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The refraction of surface gravity waves by currents leads to spatial modulations10

in the wave field and, in particular, in the significant wave height. We examine11

this phenomenon in the case of waves scattered by a localised current feature,12

assuming (i) the smallness of the ratio between current velocity and wave group13

speed, and (ii) a swell-like, highly directional wave spectrum.14

We apply matched asymptotics to the equation governing the conservation of15

wave action in the four-dimensional position–wavenumber space. The resulting16

explicit formulas show that the modulations in wave action and significant wave17

height past the localised current are controlled by the vorticity of the current18

integrated along the primary direction of the swell.19

We assess the asymptotic predictions against numerical simulations using20

WAVEWATCH III for a Gaussian vortex. We also consider vortex dipoles to21

demonstrate the possibility of ‘vortex cloaking’ whereby certain currents have22

(asymptotically) no impact on the significant wave height. We discuss the role23

of the ratio of the two small parameters characterising assumptions (i) and (ii)24

above and show that caustics are only significant for unrealistically large values25

of this ratio, corresponding to unrealistically narrow directional spectra.26

1. Introduction27

Surface gravity waves (SGWs) play a key role in the exchanges of energy, mo-28

mentum and gases between the ocean and the atmosphere (Villas Bôas & Pizzo29

2021). SGWs are forced by the wind and modulated by ocean currents through30

transport and refraction. Over the past few decades, several studies have explored31

the effects of ocean currents on SGWs. Early theoretical work focusses on the32

formation of freak waves and identifies refraction as a possible mechanism for the33

generation of large amplitude waves (White & Fornberg 1998; Heller et al. 2008;34

Dysthe et al. 2008).35

Recent studies examine how meso- and submesoscale ocean variability, such36

as fronts, filaments and vortices, induces a corresponding variability in wave37
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amplitudes (Ardhuin et al. 2017; Romero et al. 2017, 2020; Villas Boâs et al. 2020;38

Vrećica et al. 2022). These studies often characterise the wave amplitudes using39

the significant wave height Hs, defined as four times the standard deviation of40

the surface displacement. They find that wave–current interactions at horizontal41

scales ranging from 10 to 200 km drive spatial gradients of Hs at similar scales.42

This indicates that air–sea fluxes might have spatial variability on these relatively43

small spatial scales.44

One common approach to studying wave–current interactions is the use of ray45

tracing, often in its simplest form in which the kinematics of SGWs is tracked by46

solving the ray equations and ray density is used as a proxy for wave amplitude47

(e.g., Kenyon 1971; Mapp et al. 1985; Quilfen & Chapron 2019). While this simple48

form of ray tracing is a valuable tool for understanding wave refraction, it does49

not provide an accurate quantification of changes in wave amplitude, in particular50

changes in Hs. This quantification requires to solve the conservation equation for51

the density of wave action in the four-dimensional position–wavenumber phase52

space. This is challenging especially for the wave spectra of realistic sea states,53

distributed in both wavenumber and direction, instead of the pure plane waves54

that are often considered (see Heller et al. 2008, however). It is possible to solve55

the action equation numerically, albeit at great computational cost, either by56

discretising the phase space or by sampling its full four-dimensionality with a57

large ensemble of rays.58

This paper proposes a complementary approach. It develops an asymptotic59

solution of the wave action equation, leading to explicit formulas for the changes60

in action and Hs induced by localised currents. Motivated by their ubiquity in the61

ocean, we focus on swell, that is, SGWs characterised by a spectrum that is narrow62

banded in both frequency (equivalently, wavenumber) and direction. We exploit63

the smallness of two parameters reflecting the narrowness of the spectrum and64

the weakness of the current relative to the wave speed. We approximate the wave65

action equation to leading order and solve it in closed form by integration along66

its characteristics (the approximate ray equations) by inspection. The formulas67

we obtain show that the changes in action and Hs depend on the currents through68

a ‘deflection function’ ∆ given by the integral of the vorticity along the primary69

direction of wave propagation. We apply these formulas to simple flows – vortices70

and dipoles – and compare their predictions with the results of full integrations71

of the action conservation equation by a numerical wave model.72

We formulate the problem, relate action and Hs, and introduce a model73

spectrum for swell in §2. We detail our scaling assumptions and carry out the74

(matched) asymptotics treatment of the wave action equation in §3. We compare75

asymptotic and numerical results for vortices and dipoles in §4. For vortices, we76

consider four different parameter combinations representative of ocean swell. We77

consider dipoles with axis along and perpendicular to the direction of the swell78

to demonstrate the possibility of a vanishing deflection function ∆, leading to79

asymptotically negligible changes in Hs, a phenomenon we refer to as ‘vortex80

cloaking’. In §5 we explore two limiting regimes of scattering: a linear regime,81

corresponding to weak currents and/or swell with relatively large angular spread,82

in which the changes in Hs are linear in the current velocity, and a caustic regime83

corresponding to strong currents and/or small angular spread. The caustic regime,84

in which the changes in Hs are large and concentrated along caustic curves, arises85

only for parameters values that are outside the range of typical ocean values. We86
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conclude with a summary of our findings and discuss prospects for future work87

on the spatial variability of Hs in §6.88

2. Formulation89

We study the scattering problem sketched in figure 1. Deep-water SGWs, with90

small initial directional spreading and a well defined peak frequency (swell)91

impinge on a spatially compact coherent flow, such as an axisymmetric vortex or92

a dipole.93

2.1. Action conservation equation94

In figure 1 we illustrate the scattering problem by tracing rays through an95

axisymmetric vortex. We go beyond ray tracing, however, by using asymptotic96

methods to obtain approximate analytic solutions of the conservation equation97

∂tA+∇kω · ∇xA−∇xω · ∇kA = 0 (2.1)98

for the wave action density A(x,k, t) in the four-dimensional position–99

wavenumber space (Komen et al. 1996; Janssen 2004). The action conservation100

equation (2.1) relies on the WKB assumption of spatial scale separation between101

waves and currents. In (2.1) ω(x,k) is the absolute frequency of deep-water102

SGWs103

ω(x,k) = σ(k) + k ·U(x). (2.2)104

We consider deep-water waves so that in (2.2) the intrinsic frequency is σ(k) =105 √
gk, with k = |k|. The current velocity is taken to be horizontal and independent106

of time and depth,107

U(x) = U(x, y)x̂+ V (x, y)ŷ. (2.3)108

The wave action equation (2.1) provides a phase-averaged description of the109

scattering problem made possible by the scale separation between waves and cur-110

rents. This places our work in contrast to that of Coste et al. (1999), Coste & Lund111

