh, North Carolina 27606
31 32	24	United States
32 33	25	
34	26	Keywords: antifibrinolytics, hyperfibrinolysis, thrombocytopenia, platelets
35	27	
36	28	Abbreviations: EACA = ε -aminocaproic acid; FWB = fresh whole blood; HC = Historical control; ITP =
37		
38	29	immune-mediated thrombocytopenia; IVIG = intravenous immunoglobulin; MA = maximum amplitude;
39 40		
41	30	PAI-1 = plasminogen activator inhibitor 1; PRBC = packed red blood cellls; rTEG = rapid TEG; TEG =
42		
43	31	thromboelastography; tPA = tissue plasminogen activator; tPA-rTEG = tissue plasminogen activator
44		
45	32	stressed rapid thromboelastography; TP = total protein; TXA = tranexamic acid CRI = continuous-rate
46 47		
48	33	infusion
49	24	A shu say la dama suk. Na fara dina aya sa sa sa sa di ƙasakirin shu du
50	34	Acknowledgment: No funding was received for this study.
51	35	Conflict of Interest Dederstion, Authors dealers no conflict of interest
52	36 37	Conflict of Interest Declaration: Authors declare no conflict of interest.
53 54	37 38	Off-label Antimicrobial Declaration: Authors declare no off-label use of antimicrobials.
54 55	39	
56	55	
57		
58		
59		
60		

2		
3 4	40	Institutional Animal Care and Use Committee (IACUC) or Other Approval Declaration: Approved by
5		
6 7	41	North Carolina State University IACUC, ID# 18=065-0.
8 9	42	Human Ethics Approval Declaration: Authors declare human ethics approval was not needed for this
10 11	43	study.
12 13 14	44	
15 16 17	45	
18 19 20	46	
21 22 23	47	
24 25 26	48	
27 28 29	49	
30 31 32	50	
33 34 35	51	
36 37 38	52	
39 40	53	
41 42 43	54	
44 45 46	55	
47 48 49	56	
50 51 52	57	
53 54 55	58	
56 57 58 59 60	59	

~
-
-

1 2		3
2 3 4 5	60	Abstract
6 7	61	Background: No treatment beside platelet administration is known to protect against spontaneous
8 9	62	hemorrhage in thrombocytopenic dogs.
10 11 12	63	Objectives: Primary: to determine if treatment with ϵ -aminocaproic acid (EACA) reduces the
13 14	64	requirement for blood transfusions and improves outcome in dogs with severe thrombocytopenia.
15 16	65	Secondary: to find evidence of hyperfibrinolysis and determine the effect EACA administration on rapid
17 18 19	66	(rTEG) and tissue plasminogen activator-spiked (tPA-rTEG) thromboelastography variables.
20 21	67	Animals: Twenty-seven dogs with severe thrombocytopenia were treated with EACA, and data from an
22 23 24	68	additional 33 were obtained from the hospital database as historical control (HC) cohort.
25 26	69	Methods: Single arm clinical trial with HCs. EACA group dogs received EACA (100 mg/kg IV followed by a
27 28 29	70	CRI of 400mg/kg/24 hrs). Thromboelastography before and during EACA infusion, hospitalization days,
29 30 31	71	number of transfusions, and mortality were compared.
32 33	72	Results: There was no difference in number of transfusions/dog (median, interquartile range, p value)
34 35	73	(1, 0 - 2.5 vs .9, 0 - 2; p = .5) and hospitalization days (4, 4-6 vs 4.5, 3.75-6; p = .83) between HC and EACA
36 37 38	74	groups, respectively, and no difference in survival determined by log-rank analysis (p = .15). Maximum
39 40	75	amplitude on both rTEG and tPA-rTEG increased after EACA administration (rTEG baseline 23.6, 9.6-38.9;
41 42	76	post-EACA: 27.3, 19.8-43.2, p < .001, tPA-rTEG baseline 23, 10.9-37.2, post-EACA: 24.7, 16.7-44.8, p <
43 44	77	.002).
45 46 47	78	Conclusions and clinical importance: Although EACA increased clot strength, there was no effect on
48 49	79	outcome. Treatment with EACA at this dose cannot be recommended as a routine treatment but may be
50 51 52 53 54	80	considered for dogs with severe ongoing hemorrhage.
55 56		
57 58		
59 60		

81 Introduction

 Thrombocytopenia is a common finding in dogs presenting to veterinary referral hospitals; Grindem et al (1991) reported that over 5% of admissions had platelet counts lower than their reference range and 11% of those dogs had a platelet count < 50,000/ μ l.¹ Until the primary disease process can be controlled, blood products are administered to treat clinically significant bleeding, adding significant cost to hospital care. O'Marra reported that 81% of dogs with immune thrombocytopenia (ITP) had spontaneous hemorrhage at the time of admission and 41% required blood transfusions during hospitalization, with some developing severe complications of acute hemorrhage.²

Epsilon-aminocaproic acid (EACA) and tranexamic acid (TXA) are antifibrinolytic agents. They are lysine analogues that reversibly bind to lysine receptor sites on plasminogen, blocking the binding of plasmin to fibrin and therefore decreasing lysis of newly formed clots. Indications for the use of antifibrinolytics in humans include the treatment of hemorrhage associated with hyperfibrinolysis (e.g., acute traumatic hemorrhage), post-partum bleeding, and intraoperative bleeding.³⁻⁵ In veterinary medicine, studies in Greyhounds, a breed at risk of excessive fibrinolysis, suggest reduced postoperative bleeding in response to EACA.⁶ Increased clot strength on viscoelastic testing was documented after the administration of EACA in another study.⁷

The use of antifibrinolytics as adjunctive treatment of bleeding of any origin, including hemorrhage secondary to thrombocytopenia, has become increasingly common in veterinary medicine.^{8,9} Reasons for this may include low cost, low adverse effect profile, and the scarcity of point-of-care testing to screen for hyperfibrinolysis. These drugs have also been evaluated as a treatment to reduce spontaneous bleeding in severely thrombocytopenic humans¹⁰, based on speculation that antifibrinolytics may stabilize fragile blood clots in thrombocytopenic patients and therefore reduce further hemorrhage.¹¹ some studies investigating humans with ITP and thrombocytopenia due to hematological malignancy suggest that antifibrinolytics may reduce clinical evidence of bleeding and need for platelet transfusions,

