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Abstract

The outcome of any scientific experiment or intervention will naturally unfold over time.
How then should individuals make causal inferences from measurements over time? Across
three experiments, we had participants observe experimental and control groups over
several days post-treatment in a fictional biological research setting. We identify competing
perspectives in the literature: Contingency-driven accounts predict no effect of outcome
timing while the contiguity principle suggests people will view a treatment as more harmful
to the extent that bad treatment outcomes occur earlier rather than later. In contrast,
inference to the functional form of a treatment effect can license extrapolation beyond the
measurements and lead to different causal inferences. We find participants’ causal strength
and direction judgments in temporal settings vary with minimal manipulations of
instruction framing. When it is implied that the observations are made over a pre-planned
number of days, causal judgments depend strongly on contiguity. When it is implied that
the observation may be ongoing, participants extrapolate current trends into the future and
adapt their causal judgments accordingly. When data are revealed sequentially, participants
rely on extrapolation regardless of instruction framing. Our results demonstrate human
flexibility in interpreting temporal evidence for causal reasoning and emphasize human
tendency to generalize from evidence in ways that are acutely sensitive to task framing.

Keywords: causality, causal learning, time, generalization

Public Significance Statement: Everyday decision making is shaped by our judgments
about how the world works, such as whether a new vaccine is beneficial or harmful for our
health. Since more evidence is arriving all the time, we inevitably have to make these
judgments with incomplete information. Here we show for the first time that people will
often use the timing of what has already happened to predict what will happen next, and
then incorporate this predicted future evidence into their causal judgments. For instance,
we find settings in which people take a rising trend to indicate that greater problems are to
come, or a falling trend to indicate that the peak of a causal influence has already passed,
leading them to make dramatically different causal judgments from the same overall case
statistics. These results have implications both for understanding the sophistication of
individual human causal reasoning and for understanding pinpoint the source of
disagreements in public discourse around scientific evidence.

Credit Statement: Tianwei Gong served as lead for data curation, software, formal
analysis, investigation, visualization, and writing —original draft. Neil Bramley served as
lead for supervision, funding acquisition, writing — review and editing. Tianwei Gong and
Neil Bramley contributed equally to conceptualization and methodology.
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Evidence from the future

In both individual cognition and scientific practice, discovering and measuring
causal effects is of central interest. Unfortunately, even with good quality experimental
data and a well matched control group this can still be challenging, because genuine causal
influences can take complex forms and our measurements of them are inevitably
incomplete. Some effects might occur instantly and dissipate rapidly (such as from electric
shocks or adrenaline injections), but others might peak later (paracetamol) grow or
compound over minutes, days or years (perhaps lockdowns on covid rates, or European
membership decisions on GDP). This highlights a central challenge for causal induction:
To estimate the strength and direction of a novel cause, we need to decide when best to
measure it. But to the extent that a treatment is truly novel, we are likely to lack the
necessary mechanistic understanding to make this choice and so be forced into guesswork
based on our inductive biases and whatever measurements we have.

Popular causal learning models, such as delta-P (Allan, [1980), Power PC (Buehner
et al., [2003; Cheng, 1997)), and Causal Support (Griffiths & Tenenbaum, 2005) contain no
mention of temporal dynamics, often restricting their applicability to settings where we can
assume the measurements were made at the appropriate moment to capture genuine
effects. A classic scenario involves randomly assigning samples to two groups, one of which
is exposed to the cause (e.g. a medical treatment) and the other of which is not. Causal
judgments are assumed to be calculated based on the resulting treatment-control
contingency, that is based on how the samples from experimental vs. control groups differ
in the prevalence of the effect.

A separate line of research shows that people are sensitive to temporal information
(Bechlivanidis et al., |2022; Bramley et al., 2018; Buehner & May, 2003; Buehner &
McGregor, 2006} Gong & Bramley, 2023; Greville & Buehner, 2010 Greville et al., 2020;
Lagnado & Sloman, [2006; Stephan et al., [2020). Event order appears to be a powerful
heuristic cue to causal order which that can even override contingency information
(Lagnado & Sloman, 2006). Event delays influence causal judgments (Greville & Buehner,
2010; Lagnado & Speekenbrink, 2010; Shanks et al., [1989). The temporal proximity
principle, also known as contiguity, captures that ceteris paribus people make stronger
causal attributions for short temporal delays than for long temporal delays (Anderson &
Sheu, |1995; Grice, 1948). This applies to not only type-level judgments that reflect beliefs
about which causal events cause which type of effect events (Buehner & May, 2003;
Buehner & McGregor, [2006; Greville & Buehner, 2007, 2010), but also token-level
judgments that reflect beliefs about which particular cause event actually caused which
particular effect event (Henne et al., 2021} Ziano & Pandelaere, [2022)).