(1999) and McIntyre (2019) who examined scattering without the simplification112

afforded by scale separation and discuss phase effects such as the Aharonov–113

Bohm effect. We also assume fixed currents and do not consider how these might114

be modified by the presence of waves (see e.g. Humbert et al. 2017; McIntyre115

2019).116

2.2. Action spectrum and significant wave height117

Denoting the sea-surface vertical displacement by ζ(x, t), with root mean square118

ζrms , and following Komen et al. (1996), we introduce a spectrum F(k,x, t) such119

that120

ζ2rms(x, t) =

∫
F(k,x, t) dk. (2.4)121

Later we use a polar coordinate system (k, θ) in k-space so that in (2.4) dk =122

k dkdθ. The kinetic and potential energy densities for deep-water SGWs are123

equipartitioned so that the energy spectrum is gF and the action spectrum,124

A(x,k, t) in (2.1), is A = gF/σ. The significant wave height, 4ζrms (Komen et al.125

1996), is therefore126

Hs(x, t) =

(
16

g

∫
A(k,x, t)σ(k)dk

)1/2

. (2.5)127
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Figure 1: The scattering problem: a localised flow, here shown as an
axisymmetric vortex with radius rv , scatters waves incident from the left

(x → −∞) with action spectrum A⋆(K,Θ). Rays bend significantly only in the
scattering region in which there is non-zero vorticity i.e. where x = O(rv ). In
this illustration rv is equivalent to ℓs . (a) The case δ ̸= 0: directional spreading
in the incident spectrum A⋆ is indicated schematically by two rays emanating
from each source point. (b) The case δ = 0 (or much less than ε): the incident

spectrum A⋆ is a plane wave with little or no directional spreading.

The incident swell is characterized by a spatially uniform spectrum F⋆(k)128

with constant significant wave height Hs⋆. The subscript ⋆ denotes quantities129

associated with the incident waves. Swell is characterized by a narrow spectrum130

in both wavenumber k (equivalently, frequency σ) and direction θ. The dominant131

wavenumber of the incident swell is k⋆ with frequency σ⋆ =
√
gk⋆, and the132

dominant direction is taken without loss of generality as θ = 0. Thus, as133

illustrated in figure 1, the waves arrive from x = −∞ and impinge on an isolated134

flow feature, centred at (x, y) = (0, 0). As an example of incident spectrum we135

use a separable construction described in appendix A. In the narrow-band limit136

corresponding to swell, this spectrum simplifies to the Gaussian137

F⋆(k, θ) ≈ ζ2rms⋆

e−(k−k⋆)
2/2δ2k

k⋆
√
2πδ2k︸ ︷︷ ︸

F⋆(k)

× e−θ2/2δ2θ√
2πδ2θ︸ ︷︷ ︸

D⋆(θ)

. (2.6)138

The two parameters δk and δθ capture the wavenumber and directional spreading139

(see Appendix A). The narrow-band limit assumes that δk/k⋆ ≪ 1 and δθ ≪ 1.140

3. The scattering problem141

We consider an incident spectrum such as (2.6). To make its localisation in k and142

θ explicit we introduce the O(1) independent variables143

K =
k − k⋆

δ
and Θ =

θ

δ
, (3.1)144

Focus on Fluids articles must not exceed this page length
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where δ ≪ 1 is a small dimensionless parameter. The incident action spectrum145

has the form146

A(x, y, k, θ) = A⋆(K,Θ) as x → −∞, (3.2)147

where the function A⋆(K,Θ) is localised where both K and Θ are O(1). The148

example spectrum (2.6) is of this form provided that δk/k⋆ and δθ are both O(δ).149

This assumption of similarly small spectral widths in k and θ enforces the relevant150

distinguished limit for the scattering problem.151

We assume that the currents are weak (e.g. Peregrine 1976; Villas Bôas &152

Young 2020). This means that the typical speed U of the currents is much less153

than the intrinsic group velocity of the incident swell c⋆:154

ε
def
= U/c⋆, (3.3)155

≪ 1. (3.4)156

Accordingly we rewrite the frequency (2.2) as157

ω(x,k) = σ(k) + εk ·U(x). (3.5)158

We indulge in a slight abuse of notation here: we develop the approximation in159

dimensional variables, hence the dimensionless parameters ε and δ in expressions160

such as (3.1) and (3.5) should be interpreted as bookkeeping parameters to be161

set to one at the end. We examine the distinguished limit162

δ, ε → 0 with γ
def
= ε/δ = O(1) (3.6)163

and use matched asymptotics to solve the action conservation equation (2.1). We164

emphasise that γ = O(1) is a formal assumption that enables us to capture the165

broadest range of relative size of ε and δ, including ε ≪ δ and δ ≪ 1 (see §5).166

3.1. The scattering region: x = O(ℓs)167

The spatially compact flow has a typical horizontal length scale which we denote168

by ℓs . We refer to the region where x = O(ℓs) as the ‘scattering region’. The169

solution in this region has the form170

A(K,Θ, x, y) (3.7)171

and must limit to A⋆(K,Θ) in (3.2) as x → −∞.172

With A in (3.7) the transport term in (2.1) is approximated as173

∇kω · ∇xA = c⋆ (cos(δΘ)Ax + sin(δΘ)Ay) + εU · ∇xA174

= c⋆Ax +O(δ, ε). (3.8)175

In particular, transport by the current, εU · ∇xA is negligible compared with176

transport by the intrinsic group velocity c⋆. With the approximations177

∇kA = δ−1
(
∂KA x̂+ k−1

∗ ∂ΘA ŷ
)
+O(1), (3.9)178

∇xω = εk⋆(Uxx̂+ Uyŷ) +O(εδ), (3.10)179

the refraction term in (2.1) simplifies to180

∇xω · ∇kA = γ (k⋆Ux∂KA+ Uy∂ΘA) +O(ε). (3.11)181

Thus in the scattering region the leading-order approximation to (2.1) is182

c⋆∂xA− γ (k⋆Ux∂KA+ Uy∂ΘA) = 0, (3.12)183
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One might solve (3.12) using its characteristics – the ray equations – or by184

inspection. By either method the solution to (3.12) that matches the incident185

action spectrum (3.2) as x → −∞ is found to be186

A(x, y,K,Θ) = A⋆

(
K +

γk⋆
c⋆

U(x, y) , Θ +
γ

c⋆

∫ x

−∞
Uy(x

′, y) dx′
)
. (3.13)187

It is insightful to introduce the vorticity Z
def
= Vx − Uy and write (3.13) as188

A(x, y,K,Θ) = A⋆

(
K +

γk⋆
c⋆

U(x, y) , Θ +
γ

c⋆
V (x, y)− γ

c⋆

∫ x

−∞
Z(x′, y) dx′

)
.