1 2		5
3 4	105	however, the evidence is limited. ¹⁰⁻¹² A report describing the use of TXA in 4 dogs with ITP found no clinical
5 6 7	106	benefit when compared to a contemporary control cohort of 6 dogs. ¹³
, 8 9	107	A sensitive ex-vivo method of identifying a tendency towards systemic hyperfibrinolysis is the
10 11	108	addition of tissue plasminogen activator (tPA) to a tissue factor or a kaolin and tissue factor activated
12 13	109	thromboelastography. This technique of spiking the rTEG assay (tPA-rTEG) may detect reductions in
14 15 16	110	fibrinolysis inhibitor activity that are not yet sufficient to cause overt hyperfibrinolysis but place patients
17 18	111	at increased risk for decompensation to a hyperfibrinolytic state. ¹⁴ It appears to provide rapid
19 20	112	assessment of the endogenous fibrinolytic potential of whole blood in people ¹⁵ and appears to be useful
21 22	113	in dogs as well. ^{16,17} To our knowledge, the fibrinolytic potential of dogs with thrombocytopenia has not
23 24 25	114	been characterized.
26 27	115	We hypothesized that treatment with EACA will reduce spontaneous bleeding and transfusion
28 29 30	116	requirements in dogs with severe thrombocytopenia. Thus, the primary goals of the study reported here
31 32	117	were to determine if prophylactic treatment with EACA reduces the frequency and severity of
33 34	118	spontaneous hemorrhage, reduces the requirement for blood transfusions, and improves survival to
35 36 37	119	discharge in dogs with severe thrombocytopenia. A secondary goal of the study was to determine if
37 38 39	120	thrombocytopenic dogs have thromboelastographic evidence of hyperfibrinolysis and to determine the
40 41	121	effect of treatment with EACA on tPA-rTEG variables.
42 43 44	122	Material and methods
45 46 47	123	Study design
48 49 50	124	This was a prospective single arm study using historical controls. The prospective arm was
50 51 52	125	approved by the institutional animal care and use committee, and informed owner consent was
53 54	126	obtained before enrollment of each dog (EACA group). Eligible dogs hospitalized for severe
55 56 57 58 59 60	127	thrombocytopenia between 2018 and 2020 were identified via manual platelet count within the

preceding 12 hours. Severe thrombocytopenia was defined as a platelet count < $30,000/\mu$ l, or < $50,000/\mu$ l if accompanied by evidence of bleeding consistent with thrombocytopenia (e.g. petechiae, ecchymoses, epistaxis or melena).¹⁸ Dogs weighing less than 2 kg (precluding safe blood collection for the study) and dogs suspected of having a disorder of secondary hemostasis were excluded. For each dog enrolled in the EACA group, a kaolin and tissue factor-activated TEG (rapid TEG or rTEG) and a tPA-modified rapid TEG (tPA stressed-rTEG or tPA-rTEG) were performed. Both rTEG and tPA-rTEGs were performed prior to administration of EACA (T1), as described below. All assays were performed by the same two trained operators (JW or LR). After obtaining the assay samples, 100 mg/kg EACA (Aminocaproic acid injection USP 5 g/20 mL, Hospira Inc, Lake Forest, Illinois) was administered intravenously over 15 min, immediately followed by a constant-rate infusion of 400 mg/kg/24 hours. The rTEG and tPA-rTEG assays were then repeated on blood samples collected prior to the end of the infusion, sometime during hours 18 to 24 as determined by operator availability (T2). If the dog was eating and judged to tolerate oral medication after T2 it was transitioned to oral administration of the intravenous EACA formulation at a dose of 100 mg/kg every six hours.¹⁹ Dogs that were hyporexic or that had evidence of nausea or vomiting were continued on the intravenous constant-rate infusion and monitored for side effects. Aminocaproic acid treatment was continued in each dog until it was discharged, its platelet count exceeded 50,000 μ /ml with no evidence of active bleeding, or it died or was euthanized. The number of days until the endpoints were reached were recorded. Day 1 was defined as the day of admission, day 2 (and all subsequent days) began at 11 AM the following day. Manual platelets counts were obtained once daily, and packed cell volume (PCV) and total protein (TP) were monitored every 12 hours or more frequently if clinically indicated. Bleeding events, defined as observed hemorrhage including epistaxis, melena, hematuria, or a percent change reduction in PCV and/or TP of >10%, were recorded. The more objective DOGIbat scoring system was not used in this study as the relevant information was not recorded for the control group.²⁰ All blood product

3 4 5	152	transfusions including packed red blood cells (pRBC) and fresh whole blood (FWB) were documented.
5 6 7	153	Approximately 10ml/kg pRBC or 20 ml/kg FWB were administered per transfusion to dogs in both
8 9	154	groups; thus depending on the size of the dog a single transfusion may have used > 1 unit of product. All
10 11 12	155	additional diagnostics and treatments were at the discretion of the primary clinician.
13 14	156	For the HC group, medical records between 2013 and 2017 were screened for dogs with severe
15 16	157	thrombocytopenia of any origin using the same inclusion and exclusion criteria as for the EACA group.
17 18 19	158	Three records from dogs that received EACA during the course of their treatment were found and were
20 21	159	not included in the HC group. Underlying etiology and additional treatments for both groups were
22 23 24	160	recorded to ensure both groups had comparable underlying causes and received similar treatment.
25 26 27	161	TEG analysis
28 29	162	For each dog enrolled in the EACA group, paired rTEG and tPA-rTEG were performed at T1 and
30 31	163	T2. Both channels of a dedicated TEG machine (TEG 5000, Haemoscope, Skokie, III) were used and for
32 33	164	each subject the channel assignment to each assay (rTEG and tPA-rTEG) was randomly assigned in blocks
34 35 36	165	of 10. Blood samples from each dog were collected from either a central venous catheter (Mila Small
37 38	166	Animal Guidewire Catheter Kit, Mila International, Florence, KY USA) freshly placed in the lateral
39 40	167	saphenous vein or via direct cephalic or lateral saphenous venipuncture with a winged needle catheter
41 42	168	during initial blood sampling at T1. All samples were collected from the central venous catheter at T2.
43 44 45	169	For either technique, a purge of 1.2 ml (winged needle) or 3 mL (central venous catheter) was collected
46 47	170	prior to diagnostic sample collection. The diagnostic sample of 1.4 ml of blood was collected directly into
48 49	171	vacuum citrate tubes and the tubes were then mixed 5 times by inversion and then allowed to rest for
50 51	172	30 min at room temperature. While the samples rested, a prediluted frozen tPA vial containing 25 IU of
52 53 54	173	tPA in 10 μL of solution was retrieved and thawed at room temperature. The tPA solution was made in
55 56 57 58 59	174	advance by serial dilutions of stock product (Cathflo™ Activase® [Alteplase], Genentech, South San

