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Abstract

Text alone does not contain sufficient information to predict the
spoken form. Using additional information, such as the lin-
guistic context, should improve Text-to-Speech naturalness in
general, and prosody in particular. Most recent research on us-
ing context is limited to using textual features of adjacent utter-
ances, extracted with large pre-trained language models such as
BERT.

In this paper, we compare multiple representations of lin-
guistic context by conditioning a Text-to-Speech model on fea-
tures of the preceding utterance. We experiment with three de-
sign choices: (1) acoustic vs. textual representations; (2) fea-
tures extracted with large pre-trained models vs. features learnt
jointly during training; and (3) representing context at the utter-
ance level vs. word level.

Our results show that appropriate representations of either
text or acoustic context alone yield significantly better natural-
ness than a baseline that does not use context. Combining an
utterance-level acoustic representation with a word-level textual
representation gave the best results overall.

Index Terms: Text-to-Speech, speech synthesis, context,
prosody

1. Introduction and Related Work

Although text alone is not sufficient to predict prosody accu-
rately, Text-to-Speech (TTS) systems are generally trained to
generate spoken utterances given textual input only, and utter-
ances are assumed to be independent from one another. While
this might be true for certain types of text, utterances in mono-
logues, conversation, audio-books or from any other long-form
discourse are not isolated, but influenced by context [1, 2, 3].
Utterances are organized into a discourse structure in which
neighbouring utterances are part of the linguistic context [4].
Context can have a global effect on the average and range of
Foy and speech rate, or a localized one such as the absence or
presence of prominence.

In this paper we study how linguistic context, specifically
the previous utterance, can be exploited to improve TTS. Our
proposed method conditions the generation of an utterance on
the acoustic and/or textual properties of the immediately pre-
ceding one. We experiment with different design choices to an-
swer the general research question: how should linguistic con-
text be represented?

Augmenting TTS model inputs with linguistic context in-
formation has been proposed by several authors, including the
use of position of sentence inside a larger unit such as a para-
graph [1, 5], explicit discourse features such as discourse re-
lations [6] or topic structure [7]. While discourse features can
improve synthetic speech, feature extraction relies on models
that require supervised training on appropriately-labelled data.
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Other approaches include directly labelling emphasis [8, 9,
10] or phrase breaks [11, 12]. Direct labelling can be useful for
controllability, but accurately predicting labels only from text is
hard.

In order to avoid the need for labelled data, unsupervised
approaches can be used to learn contextual representations from
acoustic features using encoders, which are later driven by tra-
ditional textual features [13, 14, 15]. However, these models
still generally use within-sentence textual input features, which
are insufficient to accurately predict prosody. [16] takes a differ-
ent approach by using linguistic features and acoustic distance
from the previous utterance to sample from a variational auto-
encoder of prosody, which synthesizes the current sentence.
However, their method is applied at inference time only.

Another approach, closer to what we propose here, uses
textual context to enhance a TTS baseline, conditioning mel
spectrogram prediction directly on a representation of context
[17, 18] in which BERT-derived features represent neighbour-
ing (both preceding and following) sentences. Although neither
method uses explicit prosodic features or learns prosodic repre-
sentations, it was observed that the use of context significantly
improves the prosody of the synthesized speech.

How the different features of context are captured is an im-
portant design choice. While [17] and [18] only capture textual
features, in previous work [19] we saw that acoustic features
can also lead to significant improvement. That approach makes
use of a prosody transfer module, Global Style Tokens [20], to
extract a prosodic representation from the mel spectrogram of
the context. That representation is then used to condition the
model, in a similar fashion to [17] and [18].

Our previous work was limited to represent acoustic fea-
tures of the context at the utterance level using mel spectro-
grams. Here, we substantially expand the scope of our work
to consider additional design choices, and to compare against
methods proposed by others.

Therefore, the current goal is to experiment with three de-
sign choices regarding how to represent context: (1) textual vs.
acoustic features; (2) representations extracted with large pre-
trained models vs. representations learnt jointly with the TTS
training; and (3) context at the utterance-level or at the word-
level.

We will show that: either textual or acoustic representa-
tions of context can significantly improve speech naturalness,
and a combination of both yields the best results; representa-
tions extracted with large pre-trained models outperform rep-
resentations extracted using jointly-trained model components;
and, word-level representations seem to be better matched to
textual features, while an utterance-level representation is bet-
ter for acoustic features.