(3.14)189

For reference, we rewrite this expression in terms of the original independent190

variables, setting the bookkeeping parameters ε, δ, and hence γ to 1 to obtain191

A(x, y, k, θ) = A⋆

(
k +

k⋆
c⋆

U(x, y) , θ +
1

c⋆
V (x, y)− 1

c⋆

∫ x

−∞
Z(x′, y) dx′

)
. (3.15)192

3.2. The intermediate region: O(ℓs) ≪ x ≪ O(ℓs/δ)193

The outer limit of the inner solution (3.14) follows from taking x → ∞:194

A(x, y,K,Θ) → A⋆ (K, Θ − γ∆(y)) , (3.16)195

where we have introduced the dimensionless ‘deflection’196

∆(y)
def
=

1

c⋆

∫ ∞

−∞
Z(x′, y) dx′. (3.17)197

According to (3.16) the effect of the flow on the dependence of A on K is198

reversible: after passage through the scattering region this dependence reverts199

to the incident form. In contrast, there is a net change in Θ, quantified by the200

deflection ∆(y). This can be related to classical scattering of particles by viewing201

y as the impact parameter of a wavepacket. The scattering cross section, defined202

as dy/dθ∞ where θ∞ is the angle of propagation of the wavepacket as x → ∞, is203

then −1/(ε∆′(y)).204

To physically interpret (3.16) and ∆(y), recall that if ε is small then205

ray curvature ≈ vorticity

group velocity
, (3.18)206

≈ Z(x, y)

c⋆
. (3.19)207

The approximation in (3.18) requires only ε ≪ 1 (e.g. Kenyon 1971; Landau &208

Lifshitz 2013; Dysthe 2001; Gallet & Young 2014). Passing from (3.18) to (3.19)209

requires the further approximation that k is close to k⋆ so that the group velocity210

in the denominator of (3.18) can be approximated by the constant c⋆. On the left211

of (3.18) ray curvature is dθ/dℓ, where ℓ is arc-length along a ray. But within212

the compact scattering region we approximate ℓ with x. Thus the deflection ∆(y)213

in (3.17) is the integrated ray curvature, accumulated as rays pass through the214

scattering region in which x = O(ℓs) and vorticity Z(x, y) is non-zero.215

From (3.17) and (3.18) we conclude that the scattering region is best charac-216

terized as the region with O(1) vorticity, e.g. the vortex core in figure 1 (hence217

ℓs = rv with rv a typical vortex radius). The region with palpably non-zero218



7

velocity is much larger. In figure 1 the rays are straight where x = O(rv/ε),219

despite the slow (∝ r−1) decay of the azimuthal vortex velocity.220

3.3. The far field: x = O(ℓs/δ)221

Far from the scattering region, where x ≫ ℓs , we introduce the slow coordinate222

X
def
= δx. In the far-field the currents and hence the refraction term ∇xω · ∇kA223

in (2.1) are negligible. The steady action conservation equation collapses to224

∇kσ · ∇xA = c⋆ (δ cos(δΘ)AX + sin(δΘ)Ay) = 0, (3.20)225

i.e. propagation along straight rays. Retaining only the leading-order term gives226

∂XA+Θ∂yA = 0, (3.21)227

By inspection the solution of (3.21) that matches the intermediate solution (3.16)228

is229

A(X, y,K,Θ) = A⋆ (K,Θ − γ∆ (y −XΘ)) . (3.22)230

This formula, which converts the incident spectrum into the far-field spectrum,231

is a key result of the paper. In terms of the original independent variables and232

with the bookeeping parameters set to 1 it takes the convenient form233

A(x, y, k, θ) = A⋆ (k, θ −∆ (y − xθ)) . (3.23)234

3.4. Significant wave height235

Significant wave height Hs is the most commonly reported statistic of wave236

amplitudes, being routinely observed by satellite altimeters and wave buoys. We237

obtain an approximation for Hs by performing the k and θ integrals in (2.5) using238

the approximations (3.15) and (3.23) for A(x,k).239

The scattering region is simple. We can approximate σ and dk in (2.5) by240

σ⋆ = σ(k⋆) and k⋆ dkdθ to find241

Hs(x, t) ∼
(
16σ⋆k⋆

g

∫∫
A(k,x, t)dkdθ

)1/2

(3.24)242

∼ Hs⋆ (3.25)243

The second equality holds because, according to (3.15), A(x,k) is obtained from244

A⋆(x,k) by an x-dependent shift of the k and θ that does not affect the integral.245

Thus Hs in the scattering region is unchanged from the incident value Hs⋆. This246

conclusion also follows directly from steady-state wave action conservation under247

the assumptions ε, δ ≪ 1: multiplying (3.12) by σ⋆k⋆ and integrating over k and248

θ we find249

c⋆∂x

(
σ⋆k⋆

∫∫
A(x,k) dkdθ

)
︸ ︷︷ ︸

≈gH2
s (x)/16

= 0. (3.26)250

Hence Hs(x) = Hs⋆ throughout the scattering region.251

In the far field, Hs is obtained by substituting (3.23) into (2.5). The result is252

Hs(x) = 4

√
k⋆σ⋆

g

∫
dθ

∫
dkA⋆(k, θ −∆(y − xθ)). (3.27)253
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The k-integral can be evaluated in terms of the incident directional spectrum254

which, in the general case of a non-separable spectrum, is defined as255

D⋆(θ)
def
=

1

ζ2rms⋆

∫
F⋆(k) k dk. (3.28)256

We summarize the results above with:257

Hs(x) = Hs⋆

{
1 in the scattering region,√∫

D⋆ (θ −∆(y − xθ)) dθ in the far field.
(3.29)258

4. Applications to simple flows259

4.1. Gaussian vortex260

As an application, we consider scattering by an axisymmetric Gaussian vortex261

with circulation κ, vorticity262

Z(x, y) =
κ e−r2/2r2v

2πr2v
, (4.1)263

and velocity264

(U(x, y), V (x, y)) =
κ

2π

1− e−r2/2r2v

r2
(−y, x) , (4.2)265

where r2 = x2 + y2. The vortex radius rv can be taken as the scattering length266

scale ℓs . The maximum azimuthal velocity is Um = 0.072κ/rv at radius 1.585 rv .267