Francisco, CA 2 mg/mL) in BSA buffer solution to a final concentration of 25 IU/10 μL. The tPA solution was made fresh every 6 months and stored at -80° F (-62° C) prior to use. The tubes were numbered to ensure a standardized sequence of use and each tube was assigned to either the left or right channel of the TEG analyzer to ensure an equal distribution of channel assignment for the stressed rTEG assays. The rTEG vials containing tissue factor activator and kaolin (RapidTEG[™], Haemonetics[®], Skokie, III) were reconstituted with 20ul distilled water and gently swirled, then allowed to rest. Immediately prior to assay, 10 µl of rTEG mixture and 20 µL of calcium chloride solution were added to each TEG cup. For the rTEG assays, the citrated tube was gently inverted 5 times and 340 μ l of blood was pipetted directly into the test cup and gently mixed by pipetting the reagent-blood mixture in and out of the cup 3 times. The analyzer carriage was raised to start the test. For the tPA-rTEG assay, a 490 µl aliquot of citrated blood was pipetted into the tPA vial and was also gently mixed, yielding a final concentration of tPA in blood of 50 IU/mL. Then 340 μl of the blood/tPA mixture were added to the test cup assigned to the tPA-rTEG. This mixture was also pipetted out of and into the cup 3 times to mix all components prior to beginning the assay. The following values were recorded at T1 and T2: R (reaction) time, K (clot formation time), α angle (a measure of the rapidity of clot formation), MA (maximum amplitude), and LY30 (clot lysis at 30 minutes).

Statistical analysis

Feasibility of the study was determined with a power analysis assuming a fixed number of thrombocytopenia cases would be enrolled in the 18 months available for recruitment. We used reductions in PCV to define bleeding events in HC group dogs, and based on contemporary hospital admissions we estimated that we would be able to enroll at least 16 dogs. Setting a threshold definition for bleeding as a fall in PCV by 10%, the HC group bleeding event rate was 0.44 +/-0.08 episodes/day. Based on this HC group data, 16 EACA group dogs would allow us to detect a reduction to 0.37

1 2		9
3 4	198	episodes/day at an alpha error rate of 5% and a beta error level of 20%. Data including study days,
5 6 7	199	mortality, and number of transfusions were compared between the HC and the EACA groups with the
8 9	200	Mann Whitney U test for continuous data and the Pearson Chi Square test for categorical data. A
10 11	201	Kaplan-Meier survival curve and log rank analysis was performed to compare fatality rates. The analysis
12 13 14	202	was then repeated including dogs with ITP only. In the EACA group, PCV, the rTEG and tPA-rTEG
15 16	203	variables R, K, MA, and LY30% at T1 and T2 were compared using the Wilcoxon signed-rank test. The
17 18	204	correlation between the platelet count on admission and platelet count on day2, between rTEG MA T1
19 20	205	and rTEG MA T2 and between tPA-TEG MA T1 and tPA-TEG MA T2 were determined with Pearson
21 22 23	206	correlation. A p-value of less than .05 was used as the criterion for statistical significance. Analyzing the
23 24 25	207	influence of different adjunctive drugs was not attempted due to the high variability of different
26 27	208	treatment protocols. Data analysis was conducted using commercial software (IBM SPSS Statistics for
28 29 30	209	Windows, Version 25.0. Armonk, NY: IBM Corp)
30 31 32 33	210	Results
33 34 35	211	Records from 33 dogs were abstracted for the HC group, and 28 dogs were enrolled in the EACA
36 37	212	group. Our initial enrollment criteria excluded dogs with PT or aPTT values that exceeded the laboratory
38 39	213	reference interval. After excluding several dogs with slight elevations of their aPTT but no other clinical
40 41 42	214	evidence of causes of secondary coagulation disorders, we modified the criteria to include dogs with
43 44	215	values that were within 10% of the upper limit for either assay. The value of 10% was chosen because
45 46	216	many dogs with no physical evidence of coagulopathy at the time of the assay fell within this range, and
47 48	217	this figure is consistent with the magnitude of inter-assay variations between a point-of-care device and
49 50 51	218	laboratory assay results observed by us and others. ²¹ None of the dogs had any other evidence of
52 53 54 55	219	disorders of secondary hemostasis, and all had normal reaction times on thromboelastography.

 Six dogs did not complete the study. In one of these, the intravenous catheter was lost after day 1 and could not be replaced, therefore serial data collection was not possible. Two dogs developed urethral obstructions secondary to blood clot formation in their urinary bladders and EACA administration was therefore discontinued. A fourth dog was discharged 24 hours after admission per the owner's request. EACA was discontinued on day 5 in the fifth dog in response to persistent regurgitation. Where paired data was available, these dogs were included in the TEG analysis but not outcome analysis. A sixth dog was completely removed from the study after developing hemolysis and coagulation abnormalities consistent with disseminated intravascular coagulation the day after enrollment. Data for one rTEG T1 were unavailable due to an analyzer malfunction, and another dog died before T2. Thus, clinical outcome including transfusion data was evaluated for 22 EACA group dogs, paired rTEG data was available from 23, and paired tPA-rTEG data was available from 24 of those dogs. The majority of thrombocytopenic dogs in both the HC (30/33, 91%,) and the EACA group (19/22, 86.4%) were diagnosed with primary ITP. A summary of all diseases represented can be found in Table 1. Therapy used to treat the underlying cause of the thrombocytopenia was variable, and several distinct combinations of immunosuppressive and adjunctive therapy were used (Table 2). Nine dogs in the control group received intravenous immunoglobulin (IVIG) versus none in the EACA group. One dog, which was pancytopenic secondary to a suspected infectious cause did not receive any immunosuppressants. To assess for an effect of IVIG treatment on study days and transfusion dependency, statistics were repeated excluding the dogs in the HC that received IVIG, and no difference in results were found. The influence of treatments other than EACA and IVIG on study endpoints was not analyzed due to the large number of treatment combinations used for dogs in both groups. Similarly, a repeated analysis was performed including only dogs with ITP and no difference in results could be found.

243 PCV and transfusions

Anemia was defined as PCV below the lower limit of the reference range. The median PCV and incidence of anemia at the time of admission was 37% (IQR 21 - 43) and 14 of 33 dogs (42%), respectively, in the HC group, and 39% (24 - 45) and 7 of 22 (32%) dogs in the EACA group. These values were not significantly different between groups (p = .31 and .48, respectively). Similarly, no difference between median platelet count upon admission was found between the HC (2000/µl, 0 - 18000) and the EACA groups (1725/µl, 0 - 7500), p = .72).