10.21437/SSW.2021-36
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Figure 1: System diagram. The baseline architecture is FastPitch [21] which we augment with a Context Method (in red) whose output
is summed to the embeddings at the encoder input. The Context Method is one of the 4 possible models shown in Figures 2 and 3. L is
the length of the current sentence (in phones). F the duration of the output (in frames). U denotes upsampling from phones to frames.

2. Experimental design
2.1. Baseline

Our baseline model is FastPitch [21], which comprises
Transformer-based encoder and decoder, with explicit duration
and Fp predictors. Input symbols (phonemes in the current
work) and their positional encoding are embedded, summed,
and input to the encoder. Fp is embedded and summed to the
encoder output before going into the decoder during training.
The duration of each input symbol determines the upsampling
between encoder output and decoder input. Fp is modelled
per-input symbol, with per-speaker mean/variance normalisa-
tion. During training, ground-truth values of Fy and duration
are used, whilst a predictor is trained for each of them. For
inference, predicted values are used.

FastPitch was selected because it is fast and stable in both
training and inference, and has an open source implementation
from the original author [22]. All models in the current work
were trained from scratch for ~77k iterations. To vocode the
generated mel spectrograms to waveforms, we used the Wave-
Glow [23] checkpoint included with the FastPitch implementa-
tion, which has been trained on the LISpeech corpus [24].

To condition FastPitch on previous sentence context, we
add a module that provides a representation that is summed to
the encoder inputs, labelled as Context Method in Figure 1. This
location was selected as the best place to inject context into the
model in prototyping experiments.

2.2. Context features and representations

We compare acoustic vs. textual features, each of which can
be input to either a large pre-trained model, or a model jointly
trained with the TTS model, to create a Context Representation.

Acoustic: we use the same mel spectrograms extracted for
training. As in FastPitch [21], these are 80-band mel spectro-
grams extracted with a window length of 1024 samples 256 hop
size. For the jointly-learnt condition, a Context Representation
is learnt from the mel spectrograms as described in Section 2.3.

For the pre-trained condition, the mel spectrogram is used
to obtain a Context Representation from a large pre-trained
model. We use the Deep Spectrum [25, 26], which was found
in our previous work to be capable of encoding global acous-
tic characteristics [27]. It extracts a fixed-dimension vector by
treating the mel spectrogram as an image and inputting it to a
large-scale image classification model. We use the implementa-
tion from the original authors [28], using layer fc2 of the VGG-
19 model to obtain a 4096-dim vector. One vector can be ob-
tained for the whole utterance, or for each of a sequence of fixed
windows (which, in our experiments, will depend on the word-
level or utterance-level condition, see Section 2.3).
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Text: we use two types of features derived from the text:
phonetic transcriptions for the jointly-trained condition and
word tokens for the pre-trained one. To jointly-learn a Context
Representation, we use the phonetic transcription of the previ-
ous sentence. Phonetic transcriptions are obtained as for all the
training data for the models (Section 2.4), and use 47 symbols
including phones and punctuation. Word or syllable boundaries
are not included in the transcription.

To obtain a context representation from a pre-trained
model, we use BERT, and therefore, the context features used as
input correspond to text words (or tokens). BERT embeddings
are extracted using an off-the-shelf model in the transformers
Python library [29]. 768-dim vectors at the utterance-level are
obtained by averaging the activations of second to last hidden
layer, or at the word-level by summing the activations of the
last four layers of the model [30].

We decided to use a phonetic transcription for the jointly-
learnt condition rather than textual words or tokens as it seemed
unlike that the Context Method would be able to learn a re-
lationship over sparse combinations of words for our training
data (which is why large models as BERT are required to en-
code such relationships).

2.3. Context methods

The third design choice we are interested in is whether to rep-
resent context at utterance- or word-level. We anticipate that
the model will learn global prosodic effects from utterance-
level representations, and local effects from word-level rep-
resentations. The utterance-level representations are a fixed-
length vector that is constant for every encoder step. In contrast,
the word-level method outputs a representation that potentially
varies for every encoder step.

Whilst it is desirable to maintain the most similar model
architecture for all combinations of design choices, the differ-
ences in resolution and nature of the representations do entail
some differences, illustrated in Figures 2 and 3. In both figures,
Context Features are always extracted from the previous sen-
tence. The resulting Processed Context Representation is the
one finally added to the encoder inputs in Figure 1, condition-
ing the current sentence.