The deflection (3.17) resulting from this Gaussian vortex is268

∆(y) =
κ e−y2/2r2v

√
2π rvc⋆

. (4.3)269

The asymptotic solution in the scattering region is obtained from (3.15) as270

A(x, y, k, θ) = A⋆

(
k + k∗c

−1
∗ U(x, y),271

θ + c−1
∗ V (x, y)− 1

2

(
erf
(
x/

√
2rv
)
+ 1
)
∆(y)

)
, (4.4)272

where erf is the error function. Eq. (4.4) can be combined with the far-field273

approximation (3.23) into a single, uniformly valid approximation,274

A(x, y, k, θ) = A⋆

(
k + k∗c

−1
∗ U(x, y),275

θ + c−1
∗ V (x, y)− 1

2

(
erf
(
x/

√
2rv
)
+ 1
)
∆(y − xθ)

)
. (4.5)276

The significant wave height is approximated by (3.29) which can be written as277

the uniform expression278

Hs(x, y) = Hs⋆

√∫
D⋆ (θ −∆(y − x+θ)) dθ, (4.6)279

where x+ is equal to x for x > 0 and to 0 for x < 0 and (4.3) is used for ∆.280

We now compare the matched asymptotic (MA hereafter) predictions (4.5)–281

(4.6) with numerical solutions of the wave action equation (2.1) obtained with282
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s Um (m s−1) δ =
√

2/s ε = Um/c⋆ γ = ε/δ

10 0.4 0.447 (25.6◦) 0.05 0.112
40 0.4 0.224 (12.8◦) 0.05 0.224
10 0.8 0.447 (25.6◦) 0.1 0.224
40 0.8 0.224 (12.8◦) 0.1 0.447

Table 1: Parameters corresponding to each configuration in section 4.1,
arranged in the order of the rows in figure 3. In all cases the group speed is

c⋆ = 8 m s−1, corresponding to a 166 m wavelength and 10.3 s period. Um is the
maximum vortex velocity and the vortex radius is rv = 50 km.

the Wave Height, Water Depth, and Current Hindcasting third generation wave283

model (WAVEWATCH III, hereafter WW3). The incident spectrum used for284

WW3 is described in Appendix A. The directional function for this spectrum is285

the Longuet-Higgins et al. (1963) model286

D⋆(θ) ∝ cos2s
θ

2
. (4.7)287

The parameter s > 0 controls the directional spreading: for s ≫ 1, (4.7) reduces to288

the Gaussian in (2.6) with directional spreading δθ =
√
2/s. The configuration of289

WW3 and spectrum parameters are detailed in Appendix B. The most important290

parameter is the peak frequency of the incident spectrum, taken fixed for all291

simulations as σ⋆ = 0.61 rad s−1. This corresponds to a period of 10.3 s,292

wavelength of 166 m and group speed c⋆ = 8 m s−1. Because the problem is linear293

in the action density, the values of ζrms⋆ or equivalently Hs⋆ are less important.294

For definiteness we set Hs⋆ = 1 m.295

Figure 2 compares the wavenumber-integrated wave action
∫
A(x, y, k, θ) dk296

obtained from (4.5) and WW3 for a Gaussian vortex with maximum velocity297

Um = 0.8 m s−1 and directional spreading parameter s = 40. Figure 2 shows a298

good agreement, especially in the far-field region (x ⩾ 3rv). The most noticeable299

difference between MA and WW3 is in panels c and d, which show a section300

through the middle of the vortex. The MA action spectrum in panel d is obtained301

via a y-dependent shift in A⋆(k, θ); there is no change in the intensity of A302

associated with this shift. In panel c, on the other hand, the intensity of the WW3303

action spectrum varies with y/rv . We attribute this difference to asymptotically304

small effects such as the contribution U · ∇xA to wave-action transport.305

In the remainder of this section, we assess the dependence of significant wave306

height Hs on the directional spreading parameter s and flow strength Um. We307

consider the four different combinations of s and Um given in Table 1. The308

corresponding values of the dimensionless parameters, taken as309

δ = δθ =
√
2/s and ε = Um/c⋆, (4.8)310

are also in the table.311

Observations of the directional spreading for swell typically range between 10◦−312

20◦ (Ewans 2002), which correspond to a range of s between 16 and 66. In our313

experiments, setting s = 10 and s = 40 leads to a directional spreading of 24◦314

and 12◦ respectively, which correspond to very broad and very narrow swells.315
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Figure 2: Wavenumber-integrated action density
∫
A(x, y, k, θ) dk as a function

of y and θ at x = −5 rv , 0, rv , 3 rv and 5 rv from WW3 (left) and MA (Eq.
(4.5), right) for swell impinging on a Gaussian vortex with Um = 0.8 m s−1.

The directional spreading of the incident spectrum is s = 40.

Figures 3 and 4 show the significant wave height anomaly316

hs(x)
def
= Hs(x)−Hs⋆ (4.9)317

for each combination of s and Um. Because of our choice of Hs⋆ = 1m, hs in cm318

can be interpreted as the fractional change in significant wave height expressed319

as a percentage. A control run of WW3 in the absence of currents shows that hs320

is not exactly zero but decreases slowly with x. This is caused by the finite y-321

extent of the computational domain which leads to a wave forcing with compact322

support. To mitigate this numerical artefact, we compute the WW3 significant323

wave height anomaly as hs(x) = Hs(x)−Hctrl
s (x), whereHctrl

s (x) is the significant324

wave height of the current-free control run. See Appendix B for details.325

Figures 3 and 4 show that hs has a wedge-like pattern in the wake of the326

vortex resulting from wave focussing and defocussing, with hs > 0 mainly for327

y > 0 and hs < 0 for y < 0. The pattern is not anti-symmetric about y = 0,328

and positive anomalies are larger than negative anomalies. These characteristics,329

which indicate a nonlinear response, are increasingly marked as s and Um increase.330

Specifically, the parameter331

γ =
ε

δ
=

Um

c⋆

√
s

2
(4.10)332

controls the degree of nonlinearity and hence of asymmetry. We discuss the two333

limiting regimes γ ≪ 1 and γ ≫ 1 in §5.334

There is good overall agreement between WW3 and MA, even though, in the335

Rapids articles must not exceed this page length
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Figure 3: Significant wave height anomaly hs(x, y) from WW3 (left column) and
MA (right column) for swell impinging on a Gaussian vortex. Each row

corresponds to the indicated values of the directional spreading parameter s of
the incident wave spectrum and of the maximum velocity Um (in m s−1). The
corresponding non-dimensional parameters are given in Table 1. The dashed
circles has radius rv around vortex center. The solid lines on the right panels
indicate the caustics computed from (D6). The colourbars differ between rows
but are the same within each row. White corresponds to hs = 0 in all panels.