Dogs in the HC group received a median of 1.33 transfusion/per dog of either pRBCs (24 transfusions) or FWB (20 transfusions). The EACA group dogs received a median of 1.32 transfusions/per dog of either pRBCs (19 transfusions) or FWB (10 transfusions) Additional results related to transfusions administered are shown in Figure 1. There was no significant group difference in the number of any transfusions (pRBC or FWB) per dog (p = .5) or in the proportion of dogs receiving a FWB transfusion (p = .5) .57). Although the proportion of dogs in the EACA group that did not need any blood products (59.1%) was larger than in the HC group (45.5%), the difference was not statistically significant (p = .32). Some EACA dogs that required transfusions to treat hypovolemic hemorrhage did not have reductions in PCV of >10% and therefore did not fulfill that diagnostic criterion for a bleeding event, despite having clinically important bleeding. There was no difference in the frequency of bleeding events, defined as acute reductions of PCV/TP, between groups (p = .31). Because observed episodes of hemorrhage were not reliably recorded in the EACA group, we assumed that the same problem existed in the HC group and consequently dropped observed bleeding events from our primary goal.

263 Outcome

The median time from admission to the study end point was 4 days (IQR 4-6) in the HC group
and 4.5 days (3.75-6) in the EACA group (p = .83). In the HC group, 30 (91%) dogs survived to discharge.

Two were euthanized, one failing to improve after 6 days of intensive treatment and the second one after developing severe respiratory distress and neurological signs. One dog died due to causes not related to thrombocytopenia. Seventeen (77%) dogs were discharged in the EACA group and 5 did not survive to discharge. Three patients died and two were euthanized (one after 3 and one after 6 days of treatment) due to refractory thrombocytopenia. There was no significant difference in fatality rate (p =.08), and log-rank analysis identified no significant difference (p = .15) in the survival time between the groups demonstrated on a Kaplan-Meier survival plot (Figure 2). TEG data

Only one dog was mildly hyperfibrinolytic on the tPA-TEG at T1 (LY30% 23.4; reference range for our institution is < 20%), and this resolved during administration of EACA. This dog was diagnosed with ITP, was not anemic on presentation, and did not require any blood products. There was a significant T1-T2 difference in MA for both the rTEG (T1: 23.6, 9.6-38.9; T2: 27.3, 19.8-43.2, p < 0.001) and tPA-rTEG (T1: 23, 10.9-37.2, T2: 24.7, 16.7-44.8, p < .002) (Figure 3A). Five dogs had a MA within reference range on both TEGs prior to EACA and 7 had a MA within reference post EACA. No other TEG parameters were different between T1 and T2. A summary of the TEG data including institutional reference ranges is presented in Table 3.

There was a strong positive correlation between MA at T1 and T2 for both rapid (r = .904, p < 283 .001), and tPA-TEGs (r = .942, p < .001), and the MA increased at T2 for 20/23 rTEG and 19/24 tPA-rTEG 284 assays (Figure 3B and Figure 3C). There was only a weak correlation for both TEG types between T1 285 platelet count and MA (rTEG r = 0.351, p = .07 and tPA-TEG r = .36, p = .06) and T2 platelet count and 286 MA (rTEG r = .27, p = .22 and tPA-TEG .34, p = .11). The MA in one or both TEG assays increased from T1 287 to T2 in 10/12 dogs that experienced a concurrent reduction in platelet count. No statistically significant

3 4	288	difference was found between the PCV at both timepoints (T1: 39, 23-45, T2: 32.5, 26.25 – 37.25; p =
5 6 7	289	.06)
8 9 10	290	Discussion
11 12	291	Prophylactic treatment with EACA resulted in a statistically significant increased clot strength (as
13 14	292	measured by the MA) in severely thrombocytopenic dogs. However, this increase did not seem to be
15 16 17	293	large enough to have significant effect on clinically relevant parameters including hospitalization time,
18 19	294	mortality, acute reductions of PCV or TP, and number of transfusions required.
20 21 22	295	There are only a small number of published reports of studies investigating the efficacy of
23 24	296	antifibrinolytics in dogs. To the authors' knowledge, the present report is the first prospective study
25 26	297	investigating the use of EACA in thrombocytopenic dogs. A recent small study compared a group of dogs
27 28 29	298	with ITP (n=4) receiving TXA with a control group (n=6) and did not find a clinical benefit of TXA. ¹³ In a
29 30 31	299	retrospective study of the effect of TXA in dogs with acquired bleeding disorders, 15.7% of the study
32 33	300	population was thrombocytopenic. Dogs that were treated with TXA in that study required fewer
34 35	301	transfusions and had a lower mortality rate than dogs that did not receive TXA; however,
36 37 38	302	thrombocytopenic dogs were not analyzed separately and therefore it is not possible to draw any
39 40	303	conclusions regarding the efficacy of TXA specifically in thrombocytopenic dogs from that report. ⁸
41 42	304	The majority of dogs in the present study were diagnosed with primary ITP. Most reported studies of
43 44	305	antifibrinolytic treatment of humans with thrombocytopenia investigated their use in patients with
45 46 47	306	hematologic malignancies rather than ITP. A 2016 Cochrane review concluded that there is a lack of high-
47 48 49	307	quality studies and there is insufficient evidence to justify the use of antifibrinolytics in thrombocytopenic
50 51	308	patients secondary to hematological neoplasia. ¹¹ Since then, a large randomized double-blind placebo-
52 53 54 55 56	309	controlled trial reported in 2022 did not identify a significant reduction in transfusions, platelet

administration, or bleeding events in patients with hematologic malignancies treated prophylactically
 with TXA.²²

We are aware of only two case series describing the efficacy of antifibrinolytics in human ITP patients with ongoing hemorrhage. In 12 patients that were treated with TXA as adjunctive treatment for active bleeding, high success rates for hemorrhage control were reported ¹². In a second series of 17 thrombocytopenic patients (15 with ITP) with uncontrolled bleeding, treatment with EACA appeared to facilitate discontinuation of platelet products in all 17.23 We have not found any reports concerning the efficacy of prophylactic use of antifibrinolytic agents in ITP. Based on the lack of high-quality data, current guidelines on treatment of ITP in human medicine recommend against the routine use of EACA or TXA for ITP. However, in patients with ongoing bleeding, these agents may be considered.^{24,25}

320 Side effects and complications

Aminocaproic acid appears to be well tolerated. In one report of a retrospective study of 122 dogs with hemorrhage secondary to neoplastic and non-neoplastic cause, only 3 dogs developed mild gastrointestinal signs possibly related to the EACA administration at doses of 14 - 24 mg/kg.⁹ In the present study, higher doses of EACA (100 mg/kg every 6 hours orally or as continuous rate infusion) were administered based on recent evidence that increased doses are required to achieve more effective antifibrinolysis in dogs.¹⁹ The high dose intravenous dose was chosen to maximize the potential to achieve constant therapeutic concentrations and identify any effect on thromboelastography at T2, since previously described characteristics of the drug in healthy dogs suggest that oral doses of 100 mg/kg are rapidly excreted and produce serum concentrations above the effective concentration of 25 µg/mL for only 3 hours.¹⁹ We did not identify any significant side effects from this dose in the EACA group. One dog developed regurgitation during the study period and its oral EACA was stopped on day 5 as a precaution. It was not possible to determine if the regurgitation was more likely secondary due to the dog's primary