Greville and Buehner (2007)) built a bridge between contingency and contiguity by
asking participants to evaluate the effect of treatments on bacteria survival in a day-by-day
context. In contrast to contingency studies that displayed summarized outcomes, they
provided participants with a sequence of numbers showing how many of the bacteria
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a)

(Now you are going to investigate the effect of Sigma-Rays on AB-loop bacteria \

(40 bacterial cultures were tested in each group --- exposure vs. no exposure)

New death@ cases each day:
Day 1, Day 2, Day 3, Day4, Day5

AB-loop exposed to Sigma-Rays at Day 0: 0, 1, 1, 3, 5
@B-Ioop with no exposure to any treatment: 1, 3, 2, 2, 2 )
b)
Observed Future
16 Regression
Linear
12 Poisson
] Gaussian Process
S
Condition
4 — Exp
Ct
M---------- =om b
1 3 5 7 9
Day
Figure 1

An ezample stimulus material of the current study (a) and the corresponding extrapolation
results of how the new case will be in the future given different regression models (b). The

Poisson regression would predict the experimental case as 0 at Day 9 due to the cumulative
cases have exceeded the max sample size. The Gaussian process regression was based on

RBF kernel (Schulz et al., |2017).

cultures died per day over several days. Replicating basic contingency findings,
participants judged a treatment to be harmful if the experimental group had a greater
total number of deaths than the control group and beneficial if the reverse was true.
Meanwhile, the timing of the deaths in the experimental condition also made a difference.
For the same total number of deaths, participants judged the harming effect to be greater
when more of the deaths occurred on the earlier observation days and less harmful when
more bacteria died on later days.

However, as aforementioned, causal dynamics could have different forms and they
are unnecessary to be fully explained by the contiguity principle. In this paper, we extend
on the work of Greville and Buehner (2007)), showing that people not only consider
temporal information, but that they can also interpret this information flexibly and
adaptively. In particular, we demonstrate that instructional cues or the display format, can
lead to different patterns of causal inference for the same set of observations. We
demonstrate this idea with the following scenario adopted from Greville and Buehner
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(2007): Imagine a biotechnology lab examines the effect of several types of radiation
treatment on the survival of bacterial cultures. Bacterial cultures die naturally after a
number of days, but the treatment might promote the survival of bacterial cultures (be
beneficial) or kill them prematurely (be harmful). In the example shown in Figure [th, are
Sigma-Rays harmful or beneficial to the survival of AB-loop bacteria? Contingency
provides no straightforward answer here since both groups have experienced the same total
number of deaths by the end of the observation. According to the contiguity principle
(Greville & Buehner, [2007)), the treatment seems to be beneficial, potentially postponing
the death of bacteria, as there are fewer deaths in the observations on days 1-3. However,
one might rather suspect the treatment will ultimately prove harmful since the
experimental condition has a worryingly increasing trend and most of the forty samples are
still alive on Day 5. Almost any reasonable statistical model based on days 1-5 would tend
to predict more death cases on days 6-9 in the experimental condition than the control
condition (see Figure [Ip for examples) [

As demonstrated in the above example, recognizing differing trends across a set of
measurements is another way of parsing the temporal information contained in a set of
post-experimental measurements. It is possible that when making causal inferences, people
consider not only the contingency and contiguity they have observed, but also whether the
rates are rising or falling across the observations (and having allowed for the control
condition baseline behavior) and what these suggest about the time course of the causal
influence. Prediction and imagination are a key components of human cognition. Indeed,
people automatically imagine possible states even if they are irrelevant to the task they
have been given (Guan & Firestone, 2020). More importantly, our imagination is grounded
in reality, generalizing from known circumstances to hypothetical futures and nearby
counterfactual possibilities (Lucas & Kemp, 2015, McCoy & Ullman, 2019; Shtulman &
Morgan, 2017). With regard to the dimension of time, people have been found to
extrapolate future events by relying on the event history, even in settings set up such that
each event is sampled independently (e.g. the gambler’s and hot-hand fallacies Ayton &
Fischer, [2004; Hahn & Warren, 2009; Szollosi et al., 2019)). There is an entire research field
that investigates how individuals make generalizations across contexts (Hahn & Warren,
2009; Lucas et al., 2015; Schulz et al., 2017; Zhao et al., 2022)). We examine whether people
further apply their generalizations from evidence to their causal judgments (Johnson et al.,
2016).