The customizable notebook that generates panel (h) by default can be accessed
at https://shorturl.at/fswA3.

https://shorturl.at/fswA3
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Figure 4: Significant wave height anomaly hs as a function of y for
x = rv, 5 rv, 15 rv (left, centre and right) from WW3 (solid lines) and MA (Eq.
(4.5), dashed lines) in the set up of figure 3. Results are shown for two sets of

parameters s and Um as indicated in the leftmost panels. The range of hs differs
between panels.

case s = 10, the parameter δ = 0.447 is only marginally small. The pattern is336

more diffuse for WW3 than for MA, with a less sharply defined wedge and a non-337

zero hs over a larger proportion of the domain. We attribute the differences to the338

finiteness of δ (they are more marked for s = 10, δ = 0.447 than for s = 40, δ =339

0.224), and to the limited spectral resolution of WW3 (simulations with degraded340

angular resolution lead to an even more diffuse hs). The most conspicuous341

differences between WW3 and MA appear in the scattering region, where the342

non-zero hs obtained with WW3 appears to contradict the MA prediction that343

hs = 0. The non-zero hs results from O(ε, δ) terms neglected by MA. Relaxing344

some of the approximations leading to (3.24) gives a heuristic correction to MA345

that captures the bulk of the difference with WW3 in the scattering region. We346

explain this in Appendix C.347

As further demonstration of the MA approach, we provide a Jupyter notebook348

accessible at https://shorturl.at/fswA3, where users can customize the form349

of the current and the incoming wave spectrum to experiment with the resulting350 ∫
A(x, y, k, θ) dk and hs.351

https://shorturl.at/fswA3
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Figure 5: Swell impinging on vortex dipoles with axes perpendicular (top) and
parallel (bottom) to the dominant direction of wave propagation (x-axis). The
vorticity (colour) and velocity (vectors) are shown (left) together with the

significant wave height anomaly hs from WW3 (middle) and MA (right). The
directional spreading parameter s = 40 and the maximum flow velocity is

0.8 m s−1.

4.2. Vortex dipole352

A striking feature of the far-field spectrum and hence of Hs is that, according to353

MA, they depend on the flow only through the deflection ∆(y) in (3.17), propor-354

tional to the integral of the vorticity along the direction of dominant wave propa-355

gation (the x-direction in our set up). This implies that if the integrated vorticity356

vanishes because of cancellations between positive and negative contributions, the357

differences between far-field and incident fields are asymptotically small. This can358

be interpreted as a form of ‘vortex cloaking’, whereby an observer positioned well359

downstream of a flow feature is unable to detect its presence through changes in360

wave statistics. We demonstrate this phenomenon by examining the scattering of361

swell by vortex dipoles.362

We consider two cases, corresponding to dipoles whose axes (the vector joining363

the centres of positive and negative vorticity) are, respectively, perpendicular and364

parallel to the direction of wave propagation. The corresponding vorticity fields365

are chosen, up to a constant multiple, as the derivative of the Gaussian profile366

(4.1) with respect to y or x. Figure 5 shows the significant wave height anomaly367

obtained for the incident spectrum of §4.1 with s = 40 and dipoles with maximum368

velocity Um = 0.8 m s−1.369

When the dipole axis is in the y-direction (top row) the deflection∆(y) does not370

vanish identically. As a result, Hs is affected by the flow, strongly for our choice371

of parameters. This applies to both the MA and WW3 predictions which match372

closely in the far field. When the dipole axis is in the x-direction (bottom row),373

∆(y) = 0. The MA prediction is then that Hs = Hs⋆, i.e. hs = 0, everywhere.374

The WW3 simulation is consistent with this, with only a weak signal in hs.375

In general, for a dipole with axis making an angle α with the direction of wave376
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propagation, the deflection ∆(y) is proportional to sinα and the cloaking effect377

is partial unless α = 0.378

5. Limiting cases379

In this section, we return to the far-field asymptotics (3.22) for A in terms of the380

scaled dependent variables in order to examine two limiting regimes characterized381

by extreme values of γ = ε/δ. The regime γ ≪ 1 corresponds to a weak flow382

and/or relatively broad spectrum, leading to a linear dependence of hs on the383

currents. The opposite regime γ ≫ 1 corresponds to strong flow and/or highly384

directional spectrum. The wave response is then highly nonlinear in the currents385

and, as we show below, controlled by the caustics that exist for pure-plane incident386

waves (γ = ∞). Heller et al. (2008)’s ‘freak index’, given by ε2/3/δ, is the analogue387

of γ for spatially extended, random currents.388

5.1. Linear regime: γ ≪ 1389

For γ ≪ 1, we can expand (3.22) in Taylor series to obtain390

A(X, y,K,Θ) = A⋆(K,Θ)− γ∆(y −XΘ) ∂ΘA⋆(K,Θ) +O(γ2). (5.1)391

This indicates that the flow induces the small correction−γ∆(y−XΘ)∂ΘA⋆(K,Θ)392

to the action of the incident wave. We deduce an approximation for Hs by393

integrating (5.1) with respect to K and Θ to obtain H2
s followed by a Taylor394

expansion of a square root. Alternatively, we can carry out a Taylor expansion395

of the far-field approximation (3.29) of Hs, treating ∆(y) as small. The result is396

best expressed in terms of the anomaly hs, found to be397

hs(x, y) = −Hs⋆

2

∫
D′

s(θ)∆(y − xθ) dθ (5.2)398

after reverting to the unscaled variables and setting γ = 1. This simple expression399

is readily evaluated once the flow, hence ∆(y), and directional spectrum D⋆(θ)400

are specified. For the Gaussian vortex of §4.1 and the directional spectrum in401