2.3.1. Using an utterance-level representation

Utterance-level Context Methods make use of Global Style To-
kens [20] which, as we have already shown [19], can be used
to represent context at the utterance-level and have been used
in TTS for diverse tasks [31, 32, 33]. GSTs are a set of ran-
domly initialized tokens (vectors). Multi-head attention is used
to learn the relevance of each token for every training utterance.
Since the tokens are constant, they can be thought of as labels,
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Figure 2: Context Methods for extracting an utterance-level
representation of context. As described in Section 2.2, for the
pre-trained condition, Context Features correspond either to
mel spectrograms (Lc = frames, D = 80) input to a Deep Spec-
trum pre-trained model, or to text word tokens (Lc = word to-
kens, D = embedding dim) input to BERT. Because pre-trained
models output Context Representations with a different dimen-
sion, a linear layer (circle-L) is used to reduce dimensionality.
For the jointly-learnt condition, mel spectrogram (Lc = frames,
D = 80) or phonetic transcription (Lc = phones, D = embed-
ding dim) are the Context Features. While pre-trained models
(PT model) extract a single vector Context Representation al-
ready, for the jointly-learnt condition a single vector Context
Representation is obtained through a Context Encoder. Finally,
for both conditions, a Processed Context Representation is ob-
tained by applying GST.

with attention ‘labelling’ the data in unsupervised fashion.

GST takes as input a fixed-dimension vector. The repre-
sentations obtained from pre-trained models (Deep Spectrum
or BERT) can be obtained at the utterance-level, and therefore
are simply reduced in dimensionality before GST. In contrast,
the representations obtained from jointly-trained models must
be summarised into a single vector. We use a Context Encoder
(lower part of Figure 2) with the same architecture as the ref-
erence encoder in [20]. We train GST with 10 tokens and 8
heads to output a 384-dim vector. We use the implementation
provided by [34].

2.3.2. Using a word-level representation

Figure 3 explains how the word-level Context Methods create
a Context Representation from the previous sentence, for each
word in the Current Sentence, which has the potential to encode
local prosodic phenomena.

Pre-trained models output Context Representations at the
word-level (or pseudo-word-level for Deep Spectrum) already.
For the jointly-learnt condition, the Context Features are first
processed by a block of convolutional layers with the same ar-
chitecture as the transformer (1D conv > Relu > 1D conv >
summed to the residual > layer norm). Then, word-level res-
olution is obtained by averaging frames or phones within word
boundaries.

Once the Context Representation is obtained, attention is
used to gather elements of it and potentially re-order them in
a way that is relevant for the Current Sentence. Finally, the
new Processed Context Representation is simply added to the
encoder inputs without further processing.

207

Context Context a Conte;(tt'
Features Representation epresentation
PT —
o e
(Lc, D) “(We,384)  gather (W, 384) (L, 384)
’ e 3

Current Additive | max _ 7

sentence attention | weights 1
— (W)
(L, 384) (W, 384)

Jointly-learnt Processed
Context Context A Conte;(tt.
Features Representation epresentation

Conv — ]

® o
(Lc, D) (Wc,384)  gather (W, 384) (L, 384)
c,

Current Additive | max _ |3

sentence attention | weights P
. ﬁ (W)
Q ]
(W, 384)

(L, 384)

Figure 3: Context Methods for extracting a word-level repre-
sentation of context. Context Features correspond to those de-
scribed in Figure 3. Context Representations are now obtained
to match word-like resolution (Wc). For the pre-trained con-
dition, BERT embeddings are obtained for every word token,
while for Deep Spectrum, mel spectrograms are divided into one
second segments (without overlap). As before, these are reduced
in dimensionality by a linear layer (circle-L) to obtain the Con-
text Representation. For the jointly-learnt condition, a block
of convolutions is first applied to learn a Context Representa-
tion, however this module does not affect the resolution of the
features (Lc = frames, for mel spectrograms, Lc = phones, for
phonetic transcription). To obtain a word-level representation
(We), we average (circle-A) using word boundaries. In paral-
lel, word-level representations for the Current Sentence phones
are obtained averaging. Next, the attention mechanism calcu-
lates how relevant each word in the Context Representation is
to each word in the Current Sentence. The maximum attention
weight for each word in the Current Sentence is used to identify
the most relevant word in the Context Representation; the Con-
text Representation of that word is gathered into a sequence of
length W. The resulting Processed Context Representation is up-
sampled (circle-U) to match the length required to sum it to the
encoder inputs.