To test whether people simply rely on contiguity, or also infer more complex or
delayed causal influences from trends, we manipulate in three experiments what
participants are told about the experimenter’s stopping rule (Experiment 1), the display

L Of course, how many more deaths one predicts and when they will occur depends on one’s specific choice
of model and what inductive biases one brings to bear. In particular, the parameters of a causal generative
model will depend on the the functional forms assumed for the base rate and causal effect. We do not
attempt to resolve this here. The current paper mainly rely on the linear predictions, which is the common
form of human generalization (Lucas et al., [2015).
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Table 1
Ezxperimental stimuli.

Increasing Decreasing
Delta-P(40) Delta-P(15) Total =~ Data  Slope  Data  Slope
A 0 0 Exp 10 01,135 1.2 34210 -0.9
Ctr 10 1,3222 0.1 221,23 0.2
B 0 0 Exp 14 12245 1.0 35321 -0.7

Ctr 14 33332 -02 23333 02
C ~.05 _13 Exp 3 00003 06 30000 -0.6
5 211,10 -04 101,12 0.3
D ~.08 ~.20 Exp 5 00014 09 14,000 -0.6
8 22211 -03 221,12 -0.1
6

E -.10 -.27 Exp 1,1,0,1,3 0.4 231,00 -0.7
Ctr 10 32221 -04 12223 04
F .05 13 Exp 7 00223 0.8 32200 -0.8
Ctr 5 11,210 -02 1,012 02
G .08 20 Exp 11 02234 0.9 24311 -0.5
Ctr 8 12221 0 12212 0.1
H 10 27 Exp 14 12245 1.0 24332 -0.1

Ctr 10 22132 01 12223 04

Note: Delta-P was calculated using the sample size of 40 and 15 separately. Participants
were randomly assigned to one of two stimulus lists. List 1 included the increasing version of
A, C, E, G and the decreasing version of other items. List 2 included the decreasing version
of A, C, E, G and the increasing version of other items.

format (Experiment 2), and the sample size (Experiment 3). We anticipate people will rely
more on the trends when they focus on the possibility that more measurements are to come
or that there are many more samples that have not yet been affected.

Transparency and Openness

The current work meets the Transparency and Openness Promotion guidelines
suggested by the journal. We report materials and data for all experiments in Open
Science Framework repository (the link is provided in the author note section). The
experiments’ design and analyses were not pre-registered.

Experiment 1

In Experiment 1, we investigated the impact of instructions on people’s use of
temporal information in causal judgments. Participants in one group were informed that
there was an intended observation period that has the same length as the existing records.
This was similar to Greville and Buehner (2007)), thus we predicted that participants would
be influenced by contiguity in the same manner as the previous study. In contrast,
participants in another group were told that the observations would continue beyond the
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current records. This manipulation was intended to highlight the open future and as a
result, we anticipated that participants would rely more on any trends in the daily case
rates when making judgments.

Method

Participants. Two-hundred participants (102 female, 96 male, 1 non-binary, 1
undisclosed, aged 46 + 13) were recruited from Prolific Academic and were randomly
assigned to either the Finished (N=100) or Unfinished (N=100) conditions (see Design &
Materials below). In all three experiments, participants were self-declared native English
speakers located in the UK or the US and had finished at least 500 task submissions with
approval rate equal or above 99%. The sample size was determined by a power analysis
assuming a medium size effect of a within—between interaction and the goal of .80 power at
the standard .05 alpha. Participants in all experiments received a payment of £0.50 for
finishing the task. The task took around 5 minutes.

Design & Materials. We used the biotechnology cover story shown in the
Introduction and manipulated three factors. Contingency (zero, beneficial, harmful) and
Trend (increasing, decreasing) were manipulated within participants. As shown in Table
the contingency depended on the contrast of total death cases between the experimental
and control groups during the observation: P(F|C) — P(E|—C'). The positive contingency
is regarded as harmful and the negative contingency is regarded as beneficial. Stimuli with
the same contingency could differ in their temporary trends. Increasing trends disclosed
daily death cases under the experiment group with positive slopes while decreasing trends
disclosed daily death cases with negative slopes. Participants were randomly assigned to
one of two stimulus lists to ensure they were only exposed to either increasing or decreasing
versions of the same contingency (see Table .