(2.6), the integration can be carried out explicitly, yielding402

hs(x, y) =
Hs⋆κ

c⋆
√
π

x+y e−y2/(2r2v+4x2/s)

(2r2v + 4x2/s)3/2
. (5.3)403

This formula makes it plain that hs depends on space through (x/
√
s, y),404

is antisymmetric about the x axis, and is maximised along the curves405

y = ±
√
r2v + 2x2/s. Decay as |x| → ∞ is slowest along these curves and406

proportional to x−1.407

We illustrate (5.3) and assess its range of validity by comparing it with MA408

for two sets of parameters in figure 6. The match is very good for s = 10 and409

Um = 0.4 m s−1 (top row), corresponding to γ = 0.112. It is less good for s = 40410

and Um = 0.8 m s−1, unsurprisingly since γ = 0.447 is not particularly small and411

the MA prediction is obviously far from linear, with a pronounced asymmetry.412

The curves y = ±
√
r2v + 2x2/s shown in the figure are useful indicators of the413

structure of hs for small enough γ.414
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Figure 6: Significant wave height anomaly hs(x, y) for swell impinging on a
Gaussian vortex: comparison between the predictions of MA (left) and and its
γ → 0 limit ((5.3), right column). The set up is as in figure 3 with parameters s

and Um (in m s−1) as indicated. Dashed lines indicates the curves

y = ±
√

r2v + 2x2/s where hs reach maximum amplitudes according to (5.3).

5.2. Caustic regime: γ ≫ 1415

The limit γ → ∞ corresponds to an incident wave field that is almost a plane416

wave. It is natural to rescale variables according to Θ 7→ γΘ and X 7→ γ−1X so417

that (3.22) becomes418

A(X, y,K,Θ) = A⋆ (K, γS(X, y,Θ)) , (5.4)419

where420

S(X, y,Θ)
def
= Θ −∆(y −XΘ). (5.5)421

In (X, y,Θ)-space, the K-integrated action is concentrated in a thin O(γ−1) layer422

around the surface S(X, y,Θ) = 0. Quantities such as Hs obtained by further423

integrating the action with respect to Θ can be obtained by approximating the424

dependence of right-hand side of (5.4) on S by δ(S). This fails, however, when425

(X, y,Θ) satisfy both426

S(X, y,Θ) = 0, and ∂ΘS(X, y,Θ) = 1 +X∆′(y −XΘ) = 0. (5.6)427

The corresponding curves in the (X, y) plane are caustics near which428 ∫
A(X, y,K,Θ) dKdΘ is an order γ1/2 larger than elsewhere; correspondingly,429

Hs = O(γ1/4). In figure 7 the two caustics meet at a cusp point from opposite430

sides of a common tangent. The cusp point is located by the condition ∂2
ΘS = 0431

and the integrated action at the cusp point is O(γ2/3) so that Hs = O(γ1/3). We432

have numerically verified these γ-scalings at the caustics and at the cusp point433

by varying s in the MA solutions.434

For the Gaussian vortex (4.1), the system (5.6) can be solved to obtain an435

explicit equation for the caustics. This equation is derived in Appendix D and436

given by (D6). It describes two curves y(x) emanating from the cusp point at437
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0

1

θ

x=1rva x=1rvb

0

1

θ

x=3rvc x=3rv P1d

−4 −2 0 2 4
y/rv

0

1

θ

x=5rve

−4 −2 0 2 4
y/rv

x=5rv P2 P3f

0.0

0.2

0.4

0.6

0.8

1.0
[m4/s]

Figure 8: Wavenumber-integrated action density
∫
A(x, y, k, θ)dk as a function

of y and θ for x = rv, 3 rv and 5 rv corresponding to the significant wave height
shown in figure 7 for s = 200 (left column) and s = 4000 (right column). P1 in
panel d corresponds to the values of (x, y) of the cusp from where the caustics

emanate; P2 and P3 are associated to points on each of the two caustics.

x = xc given by (D 5). The caustics (which depend on Um but not on s) are438

indicated on the right panels of figure 3. For the parameters of the figure, the439

caustics do not map regions of particularly large hs. This is unsurprising since γ440

is at most 0.447.441

To assess how large γ or equivalently s need to be for caustics to be the442

dominant feature ofHs, we show in figure 7 hs computed from MA for Um = 0.8 m443

s−1 and s = 200 (left panel, γ = 1) and s = 4000 (right panel, γ = 4.47). It is only444

for s = 4000 that the caustics are evidently controlling the significant wave height445

pattern. We emphasise that s = 200 and a fortiori s = 4000 are unrealistically446

large values: observational estimates for s in the open ocean seldom exceed s = 80.447

We conclude that caustics are unlikely to play a role in real ocean conditions.448

With academic rather than practical interest in mind, then, we show in figure 8449
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the integrated action
∫
Adk as a function of y for different three different values450

of x (identified by dashed vertical lines in figure 7). The figure illustrates how451

caustics emerge from a fold singularity in the surface S(x, y, θ) = 0 along which452

action is concentrated in the (x, y, θ) phase space. For x = rv, the surface is a453

graph over (x, y) and there are no caustics; for x = xc ≈ 3rv, the surface has a454

single point of vertical tangency (P1 in panel (f) of 7) corresponding to the birth455

of caustics at a cusp in the (x, y)-plane; for x = 5rc, there are two points of vertical456

tangency, P2 and P3 in panel (h), corresponding to the two caustic curves. The457

picture is increasingly blurred as s decreases (compare the right panel of figure 8458

with the left panels and with figure 2), explaining the diminishing importance of459

caustics for Hs.460

6. Discussion and conclusion461

The main results in this study are obtained by approximate solution of the462

wave action equation in the four-dimensional position–wavenumber space. A463

main organizing principle identified by the analysis is that scattering of SGWs464

by spatially compact currents results in the deflection function, ∆(y) in (3.17).465