2.4. Data and pre-processing

All models used phonetized inputs obtained while force-
aligning the data with the Montreal Forced Aligner [35] to ex-
tract the ground-truth durations required to train the duration
predictor and upsample phones to frames, and to obtain the
word boundary information needed for word-level representa-
tions. Out-of-vocabulary words were transcribed using G2P
[36] and punctuation was restored. We obtained Fy contours
using Praat for Python [37] as in FastPitch [21].

We trained and tested all models using LISpeech [24], with
12443 training sentences and 525 test sentences. We follow the
data naming structure to obtain previous-current sentence pairs.
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Figure 4: Listening test results (a) acoustic context alone; (b) text context alone; (c) best models compared with acoustic+text combi-
nations. Horizontal bars connect pairs of systems that are significantly different.

Model Context Context Context

name Feature Representation | Method

DS-utt Acoustic | Deep Utterance
Spectrum

DS-word Acoustic | Deep Word
Spectrum

mel-utt Acoustic | Learnt from | Utterance
mels

mel-word Acoustic | Learnt from | Word
mels

BERT-utt Text BERT Utterance

BERT-word Text BERT Word

Text-utt Text Learnt from | Utterance
phones

Text-word Text Learnt from | Word
phones

Table 1: Summary of models compared in experiments.

3. Evaluation and Results

Testing all combinations of our three design choices resulted in
the 8 models summarised in Table 1. We predicted that text vs
acoustic features, and utterance-level vs word-level representa-
tion, would be complementary, so we also tested some com-
binations. To make evaluation feasible, the listening test was
conducted in three parts: (1) compare the 4 acoustic feature
systems; (2) compare the 4 text feature systems; (3) compare
the best acoustic system, best text system, and two systems that
combine both.

‘We did not know whether acoustic or text context would be
most informative. However, we did hypothesise that acoustic
context would be best represented at the utterance level, and
that text context would be best represented at the word level.

Each of the three listening tests used a MUSHRA-like de-
sign'. and compared 4 models, plus the baseline and the hid-
den reference (vocoded natural speech). The same 25 sen-

'Samples:
https://pilarog.github.io/ssw2021/index.html
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tences were used for all listening tests. Each MUSHRA screen
presented the reference audio, then the 6 samples to be rated,
without text. Participants were instructed to rate the natural-
ness of the synthetic speech. For the acoustic systems, features
were extracted from a natural rendering of the context utterance:
Section 4 comments on the possible effects of using synthetic
speech instead.

We implemented the test online using Qualtrics and re-
cruited participants who self-identified as native speakers of En-
glish and US citizens, using Prolific Academic. Results from
participants who rated any reference sample lower than 50, or
were too fast to complete the task, were discarded. For each
test, the first 20 participants who passed these checks were used
to calculate the results. Each test used different participants.

Statistical significance was determined using the Wilcoxon
signed-rank test with Bonferroni correction. Figure 4 shows the
results for the three tests.

3.1. First listening test: acoustic context

Results for acoustic context are in Figure 4(a) for the systems
listed in the upper 4 rows of Table 1. Only Deep Spectrum fea-
tures at the utterance level were significantly better than base-
line. Although not significant, all other acoustic contexts re-
sulted in slightly higher scores than baseline, with utterance-
level representation tending to be better than word-based.

3.2. Second listening test: text context

Results for the text context are in Figure 4(b) for the systems
listed in the lower 4 rows of Table 1. All models using text con-
text were significantly more natural than baseline. Although
not significantly different between each other, word-level rep-
resentation tended to lead to slightly higher naturalness than
utterance-level.

3.3. Third listening test: best models and combinations

We compared the most effective way to use acoustic context
(DS-utt), the most effective way to use text context (Text-word,
which had the most significant difference to the baseline), and
two combinations of acoustic and text context.



We trained the combinations: DS-utt + Text-word and DS-
utt + BERT-word. Deep Spectrum was clearly the most effec-
tive acoustic feature. Since there was no significant difference
between the models using text context, we included both Text-
word and BERT-word. Results are shown in Figure 4(c). The
system using Deep Spectrum features to derive an utterance-
level representation of acoustic context, with BERT features to
derive a word-level representation of text context, was signifi-
cantly better than baseline.