60

15

2		
3 4	333	disease process or an adverse effect of EACA. However, as this study was not designed as a safety study,
5 6 7	334	we cannot draw any conclusions with regards to safety of the EACA protocol used in this report.
7 8 9	335	Two dogs with significant hematuria developed clots causing urethral obstruction and EACA was
10 11	336	discontinued in these dogs. Urinary tract obstruction secondary to blood clot formation has been
12 13	337	previously reported in a dog with ITP ²⁶ and any contribution of EACA to this complication is unknown.
14 15	338	However, considering that antifibrinolytics stabilize blood clots, the use of TXA or EACA in dogs and cats
16 17	339	with severe hematuria should be considered carefully.
18 19 20	340	TEG data
21		
22 23	341	While the main reason for hemorrhage in dogs with thrombocytopenia is the lack of platelets,
24 25	342	there might be mechanisms causing increased clot lysis to justify the specific use for antifibrinolytics in
26 27	343	these dogs. One hypothesis regarding underlying mechanisms in thrombocytopenic patients is the
28 29	344	reduced availability of plasminogen activator inhibitor 1 (PAI-1) released from granules on platelet
30 31 32	345	surface, increasing susceptibility to fibrinolysis. ^{27,28} Additionally, dogs hemorrhaging severely may
33 34	346	theoretically develop hyperfibrinolysis similar to traumatic coagulopathy or canine hemoperitoneum. ²⁹
35 36	347	To screen for evidence of systemic hyperfibrinolysis and to investigate the effect of EACA on TEG
37 38	348	tracings, we performed rTEGs and tPA-rTEGs in the present study. Only one dog had mild
39 40	349	hyperfibrinolysis on tPA-rTEG, and this resolved after administration of EACA. This finding did not seem
41 42 43	350	to have any clinical significance as the dog did not show any signs of hemorrhage had a normal PCV on
44 45	351	presentation and did not require blood transfusions. Although it is possible that even the tPA-rTEG is not
46 47	352	sensitive enough to detect endogenous hyperfibrinolysis ³⁰ , the normal fibrinolytic profile might explain
48 49	353	the lack of response to prophylactic treatment with EACA in the dogs in this study. We found no other
50 51 52	354	studies investigating hyperfibrinolysis in dogs with ITP. However, our findings are similar to data from
53 54	355	thrombocytopenic human patients with hematologic malignancies. A study published in 2022 found that
55 56 57 58	356	only 3 out of 115 thrombocytopenic humans showed a hyperfibrinolytic profile, median plasma PAI-I

concentration was normal, and there were no differences in plasma PAI-1 concentration between those who did or did not go on to develop significant hemorrhage.²⁸ Similarly, decreased plasma PAI-I concentration was not identified in humans with ITP in another study.³⁰ Although hyperfibrinolysis on a local level cannot be excluded, the findings of the present study and human data suggest that systemic fibrinolytic activation does not play a major role in the pathophysiology of hemorrhage in thrombocytopenic patients. We identified a significant increase in MA for both TEG types after EACA administration, a change that was not attributable to an increase in platelet count as no relationship between platelet count and MA could be shown. Unfortunately, fibrinogen concentrations were not consistently available for all patients at both T1 and T2, which is a limitation of this study. Another parameter potentially increasing MA is a decreased PCV as suggested in previous publications. ³¹ In this study population the PCV at T2 was slightly lower (32.5%) compared to T1 (39%), which represents a clinical change. However, the difference was not statistically significant and the finding of previous studies that PCV influences MA could not be confirmed in a recent ex vivo study. ³². Although the increase in MA in the tPA-rTEG assay in this study is consistent with a previous report showing an increase in MA using a tPA-modified TEG following administration of a single dose of EACA to dogs¹⁹, the reason for the mild increase in rTEG MA is unclear. Because we have no TEG data on untreated control dogs, one possible explanation is that the MA increased with time in most dogs during the course of treatment with corticosteroids for their thrombocytopenia, independent of any effect by EACA or change in platelet numbers. ³³ Another could be that a low level of fibrinolytic tendency is present in these dogs, reducing the MA without causing measurable increases in LY30, and this was inhibited by EACA. Regardless of the mechanism, this change was not associated with any identifiable clinical benefit in our dogs.

1 2		17	
3 4	379	Additionally. 7 dogs in this study had a MA within or just below reference range that normalized after	
5 6 7	380	EACA, which is an unexpected finding for thrombocytopenic dogs. Interestingly, only one of these dogs	
7 8 9	381	required a blood transfusion. Further studies investigating the potential use of viscoelastic testing to	
10 11 12	382	predict clinical bleeding and correlation with bleeding scores in dogs with ITP are required.	
13 14 15	383	Limitations	
16 17	384	The present study has several limitations including the small treatment group and variable	
18 19	385	individual treatment regimens. Although the treatment of primary ITP is immunosuppression, individual	
20 21	386	clinician preferences and variable need to escalate therapy make it very difficult to control for variations	
22 23 24	387	in treatment for all dogs in a small study. There were many different treatment protocols consisting of	
24 25 26	388	different combinations of immunosuppressants and adjunctive therapies, and there were group	
27 28	389	differences in the use of IVIG as described in Table 2. Because of the small group sizes and marked	
29 30	390	variation in treatment and the timing of escalating drug therapy, it was not possible to determine if	
31 32 33	391	there was a potential effect of these treatments on study endpoints.	
34 35	392	We used historical controls in an effort to maximize case numbers for this single-site study,	
36 37 38	393	knowing that treatment for primary ITP at our institution has not changed substantially since 2013. The	
39 40	394	HC dogs were selected using the same inclusion and exclusion criteria, however, there may have been	
41 42	395	some impact of selection bias in the HC group from, for example, excluding dogs that were treated with	
43 44	396	EACA, which may have limited the HC group to dogs with a milder clinical course. More objective clinical	
45 46 47	397	severity scoring like the DOGIBat system ²⁶ was not possible as the necessary information was not	
48 49	398	recorded for the HC group. Bleeding events were not reliably documented and therefore could not be	
50 51	399	used for analysis. Baseline coagulation testing (PT and aPTT) for both the HC and EACA group dogs was	
52 53	400	done using different assays including a point-of-care device, commercial laboratories, and our hospital	
54 55 56 57 58 59	401	clinical pathology laboratory, and several dogs had slight elevations of one or both values. Although no	