The instruction was manipulated between participants. In the Finished condition,
participants were told that: “Bacterial cultures will be observed over a five-day period”,
while in the Unfinished group, participants were told that: “Bacterial cultures will be
observed over days. The observation hasn’t ended yet and the records now include Day 1
to Day 5”. We predicted people would react differently to the same data given different
instructions. The instructions in the Finished condition were similar to Greville and
Buehner (2007)), thus we predicted that participants would rely on contiguity, i.e. a
decreasing daily trend with more death cases on the early days would reflect a more
harmful relationship while the reverse sequence (but same overall count) suggests a less
harmful relationship. In contrast, the Unfinished condition highlights the open future, and
hence we predicted that participants would rely on the trend. That is, a decreasing trend
should imply that in the long run there is a less harmful relationship than when there is
increasing trend (which implies the cause’s influence is yet to peak). Two instructions were
paired with corresponding formats as shown in Figure
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Experiment 1 Experiment 2 Experiment 3
(Finished) (Finished) (Small Sample)
Day 1, Day 2, Day 3, Day 4, Day 5 Day 1, Day 2, Day 3, Day 4, Day5 Day 1, Day 2, Day 3, Day 4, Day 5
0, 1, 1, 3, 5 0 1 1 0, 1, 1, 3, 5 (of 15)
1, 3, 2, 2, 2 1 3 2 1, 3, 2, 2, 2 (of 15)
(Unfinished) (Unfinished) (Large Sample)
Day 1, Day 2, Day 3, Day 4, Day 5, ... Day 1, Day 2, Day 3, Day 4, Day5, ... Day 1, Day 2, Day 3, Day 4, Day 5
0, 1, 1, 3, 5 .. 0 1 1 0, 1, 1, 3, 5  (of 40)
1, 3, 2, 2, 2, .. 1 3 2 1, 3, 2, 2, 2 (of 40)
Figure 2

Stimuli displays under different conditions. Participants observed the number over days in
a stmilar format shown in the Introduction with specific modifications illustrated in this
figure. In Experiment 1 and 2, the sample size was disclosed to participants in text.

Procedure. Participants in both groups were given the biotechnology lab cover
story and informed that 40 bacteria cultures were tested in each experimental or control
group, the same number used in Greville and Buehner (2007). Following instruction on
how to read tabular data, they were exposed to the key sentence manipulations for at least
five seconds to ensure they had read them. Participants then went through 8 different pairs
of treatments and bacteria. For each pair, they judge the influence of a treatment on a new
kind of bacteria on a 7-point scale (-3=definitely beneficial;-2=probably beneficial; -1=
perhaps beneficial; 0=not sure; 1=perhaps harmful; 2=probably harmful; 3= definitely
harmful).

Results

A three-way mixed ANOVA Analysis was performed. As shown in Figure [3], there
was a main effect of contingency (F'(2,198) = 293.73, p < .001, 772% = .60). Pairwise
comparison showed that the difference between each pair of contingency levels was
significant (zero—beneficial: ¢(198) = 14.72, p < .001, d = 0.69; zero—harmful:

t(198) = 11.43, p < .001, d = 0.44; harmful-beneficial: ¢(198) = 20.79, p < .001, d = 1.13
after Bonferroni adjustment). There was no main effect of Trend (F'(1,198) = 0.32,
= .57) or Instruction (F(1,198) = 0.02, p = .89).

Importantly, there was a interaction between Trend and Instruction
(F(1,198) = 14.42, p < .001, n? = .07). As shown in Figure , decreasing trends were
judged as more harmful than increasing trends in the Finished condition (simple effect:
t(198) = 3.09, p = .002, d = 0.27), replicating the contiguity effect (Greville & Buehner,
2007)). In contrast, increasing trends were judged as more harmful than decreasing trends
in the Unfinished condition (¢(198) = 2.29, p = .02, d = 0.20), indicating a trend effect.
The other two-way or three-way interactions non-significant (ps > .05).