Although ∆ varies linearly with the vertical vorticity of the currents, ∆ figures in466

a nonlinear transformation of the action density. This nonlinear transformation467

produces the modulation of the significant wave height Hs behind the scattering468

region, e.g. the expression for Hs in (3.29). Quantities that depend on other469

moments (e.g., Stokes drift) behave similarly and could be readily inferred from470

our explicit forms (3.15) and (3.22) for the wave action density.471

While we have obtained these results for deep-water SGWs, they apply essen-472

tially unchanged to other two-dimensional waves with isotropic dispersion relation473

such as finite-depth SGWs or Poincaré waves. The conclusions we draw about474

Hs can also be rephrased in terms of other root-mean-square quantities relevant475

to waves other than SGWs. With a little effort, the approach we adopt, based on476

the matched asymptotics treatment of the wave action equation, could be further477

extended to three-dimensional waves and to anisotropic dispersion relations. Our478

results could easily be extended to account for vertically sheared currents using479

the modified dispersion relation of Kirby & Chen (1989) (which involves a Doppler480

shift term that is nonlinear in k).481

In addition to the WKB approximation used to derive the action conservation482

equation (2.1) there are two independent approximations involved:483

(a) the current speed is much less than the group velocity of the incident swell;484

(b) swell with small directional spreading is incident on a region of spatially485

compact currents e.g. an axisymmetric vortex or a vortex dipole.486

Provided that (a) and (b) are satisfied the approximate solution of the wave487

action equation compares well with numerical solutions provided by WW3.488

Approximation (a) is usually justified. To challenge (a) one must consider489

current speeds such as 2 m s−1 e.g. observed as a peak current speed in the490

Agulhas system (Quilfen & Chapron 2019). Swell with 100 m wavelength has491

group velocity ∼ 6 m s−1 so that the small parameter in (a) is as large as 1/3. In492

less extreme cases approximation (a) will be satisfied.493

Approximation (b) is less secure: ocean swell is not sufficiently unidirectional494

to strongly justify (b) e.g. see the δ-column in table 1. Over long distances,495

the continuous scattering by uncorrelated currents leads to a broadening of the496

angular spectrum. When approximation (a) applies, this broadening is described497
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by the directional diffusion equation for wave action derived by Villas Bôas &498

Young (2020). This diffusion process is one of the mechanisms that makes swell499

with very small values of δ unlikely. However, our computations for a Gaussian500

vortex indicate that our asymptotic results are reliable for the moderately small501

values of δ typical of swell.502

Because of the relatively large directional spreading of ocean swell the mathe-503

matical ideal of a sharp wave caustic is not realized. Instead the caustic singularity504

is ‘washed out’ (Heller et al. 2008). Behind a vortex we find instead an elongated505

streaky pattern in Hs.506

Our results show that Hs behind an axisymmetric vortex with parameters in507

table 1 has spatial variation as large as ±30% of the incident constant value Hs⋆.508

Spatial inhomogeneities in Hs of this magnitude are important for wave breaking509

and exchange of momentum, heat and gas between the ocean and atmosphere.510

For example, airborne observations of the ocean surface by Romero et al. (2017)511

indicate that ±30% variations in Hs are associated with an order of magnitude512

increase in whitecap coverage.513

The directional diffusion equation of Villas Bôas & Young (2020) uses only514

approximation (a). One does not need to assume that the wave field is strongly515

unidirectional or that the currents are spatially compact. Moreover the directional516

diffusion equation is obtained without detailed consideration of the perturbations517

to the action spectrum that accompany wave scattering. But there is useful518

information hiding in these unexamined perturbations to the action spectrum. We519

are currently engaged in extracting these perturbations, calculating the attendant520

spatial variability to Hs, and relating the statistics of these fluctuations in Hs521

to those of the surface currents. These future developments promise to explain522

numerical experiments that identify relations between the spectral slopes of523

surface-current spectra and those of significant wave height (Villas Boâs et al.524

2020).525
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Appendix A. Incident spectrum538

We use the separable spectrum539

F⋆(k, θ) = ζ2rms⋆F⋆(k)D⋆(θ). (A 1)540

https://github.com/biavillasboas/SwellVortex
https://shorturl.at/fswA3
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The wavenumber function in (A 1) is541

F⋆(k)
def
=

2

erfc(−σ⋆/
√
2δσ)

e−(σ−σ⋆)
2/2δ2σ√

2πδ2σ

1

k

dσ

dk
, (A 2)542

where erfc is the complementary error function. It corresponds to a Gaussian543

spectrum in frequency truncated at σ = 0. The angular part of the spectrum in544

(A 1) is545

D⋆(θ)
def
=

Γ (s+ 1)

2
√
πΓ (s+ 1

2
)
cos2s

(
θ

2

)
(A 3)546

(Longuet-Higgins et al. 1963), which corresponds to incoming waves spread547

around θ = 0. The four parameters in this model spectrum are the root mean548

square sea-surface displacement ζrms⋆, the peak radian frequency σ⋆ =
√
gk⋆, the549

spectral width δσ and the directional spreading parameter s. Normalization is550

ensured with551 ∫ π

−π

D⋆(θ) dθ = 1 and

∫ ∞

0

F⋆(k)k dk = 1. (A 4)552

In the narrow-band limit δσ/σ⋆ ≪ 1 and s ≫ 1, the spectrum is approximated553

by (2.6) with δk = 2δσ
√
k⋆/g and δθ =

√
2/s. The parameter δθ captures554

the standard deviation in the angular distribution, which is the definition of555

‘directional spreading’ (Kuik et al. 1988). We note that the expressions for556

directional spreading are sometimes formally different, but equivalent to our557

expression for δθ at large s. For example, another popular way to state the558

definition for a generic directional distribution is559

σθ
def
=
[
2
(
1−

(
a2 + b2

)1/2)]1/2
, (A 5)560

where561

a =

∫
cos θD⋆(θ) dθ and b =

∫
sin θD⋆(θ) dθ (A 6)562

(Villas Boâs et al. 2020). Using the expression of D⋆ in (2.6), we can compute563

the integrals in (A 6) analytically, getting a = e−1/s and b = 0. Therefore,564

σ2
θ = 2(1− e−1/s) → 2/s as s → ∞. (A 7)565

Thus the definition of σθ in (A 5) indeed agrees with the parameter δθ at large s.566

Appendix B. Set up of WAVEWATCH III567

We compare our results with numerical simulations from an idealized setup of568

WW3 which integrates the action balance equation (2.1). Here, we focus on freely569

propagating swell-type waves, so the effects of wind forcing, nonlinear interactions570

and wave breaking are ignored (e.g., Villas Boâs et al. 2020). We use WW3 version571

v6.07.1 (https://github.com/NOAA-EMC/WW3/releases/tag/6.07.1) to solve572

(2.1) on a 1000 km×1000 km Cartesian domain with 5 km grid spacing. To resolve573

swells with s = 10 and 40 the spectral grid has 80 directions and 32 frequencies.574