2		10
3 4	402	dogs had any other clinical evidence of a disorder of secondary hemostasis and their reaction times
5 6 7	403	were normal on T1 thromboelastography we cannot completely rule out subtle disorders of secondary
, 8 9	404	hemostasis. However, the impact of any such disorder is likely small. ³⁴
10 11 12	405	Conclusions
13 14 15	406	We found no evidence for hyperfibrinolysis in thrombocytopenic dogs or any survival benefit in
16 17	407	dogs treated prophylactically with EACA, which is similar to results in human studies. Based on these
18 19	408	results, routine treatment with EACA cannot be recommended in dogs with ITP. Nevertheless, EACA
20 21	409	administration might be considered for dogs with severe ongoing bleeding. A randomized controlled
22 23 24	410	trial with a concurrent control group that differs only in the administration of EACA is necessary to
25 26	411	further evaluate the question if antifibrinolytics are useful in dogs with ITP. However, our results
27 28	412	suggest that such a study would require a very large number of subjects to demonstrate a treatment
29 30	413	effect. Assays for hemostatic parameters like PAI-1 concentration might be of interest to investigate
31 32 33	414	possible reasons of underlying local hyperfibrinolysis justifying the use of antifibrinolytic agents.
34 35	415	
36 37 38	416	References
39 40	417	1. Grindem CB, Breitschwerdt EB, Corbett WT, et al. Epidemiologic survey of thrombocytopenia in dogs:
41 42 43	418	a report on 987 cases. Vet Clin Pathol 1991;20:38-43.
43 44 45	419	2. O'Marra SK, Delaforcade AM, Shaw SP. Treatment and predictors of outcome in dogs with immune-
46 47	420	mediated thrombocytopenia. J Am Vet Med Assoc 2011;238:346-352.
48 49	421	3. Ker K, Roberts I, Shakur H, et al. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database
50 51 52	422	Syst Rev 2015:CD004896.
52 53 54	423	4. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic
55 56 57 58 59	424	blood transfusion. Cochrane Database Syst Rev 2011;2011:CD001886.

2		1
3 4	425	5. Shakur H RI, Fawole B, Chaudhri R, El-Sheikh M, Akintan A, Qureshi, Z. Effect of early tranexamic acid
5 6 7	426	administration on mortality, hysterectomy, and other morbidities in women with post-partum
8 9	427	haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet
10 11	428	2017;389:2105-2116.
12 13	429	6. Marin LM, Iazbik MC, Zaldivar-Lopez S, et al. Retrospective evaluation of the effectiveness of epsilon
14 15 16	430	aminocaproic acid for the prevention of postamputation bleeding in retired racing Greyhounds with
17 18	431	appendicular bone tumors: 46 cases (2003-2008). J Vet Emerg Crit Care 2012;22:332-340.
19 20	432	7. Marin LM, Iazbik MC, Zaldivar-Lopez S, et al. Epsilon aminocaproic acid for the prevention of delayed
21 22	433	postoperative bleeding in retired racing greyhounds undergoing gonadectomy. Vet Surg 2012;41:594-
23 24 25	434	603.
23 26 27	435	8. Kelmer E, Marer, K., Bruchim, Y., Klainbart, S., Aroch, I., Segev, G. Retrospective evaluation of the
28 29	436	safety and efficacy of tranexamic acid (Hexakapron®) for the treatment of bleeding disorders in dogs.
30 31	437	Israel J Vet Med 2013;68:94 - 100.
32 33	438	9. Davis M, Bracker K. Retrospective study of 122 dogs that were treated with the antifibrinolytic drug
34 35 36	439	aminocaproic acid: 2010-2012. J Am Anim Hosp Assoc 2016;52:144-148.
37 38	440	10. Antun AG, Gleason S, Arellano M, et al. Epsilon aminocaproic acid prevents bleeding in severely
39 40	441	thrombocytopenic patients with hematological malignancies. Cancer 2013;119:3784-3787.
41 42	442	11. Estcourt LJ, Desborough M, Brunskill SJ, et al. Antifibrinolytics (lysine analogues) for the prevention
43 44 45	443	of bleeding in people with haematological disorders. Cochrane Database Syst Rev 2016;3:CD009733.
46 47	444	12. Mayer B, Salama A. Successful treatment of bleeding with tranexamic acid in a series of 12 patients
48 49	445	with immune thrombocytopenia. Vox Sang 2017;112:767-772.
50 51	446	13. Olivares G, Sharman M, Miller R, et al. Use of tranexamic acid in dogs with primary immune
52 53	447	thrombocytopenia: A feasibility study. Front Vet Sci 2023;10:946127.
54 55		
56		
57		
58 50		
59 60		

Journal of Veterinary Internal Medicine

2	~	
2	υ	

2		
3 4	448	14. Kupesiz A, Rajpurkar M, Warrier I, et al. Tissue plasminogen activator induced fibrinolysis:
5 6 7	449	standardization of method using thromboelastography. Blood Coagul Fibrinolysis 2010;21:320-324.
7 8 9	450	15. Moore HB, Moore EE, Chapman MP, et al. Viscoelastic tissue plasminogen activator challenge
10 11	451	predicts massive transfusion in 15 minutes. J Am Coll Surg 2017;225:138-147.
12 13	452	16. Osekavage KE, Brainard BM, Lane SL, et al. Pharmacokinetics of tranexamic acid in healthy dogs and
14 15 16	453	assessment of its antifibrinolytic properties in canine blood. Am J Vet Res 2018;79:1057-1063.
16 17 18	454	17. Spodsberg EH, Wiinberg B, Jessen LR, et al. Endogenous fibrinolytic potential in tissue-plasminogen
19 20	455	activator-modified thromboelastography analysis is significantly decreased in dogs suffering from
21 22	456	diseases predisposing to thrombosis. Vet Clin Pathol 2013;42:281-290.
23 24 25	457	18. Putsche JC, Kohn B. Primary immune-mediated thrombocytopenia in 30 dogs (1997-2003). J Am
25 26 27	458	Anim Hosp Assoc 2008;44:250-257.
28 29	459	19. Brown JC, Brainard BM, Fletcher DJ, et al. Effect of aminocaproic acid on clot strength and clot lysis
30 31	460	of canine blood determined by use of an in vitro model of hyperfibrinolysis. Am J Vet Res 2016;77:1258-
32 33 34	461	1265.
35 36	462	20. Makielski KM, Brooks MB, Wang C, et al. Development and implementation of a novel immune
37 38	463	thrombocytopenia bleeding score for dogs. J Vet Intern Med 2018;32:1041-1050.
39 40	464	21. Yang W, Hosgood G, Luobikis K, et al. Agreement of point-of-care prothrombin and activated partial
41 42 42	465	thromboplastin time in dogs with a reference laboratory. Aust Vet J 2018;96:379-384.
43 44 45	466	22. Gernsheimer TB, Brown SP, Triulzi DJ, et al. Prophylactic tranexamic acid in patients with
46 47	467	hematologic malignancy: a placebo-controlled, randomized clinical trial. Blood 2022;140:1254-1262.
48 49	468	23. Bartholomew JR, Salgia R, Bell WR. Control of bleeding in patients with immune and nonimmune
50 51	469	thrombocytopenia with aminocaproic acid. Arch Intern Med 1989;149:1959-1961.
52 53 54	470	24. Zitek T, Weber L, Pinzon D, et al. Assessment and management of immune thrombocytopenia (ITP)
55 56	471	in the emergency department: current perspectives. Open Access Emerg Med 2022;14:25-34.
57 58		
59 60		