To check whether the interaction effect originates from the instruction manipulation
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Experiment 1 (Static) Experiment 2 (Dynamic) Experiment 3
Decreasing ‘ | Increasing | Decreasing | | Increasing ‘ Decreasing | | Increasing ‘
- 2 2 2
c
E ,
o 1 +A 9 1 4 + 1 )\ Y
S + ¢ A +‘ [ ¢
S A +A A +A
T Of--ooooooes U LSS OF = === e e (] PR T TIEE EEEREEEE PR R R
3
8|4 u # # t
-1 A -1 -1 " +A
s ¢
=
-2 -2 -2
Benefitial Zero Harmful  Benefitial Zero Harmful Benefitial Zero Harmful  Benefitial Zero Harmful Benefitial Zero Harmful  Benefitial Zero Harmful
Contingency Contingency Contingency
Instruction - Finished 4 Unfinished Instruction -e Finished - Unfinished Sample size - Small 4 Large

Figure 3

Means of causal judgments under different contingency and experimental conditions.
Participants judged the influence of treatment on a scale from -3 (definitely beneficial) to 3
(definitely harmful). Dashed lines indicates the middle level when it is not sure whether the
treatment was harmful or beneficial to the survival of the bacteria cultures. Error bars
indicate 95% confidence intervals.

or the visual format difference (the dots in the Unfinished condition), we conducted a
supplementary experiment (N=200) by only keeping the visual format differences between
two groups (see https://osf.io/34529 for more details). Both groups were exposed to an
instruction that was relatively neutral “The observation has happened for five days so far.
The records now include Day 1 to Day 5”. In contrast to Experiment 1, there were no any
interaction effects (ps > .05). This suggests that the effect of the manipulation in
Experiment 1 resulted from the instruction text itself.

Experiment 2

Experiment 1 showed that people not only consider contiguity when processing
temporal information, but can also be sensitive to the trend, with this seemingly depending
on how the choice of when the observations are made is framed. Experiment 2 investigated
whether the tendency to rely on trends rather than contiguity can occur in other
situations. Instead of the static display in Experiment 1, we used the dynamic display
where participants click a button to reveal the data sequentially day-by-day (Soo &
Rottman, [2020)). This dynamic display not only reflects the reality that temporal data
really are collected over time, but also reflects a setting often used in the previous research
that has found people anticipate the future data based on what they have seen so far
(Ayton & Fischer, 2004; Hahn & Warren, 2009; Szollosi et al., |[2019)). Therefore, we
predicted that this real-time mode would trigger participants to anticipate the future, and
so will likely rely more on the trends than contiguity when making causal judgments.

Method

Participants. Two-hundred participants (93 female, 104 male, 1 non-binary, 2
unenclosed, aged 43 4 13) were recruited from Prolific Academic and were randomly
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Experiment 1 (Static) Experiment 2 (Dynamic) Experiment 3

- : ‘/* 05
: ‘><A 0.0 0.0 .><4

Mean Causal Jugdment
o
o

-1.0 -1.0 -1.0
Decreasing Increasing Decreasing Increasing Decreasing Increasing
Trend Trend Trend
Instruction -e Finished 4 Unfinished Instruction -e Finished 4 Unfinished Sample size - Small - Large
Figure 4

Means of causal judgments under Decreasing vs. Increasing trends across experimental
conditions. Participants judged the influence of treatment on a scale from -3 (definitely
beneficial) to 3 (definitely harmful). Error bars indicate 95% confidence intervals.

assigned to either the Finished (N=100) or Unfinished (N=100) conditions (see Design &
Materials below).

Design & Materials. The experimental design and materials were similar
Experiment 1. We retained the instruction manipulation but differing from Experiment 1,
both groups experienced the evidence sequentially (Figure [2]). Each time participants
clicked on the “show the next day” button, the the next observation was revealed. Once all
data had been revealed, participants in the Finished condition were prompted that “the
bacterial experiment is now completed” while participants in the Unfinished condition were
prompted that “the bacterial experiment continues, and you have seen the existing records”.

Results

Similar to Experiment 1, there was a main effect of contingency (F(2,198) = 184.65,
p < .001, 7712, = .48; pairwise comparison: zero—beneficial: ¢(198) = 12.61, p < .001,
d = 0.63; zero—harmful: #(198) = 7.26, p < .001, d = 0.28; harmful-beneficial:
t(198) = 16.48, p < .001, d = 0.91 under Bonferroni’s adjustment). There was a main effect
of Trend (F'(1,198) = 9.97, p = .002, ng =.05), but no main effect of Instruction
(F(1,198) = 0.95, p = .33) or any two or three-way interaction effect (ps > .05). In
contrast to Experiment 1, participants under both Finished or Unfinished instructions
tended to rely on trend to make judgments. That is, they judged increasing trends as more
harmful than decreasing trends in spite of their lower contiguity.