Larger values of s (i.e., narrower directional spreading) would require higher575

directional resolution for the model to converge. We use a global integration time576

step of 200 s, spatial advection time step of 50 s, spectral advection time step of577

https://github.com/NOAA-EMC/WW3/releases/tag/6.07.1
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12 s, and minimum source term time step of 5 s. We verified that decreasing the578

time stepping or the spatial grid spacing does not significantly change the results579

(not shown).580

All simulations are initialized with the narrow-banded wave spectrum in (A 1).581

Waves enter the domain from the left boundary with initial mean direction θ =582

0◦ (propagating from left to right), directional spreading parameter s = 10 or583

s = 10, peak frequency σ⋆ = 0.61 rad s−1 (peak period of 10.3 s), spectral width584

δσ = 0.04, and Hs⋆ = 1 m. The boundary condition at the left boundary is kept585

constant throughout the experiment and each experiment is run until steady state586

is reached.587

As mentioned in §4.1, a control run is conducted in the absence of currents.588

Although there is no scattering from the currents, a nonuniform hctrl
s = Hctrl

s −589

Hs⋆ arises, due to the limited domain size in y, which leads to a reduction of590

incident wave action from waves arriving from large |y| — an effect that is more591

pronounced at large x. As s increases, the action density in the incident spectrum592

is more concentrated in the eastward direction, leading to less leakage of wave593

action through the top and bottom boundaries and a more spatially uniform hctrl
s .594

This leakage of wave action corresponds to a reduction of 5% in hctrl
s for s = 10,595

and 2% for s = 40 towards the right-hand side boundary.596

Appendix C. MA–WW3 mismatch in the scattering region597

We develop a heuristic correction to MA that we show captures the non-zero hs598

in the scattering region. First, we note that the non-zero hs in the scattering599

region from WW3 appears localized, likely caused by the term proportional to600

∂kA in (3.9), as the terms proportional to ∂θA result in non-local effects. This601

observation is confirmed by a WW3 run, which we refer to as WW3−, where the602

term in ∂kA is suppressed in the wave action equation, yielding a more uniform603

hs in the scattering region (see panel (d) in Figure 9). We then recall that in the604

MA solution, the insignificance of the ∂kA term is due to the approximation of605

a single dominant wavenumber in the steps leading to (3.24). We thus return to606

the approximation (3.12) of the wave-action transport equation in the scattering607

region and relax the approximation of replacing k by k⋆. We focus on the θ-608

integrated action609

B(x, k) =
∫

A(x,k) dθ. (C 1)610

It satisfies611

c(k) ∂xB − Ux(x)k ∂kB = 0. (C 2)612

Noting that c(k) = g1/2k−1/2/2, we solve this equation using the method of613

characteristics to find614

B(x, k) = B⋆

((
k−1/2 − g−1/2U(x)

)−2
)
. (C 3)615

The significant wave height is deduced by integration as616

Hs(x) =

(
16

g1/2

∫
B⋆

((
k−1/2 − g−1/2U(x)

)−2
)
k3/2 dk

)1/2

. (C 4)617

We now change the integration variable, taking advantage of the localisation of618

B⋆(k) to ignore the corresponding change in the lower limit of integration and619
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Figure 9: Significant wave height anomaly hs computed from WW3 (a) and MA
(b) as in the main text (same as Figure 3, fourth row); Panel (d) shows hs from
the WW3− run, where the term proportional to ∂kA is switched off. Panel (e)
shows the MA+ solution as in (C 6). Panel (c) shows the difference between (a)
and (b), and panel (f) shows the difference between (d) and (e). All panels have

the same colorbar.

obtain620

Hs(x) =

(
16

g1/2

∫
B⋆(k)

(
k−1/2 + g−1/2U(x)

)−6

k−3/2 dk

)1/2

621

=

(
16

g1/2

∫
B⋆(k)k

3/2
(
1 + k1/2g−1/2U(x)

)−6

dk

)1/2

622

=

(
16

g1/2

∫
B⋆(k)k

3/2

(
1 +

U(x)

2c(k)

)−6

dk

)1/2

(C 5)623

At this point, we can approximate c(k) by c⋆ in the small, O(ε) term U(x)/(2c(k))624

and use two binomial expansions to obtain625

Hs(x) ≈ Hs⋆

(
1− 3U(x)

2c⋆

)
. (C 6)626

We emphasise the heuristic nature of this approximation (MA+) which is formally627

no more accurate than the MA approximationHs(x) = Hs⋆ since it neglects some,628

though not all, O(δ) terms. Nonetheless, it captures most of the significant wave629

height anomaly close to the Gaussian vortex, as figure 9 demonstrates under630

parameters s = 40 and Um = 0.8 m s−1.631
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Appendix D. Caustics for the Gaussian vortex632

In the Gaussian vortex example, we can derive the locations of the caustics in633

the (x, y) plane analytically. Using expression (4.3) for ∆(y) and introducing the634

functions635

w(x, y)
def
= −(y − xθ)2/r2v (D 1)636

and637

q(x)
def
= −2πr4vc

2
⋆/(x

2κ2), (D 2)638

we can write equations (5.6) defining the caustics as639

θ − κ√
2πrvc⋆

ew/2 = 0 (D3)640

and641

wew = q. (D 4)642

Eq. (D 4) relates w to q, and takes the standard form defining the Lambert W -643

functions (see Olver 2010, Eq. 4.13.1). This equation has two branches of solutions644

w = Wi(q), i = 0, −1, when 0 < −q < e and no solutions when −q > e (q < 0 by645

definition (D 2)). The two branches meet at q = −e−1 which corresponds to646

x = xc
def
=

√
2πer2vc⋆/κ. (D 5)647

Physically, the two branches w = Wi(q) correspond to two caustic lines in the648

(x, y) plane that emanate from a cusp point with x = xc. The equation of the649

caustics is found using (D 1) and (D3) as650

y =
κx eWi(q(x))/2

√
2πrvc⋆

+
√
−Wi(q(x))rv, x ⩾ xc. (D 6)651

The cusp point is at (x, y) = (xc, 2rv).652

The asymptotic form of the caustics for x → ∞ is readily obtained by noting653

that q(x) → 0− as x → ∞ and then that W0(q) → 0 and W−1(q) ∼ ln(−q).654

Thus the i = 0 caustic asymptotes to a straight line and the i = −1 caustic to655

y ∼ (2 lnx)1/2.656
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