1 2		21
3 4	472	25. Provan D, Arnold DM, Bussel JB, et al. Updated international consensus report on the investigation
5 6 7	473	and management of primary immune thrombocytopenia. Blood Adv 2019;3:3780-3817.
7 8 9	474	26. Hooi KS, Lemetayer JD. The use of intravesicular alteplase for thrombolysis in a dog with urinary
10 11	475	bladder thrombi. J Vet Emerg Crit Care 2017;27:590-595.
12 13	476	27. Heubel-Moenen F, Henskens YMC, Verhezen PWM, et al. Fibrinolysis in patients with
14 15 16	477	chemotherapy-induced thrombocytopenia and the effect of platelet transfusion. J Thromb Haemost
17 18	478	2019;17:1073-1084.
19 20	479	28. Ilich A, Gernsheimer TB, Triulzi DJ, et al. Absence of hyperfibrinolysis may explain lack of efficacy of
21 22	480	tranexamic acid in hypoproliferative thrombocytopenia. Blood Adv 2022.
23 24 25	481	29. Fletcher DJ, Rozanski EA, Brainard BM, et al. Assessment of the relationships among coagulopathy,
25 26 27	482	hyperfibrinolysis, plasma lactate, and protein C in dogs with spontaneous hemoperitoneum. J Vet Emerg
28 29	483	Crit Care (San Antonio) 2016;26:41-51.
30 31	484	30. Garabet L, Ghanima W, Monceyron Jonassen C, et al. Effect of thrombopoietin receptor agonists on
32 33	485	markers of coagulation and P-selectin in patients with immune thrombocytopenia. Platelets
34 35 36	486	2019;30:206-212.
37 38	487	31. Smith SA, McMichael MA, Gilor S, et al. Correlation of hematocrit, platelet concentration, and
39 40	488	plasma coagulation factors with results of thromboelastometry in canine whole blood samples. Am J Vet
41 42	489	Res 2012;73:789-798.
43 44 45	490	32. Lynch AM, Ruterbories L, Jack J, et al. The influence of packed cell volume versus plasma proteins on
46 47	491	thromboelastographic variables in canine blood. J Vet Emerg Crit Care (San Antonio) 2020;30:418-425.
48 49	492	33. Rose LJ, Dunn ME, Allegret V, et al. Effect of prednisone administration on coagulation variables in
50 51	493	healthy Beagle dogs. Vet Clin Pathol 2011;40:426-434.
52 53 54	494	34. Poitout-Belissent F. Nonclinical Evaluation of Compound-Related Alterations in Hemostasis. In:
55 56	495	Schalm's Veterinary Hematology2022:108-115.
57 58 59		

Etiology of	HC group	EACA group
thrombocytopenia	N (%)	N (%)
Primary ITP	30 (91)	19 (86.4)
Pancytopenia	1 (3)	1 (4.5)
Tick-borne (suspected)	0	1 (4.5)
Lymphoma (suspected)	0	1 (4.5)
Acute leukemia	1 (3)	0
ITP secondary to neoplasia	1 (3)	0
	0	
Tabla 1. Undarking atialagia	e of the sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	in the control and EACA group
Table 1: Underlying etiologie	es of thrombocytopenia	in the control and EACA group