Experiment 3

Experiment 1 and 2 investigated the contextual factors that could influence how
people utilize the temporal information. We found that participants exhibited a tendency
to rely on the contiguity of deaths in the treatment condition when they experienced the
data under a static display with an instruction indicating that the observation had ended.
In contrast, when the uncertain future was emphasized, through either the instructions or



EVIDENCE FROM THE FUTURE 11

Finished-Static (EXP1) L
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Figure 5

The Cohen’s d effect size pooled out from Increasing-Decreasing simple effect tests in
different conditions across experiments. Negative values mean participants prioritized
contiguity over trend, while positive values mean participants prioritized trend over
contiguity. Error bars indicate 95% confidence intervals of Cohen’s d estimates.

by use of a dynamic display, participants tended to rely on the trend. Experiment 3
investigates a more fundamental feature of how people contextualize count data: the total
sample size. A small total sample size means that participants have observed the majority
of the outcomes (so there is little left to extrapolate about). A large sample leaves many
cases unresolved (in our setting, many bacterial cultures that are still alive) and thus leaves
more room for participants to speculate about the future.

Method

Participants. Two-hundred participants (121 female, 79 male, aged 45 + 12) were
recruited from Prolific Academic and were randomly assigned to either the small-sample
(N=100) or large-sample (N=100) conditions (see Design & Materials below).

Design & Materials. The experimental design and materials were similar
Experiment 1, except that instead of manipulating the instructions, we now manipulated
the information of sample sizes. Participants in the Small-sample condition were told that
both experimental and control groups tested 15 bacteria cultures, while participants in the
Large-sample condition were informed that both groups tested 40 bacteria cultures, the
same as Experiment 1 and 2 (see Figure . We did not include any instruction on how
long the observation has lasted or whether the observation had ended at Day 5 (i.e.
“Finished”or “Unfinished”) in this experiment.

Results

As Experiment 1 and 2, there was a main effect of contingency (F(2,198) = 201.25,
p < .001, 17]% = .67; zero—beneficial: £(198) = 15.71, p < .001, d = 0.74; zero-harmful:
t(198) = 9.53, p < .001, d = 0.35; harmful-beneficial: ¢(198) = 20.03, p < .001, d = 1.09
after Bonferroni’s adjustment, Figure |3). There was no main effect of Trend
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(F(1,198) = 0.92, p = .34) or Sample (F(1,198) = 0.09, p = .76). Most importantly, as in
Experiment 1, there was an interaction between Trend and Sample (F'(1,198) = 5.19,

p = .02, r]g =.03). As shown in Figure {4 decreasing trends were judged as more harmful
than increasing trends in the Small-sample condition (simple effect: ¢(198) = 2.29, p = .02,
d = 0.20). The Large-sample condition showed the reverse pattern although the simple
effect test was insignificant (¢(198) = 0.93, p = .35, d = 0.08).

We can better understand the influence of temporal information in three
experiments by summarizing the effect of Increasing-Decreasing simple effect tests in
Figure || Here, a negative effect size means participants prioritized contiguity over trends,
while the positive effect size means participants prioritized trends over contiguity.
Participants’ consideration differed across conditions. They tended to follow contiguity
when the instructions indicated that the observation had ended (Experiment 1) or the data
revealed the state of the majority of the samples (Experiment 3). In contrast, they showed
a tendency to extrapolate the trend when they were told that the observation has not
finished yet (Experiment 1) or experienced the data sequentially (Experiment 2).

General Discussion

Decades of work has studied how people learn causal relationships but it is still not
clear how temporal information shapes causal inferences. Rather than exposing people to
prepackaged atemporal tabular data, we here provided sequences of daily observations of
an experimental and control condition. These are both more ambiguous but more
informative than a simple snapshot of outcomes, since they contain information about the
time profile of the causal influence (and hence whether the effect has been adequately
captured by the available measurements). The mortality scenario we used here showcases
this since, with a long enough time window, all the bacterial samples will naturally die
meaning that there is no truly neutral time at which to compare experimental and control
groups. This equifinality is a common feature of real world questions about causal effects
but one that is rarely highlighted in causal cognition research.