It is not surprising that neither DS-utt or Text-word were
significantly better than baseline here, even though they were
in the preceding listening tests. MUSHRA ratings are relative,
with an element of ranking, so a different set of systems un-
der comparison (especially a change in the least natural system;
there is no anchor in our tests) will lead to a different rating
space.

3.4. Listening test results analysis

Our results illustrate the benefit of using both acoustic and text
features of the context utterance, individually or in combina-
tion. In every listening test, the baseline was outperformed by
at least one model employing context. DS-utt + BERT-word
was the best combined system, which supports our hypothesis
that acoustic features are most useful when represented at the
utterance level, with text features at the word level. Pre-trained
models generally outperformed jointly-trained ones.

Informally, we observed that the use of context affected the
speech in different ways: in prosody, pauses, and pronuncia-
tion, with the most apparent changes being prosodic in nature.
Although we did not ask participants to directly judge prosody,
it seems likely that they are implicitly doing so, given some of
their comments. At the end of each listening test, we included
an optional comment box. Several participants mentioned how
it was “interesting” or “challenging” to distinguish the different
“inflections” in the samples.

3.5. Qualitative analysis

Our results indicate that context is informative. To confirm this
and to further analyse its effect, we examined differences in the
output when synthesizing the same sentence with different con-
texts. This differs from what was evaluated in the listening tests
of the previous section. Here, we confirm that changes in con-
text produce changes in the output.

Although pronunciation can also be affected by the context,
most of the variation we observed was prosodic. Figure 5 pro-
vides some example Fp contours. In (a), using acoustic context
represented at utterance level, the overall Fp pattern tends to
stay the same, and changing context has a global effect, shifting
Fy or affecting speech rate. In contrast, (b) shows that repre-
senting text context at the word level can modify the position
and strength of prominence. Finally, combining acoustic and
text context in (c) illustrates both effects.

4. Conclusion and future work

Our results provide further evidence that additional context can
improve TTS naturalness, and that the way in which context is
represented matters. Even if context is not used explicitly to
improve prosody, this seems to be the aspect that is affected the
most.

We have shown that both acoustic and text context, when
suitably represented, can significantly improve naturalness, and
that the best results are obtained by combining them. In a
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Figure 5: Illustration of the effect of context for a single sen-
tence synthesized with (a) DS-utt; (b) BERT-word; (c) a com-
bination of both. In each plot, the three Fy contours are the
result of using three different context utterances (the same three
across all plots).

real use-case (e.g., long-form synthesis), acoustic context would
need to be extracted from the previous synthesized utterance.
Although we did not test this condition here, we provide sam-
ples on the companion web page for DS-utt using features ex-
tract from synthesized speech context: degradation appears to
be minimal. Text features have the notable advantage of being
available for future context, although this was not tried here.

Our results indicate that features extracted using large pre-
trained models are more effective than using jointly-trained
models, especially for acoustic features. It could be that the
acoustic relationships between context and current sentence is
very sparse. In contrast, using text features with a jointly-
trained model was comparable (in the second listening test)
to BERT. Very recent work proposes using BERT on phonetic
transcriptions [38], which would be worth trying.

To obtain the best results from a jointly-trained model for
extracting a Context Representation, it might be necessary to
incorporate an extra loss, as in our preliminary work [19]. We
did not include this condition here as the focus was on how best
to represent context rather than on the model itself.

There is also evidence that acoustic features give best re-
sults when represented at utterance level, and text features when
represented at word level. The qualitative analysis in Section 5
suggests that these are associated with producing global and lo-
cal prosodic effects respectively, without having to model these
in an explicit way or through very specific features.

In future work, choice of data and speaker is important [27].
We aim to use more expressive or spontaneous data to better
evaluate the effect of using context.

The listening test in this paper was restricted to measuring
the naturalness of isolated sentences, which were not presented
in context. This was a deliberate choice, but in-context eval-
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ctxt 1
ctxt 2

ctxt 0
ctxt 1
ctxt 2



uation will be a fundamental part of future work. Pioneering
work [39] has tested such an evaluation paradigm, but we be-
lieve that it still needs to be further developed before we can
apply it to our systems, and therefore we are also working on
suitable evaluation methods for speech in context [40].
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