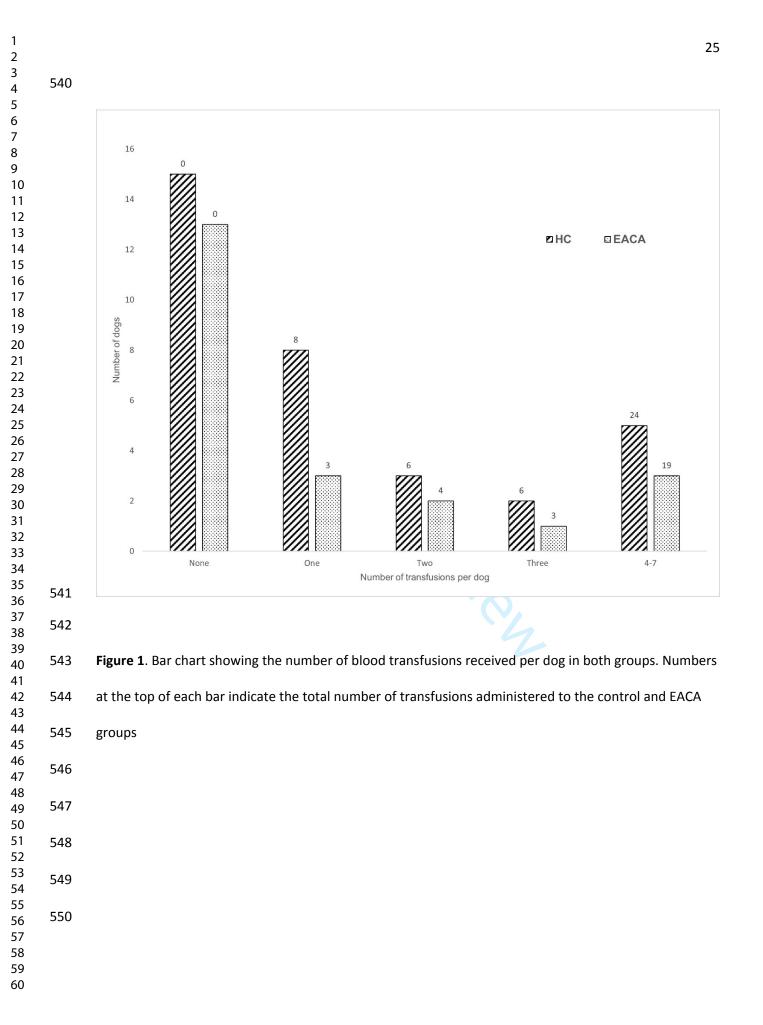
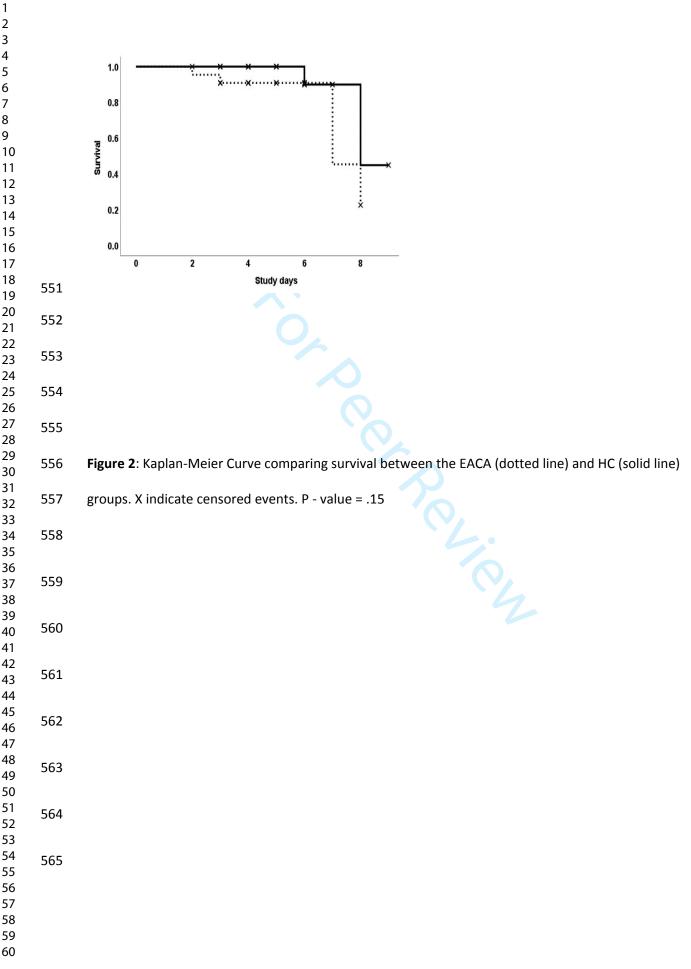
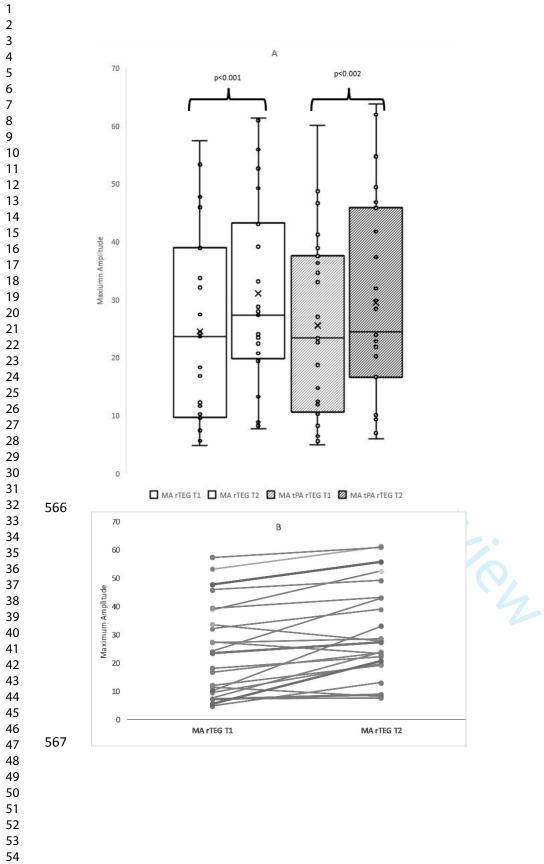

Immunosuppressants	HC group N (%)	EACA group N (%)
GC* only	6 (18.2)	8 (36.4)
GC + azathioprine	10 (30.3)	4 (18.2)
GC + cyclosporine	5 (15.2)	4 (18.2)
GC + mycophenolate	8 (24.2)	5 (22.7)
GC + 2 second agents	3 (9.1)	1 (4.5)
No immunosuppressants	1 (3)	0
IVIG or vincristine	HC group N (%)	EACA group N (%)
Vincristine	20 (60.6)	15 (68.2
IVIG	3 (9.1)	0
IVIG + vincristine	6 (18.2)	0
No IVIG or vincristine	4 (12.1)	7 (31.8)

Table 2. Overview of adjunctive treatment for thrombocytopenia for the HC and EACA groups.


PRICZ


GC*: glucocorticoid

2 3 1 537						
5 5 7 3	Reference range rTEG	rTEG T1	rTEG T2	Reference range tPA-rTEG	tPA-rTEG T1	tPA-rTEG T2
R	0 -1.26	.2 (.24)	.3 (.24)	0-1.4	.3 (.23)	.3 (.24)
α-angle	50 - 78	75.3 (58.6 – 79.5)	78.1 (65.6 – 80)	41 - 83	77.2 (67 – 80.4)	77.4 (65 – 79.9)
<u>الا</u>	0.4 - 4.7	1.2 (.8 – 2.8)	1.2 (.8 – 2.95)	0.3 - 5	.85 (.8 – 3.8)	1.2 (1.2 – 4.2)
MA	40 - 67	23.6 (9.6 – 38.9)	27.3 (19.8 – 43.2)	38 - 65	23 (10.9 – 37.2)	24.7 (16.7 – 44.8)
⁴LY30%	< 3.8%	0	0	< 20%	0 (035)	0
16 538 17 539 18 539 19 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 53 54 55 55 56 57 58 59 50			PA stressed rapid TEG			e ranges

1 2		28
3		70
4 5		C
6		60
7		50
8 9		
10		apontidume munixew 30
11 12		30
12		20
14		
15 16		10
17		0
18	568	MA tPArTEG T1 MA tPArTEG T2
19 20		
21 22	569	Figure 3. MA data. A: rTEG and tPA rTEG bar-and-whisker plots at baseline (T1) and next day (T2). Bars
22 23 24	570	represent the range between the 1 st and 3 rd quartiles, the horizontal lines represent median values, and
25 26	571	the x marks represent average values. B: Slope graph showing the changes in rTEG MA values for
27 28 29	572	individual dogs between T1 and T2. C: Slope graph showing the changes in tPA-rTEG MA values for
29 30 31	573	individual dogs between T1 and T2.
32 33	574	
34 35	575	
36	576	
37 38		
39	577	
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59 60		
00		