We constructed trajectories in which new death cases after treatments increased or
decreased over time. We found that participants robustly used the contingency information
(Buehner et al., 2003; Cheng, 1997, Griffiths & Tenenbaum, [2005)). Beyond this, they used
the temporal information and used it in a malleable way. Participants judged a treatment
to be more harmful if more samples died in the early days in the experimental condition,
consistent with the contiguity principle found in previous studies (Buehner, 2006; Greville
& Buehner, 2007; Pacer & Griffiths, 2012). However, this only happened when participants
saw the data in a static format and were either told that the observation had finished
(Experiment 1) or that the total sample size was so small that they had seen the most of
the potential data by day 5 (Experiment 3). On the other hand, more deaths on the later
days could indicate a increasing trend that would seem to herald more
experimental-condition deaths in the near future. To the extent that people “play out”
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these possible futures in their mind, we thus expected them to draw a quite different
conclusions in these situations. If people rely on the trend rather than the contiguity to
make judgments, they would conversely think of high numbers of early deaths and
concomitantly lower later deaths as evidence of a beneficial effect. Indeed, we found that
people relied on the trend when they were informed that the observation had not ended
(Experiment 1) or experienced a dynamic format where the data were revealed sequentially
(Experiment 2). They showed a similar, albeit non-significant, tendency when it was
emphasized that the time of death for most samples was unknown at the time of the final
measurement (Experiment 3). These effects consistently occurred regardless of whether the
contingency information suggested the cause to be harmful, beneficial, or non-causal. As
such, this report is the first to show the boundary conditions of contiguity in case-based
causal learning.

We here showed that, when utilizing temporal information, people are sensitive to
the wider context (here cued by the cover story, presentation format and sample size).
Whether strength judgments reflected generalization beyond the data depended on the
extent that the context and the available measurements implied that all the relevant
causality had been captured in the provided observations. However, it remains unclear how
each factor influences the underlying cognitive process. For example, the instruction and
visual format may influence different aspects. It is possible that instructions tend to
influence the learner’s prior expectation about causal delays, while visual formats tend to
influence their use of the data: When participants are informed that the experiment ends
on Day 5, they may tend to interpret this as signaling that the relevant causal influences
will tend to dissipate within 5 days (else the experiment has been poorly constructed),
resulting in a strong expectation for that any causal effects will be captured in the
observation window. On the other hand, when participants experience the evidence in a
dynamic format, they may spontaneously anticipate the future irrespective of instruction,
and utilize this anticipated data to make judgments. In cases where participants are
informed that the experiment continues after Day 5, they may additionally form a prior
belief that the causal influence could take more than 5 days to fully manifest, and thus
deliberately try to anticipate the future and summarize this with their causal judgment.
Moving forward, research could employ Bayesian computational models to analyze the
influence of these factors on different components of inference, i.e. in identifying the true
context (tapping into priors about the relevant causal mechanisms) and interpreting the
evidence (calculating appropriate likelihoods). Future work could also attempt to delineate
between the more automatic component processes like involuntary extrapolation of
sequences from more deliberative processing like a context-driven choice of how to interpret
evidence.

One practical implication of this study is its demonstration that instructional
framing influences how people interpret the data they are shown. Participants in
Experiment 1 drew different causal conclusions from the same evidence depending on only
a very minimal instruction manipulation. This means that providing accurate context as
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well as data is vital for accurate scientific communication (Soyer & Hogarth, [2012).
Another key question for the future work is how people make stopping decisions when
actively monitoring the outcome of their own or others’ interventions or experiments.
Efficient information sampling is of practical importance to cognition, since learners must
balance the rewards and costs by making sensible stopping and task switching decisions
(Callaway et al., 2022; Gong et al., 2023; Yu et al., |2014)). This becomes even more critical
in the kinds of dynamic contexts and complex causal effects that are ubiquitous in
everyday life (Anvari et al., [2022; Coenen et al., [2019)).

Conclusion

Across three experiments, we examined the boundary conditions of contiguity in
causal inference. We found that people treated early post-intervention case levels as more
important than later ones only if the majority of outcomes were subsequently observed or if
they had been informed that the observations had been deliberately terminated. If told the
observations would continue, or if experiencing the data sequentially, they instead focused
on the trends and anticipated future evidence and concomitantly different and even
reversed causal effects. Our work shows that human causal learning is not only generically
sensitive to temporal information around measurements of causal effects but also to the
generalizations licensed by the context in which they are measured.
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