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Abstract 

This study explains the role of economic uncertainty as a bridge between business 
cycles and investors’ herding behavior. Starting with a conventional stochastic dif-
ferential equation representing the evolution of stock returns, we provide a simple 
theoretical model and empirically demonstrate it. Specifically, the growth rate of gross 
domestic product and the power law exponent are used as proxies for business 
cycles and herding behavior, respectively. We find stronger herding behavior dur-
ing recessions than during booms. We attribute this to economic uncertainty, which 
leads to strong behavioral bias in the stock market. These findings are consistent 
with the predictions of the quantum model.

Keywords:  Herd behavior, Business cycle, Economic uncertainty, Quantum model, 
Power law exponent

Introduction
In the twenty-first century, stock trading has predominantly been conducted through 
electronic platforms rather than on the floor. By the end of 2014, approximately 15% 
of the total trading on the New York Stock Exchange was conducted on the floor, with 
the rest handled electronically (Hiltzik 2014). The dominance of anonymous electronic 
trading implies that more trades are independent of others. However, it has been widely 
documented that participants in financial markets mimic other traders’ actions, termed 
“herding” in literature. Herding in the stock market often leads to higher volatility, 
implying greater fluctuations in stock returns (Cont and Bouchaud 2000; Orĺean 1995; 
Banerjee 1993; Topol 1991). Thus, understanding the origins of herding behavior in 
financial markets is critically important for regulators and practitioners.

Our definition of “herding” differs slightly from the conventional one because we focus 
on the tail of the distribution with a scaling exponent. In other words, although inves-
tors are likely to herd within the center to follow the larger group of investors, “local” 
herding among investors who are at the extremes of the distribution is also possible with 
a certain regularity. Previously, most literature has explained “herding” as the general 
tendency of market participants to cluster around the center. For example, some stud-
ies have focused on the co-movement of stock returns using dynamic correlations and 
have defined herding as a high correlation among investors across different markets 
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(Chiang et  al. 2007; Boyer et  al. 2006). Other studies use financial assets following 
extreme market returns to capture herding behavior in financial markets (Sibande et al. 
2021; Kumar et al. 2021; Bouri et al. 2021; Bouri et al. 2019; Demirer et al. 2019; Balcilar 
et al. 2017; Galariotis et al. 2015; Chiang and Zheng 2010; Chang et al. 2000; Christie 
and Huang 1995). Moreover, prior studies on herding in financial markets have mostly 
focused on statistical tests of the relationship between herding behavior and business 
cycles but have failed to explain business cycles as the origin of herding behavior in the 
marketplace.

This study investigates herding behavior in stock returns based on concepts pio-
neered by the physics community. Stock markets exhibit universal characteristics similar 
to physical systems with considerable interacting units, for which several microscopic 
models have been developed (Shalizi 2001; Lux and Marchesi 1999). For example, the 
return distribution presents pronounced tails that are thicker than those of the Gaussian 
distribution (Shalizi 2001; Lux 1996; Mantegna and Stanley 1995). Several models have 
been proposed that phenomenologically show fat-tail distributions induced by investors’ 
herding behavior (Banerjee 1993; Topol 1991). Furthermore, Cont and Bouchaud (2000), 
Orĺean (1995), Banerjee (1993), and Topol (1991) showed that market participants’ 
interactions through imitation can lead to large fluctuations in aggregate demand and 
heavy tails in the distribution of returns. This approach had been formalized as a power 
law exponent at the tail of the distribution with a smaller magnitude associated with 
stronger herding behavior in stock returns (Nirei et al. 2020; Gabaix et al. 2005; Plerou 
et al. 1999; Gopikrishnan et al. 1999), trading volumes (Gabaix et al. 2006; Gopikrishnan 
et al. 2000), and commodity returns (Joo et al. 2020), which have been empirically inves-
tigated. Another stream of literature theoretically explains the power law in firm size dis-
tribution (Ji et al. 2020; Luttmer 2007) and trading volume (Nirei et al. 2020). However, 
these studies are limited to providing a connection between the power law exponent and 
other external factors, such as the business cycles and economic uncertainty.

We contribute to literature by explaining the role of economic uncertainty as a bridge 
between business cycles and investors’ herding behavior. Specifically, we propose a par-
simonious model that employs quantum mechanics as an intermediate step to obtain 
the final solution and justify the power law distribution in stock returns. We start with 
the Fokker–Planck (FP) equation to model the dynamics of stock return distribution and 
derive the Schrödinger equation for a particular external potential (Ahn et al. 2017). The 
form of the potential is postulated based on empirical evidence of the evolution of stock 
returns in the marketplace. The solution suggests the existence of a power law for the 
tail distribution of stock returns. This also predicts a positive association between busi-
ness cycles and the power law exponent. Our model provides new insights into existing 
research that models stock prices using random walks (Bartiromo 2004; Ma et al. 2004), 
quantum oscillators (Ahn et al. 2017; Ye and Huang 2008), quantum wells (Pedram 2012; 
Zhang and Huang 2010), and quantum Brownian motions (Meng et al. 2016).

We provide further empirical evidence on whether herding behavior in stock returns 
is negatively associated with business cycles. Furthermore, business cycles, which are 
often used as proxies for economic growth, are closely related to economic uncertainty, 
whereby it is believed that recessions are accompanied by higher economic uncer-
tainty (Bloom 2014). Moreover, greater economic uncertainty leads to higher levels of 
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uncertainty in the stock market. With greater uncertainty in the stock market, inves-
tors are more likely to mimic others because increased information asymmetry leads to 
fewer investors having confidence in their valuations (Alhaj-Yaseen and Yau 2018; Park 
and Sabourian 2011; Devenow and Welch 1996), amplifying investors’ herding behavior 
in the tail. As hypothesized, we find that herding behavior is stronger during recessions 
than booms and that economic uncertainty causes significant herding behavior.

Data and methodology
Data description

Our sample includes 137 US firms that were continuously included in the Standard & 
Poor’s 500 (S&P 500) index from January 1992 to December 2021.1 We exclude firms 
that either entered or exited the index during our sample period to avoid the influence of 
abnormal trading around entry or exit events (Chen et al. 2004; Lynch and Mendenhall 
1997; Beneish and Whaley 1996; Harris and Gurel 1986; Shleifer 1986). We obtain the 
daily stock return data from the Center for Research in Security Prices with 1,031,914 
firm-day observations for our sample firms. We normalize the return of each firm by 
subtracting its mean and dividing it by its standard deviation over the entire sample 
period to remove heterogeneity in stock return volatility among different stocks (Feng 
et al. 2012; Gabaix et al. 2003). Furthermore, we obtain yearly recession indicators from 
the National Bureau of Economic Research (NBER) and seasonally adjusted US real 
Gross Domestic Product (GDP) growth rates from the Federal Reserve Economic Data. 
As a proxy for economic uncertainty, we adopt Bloom’s (2014) definition of forecaster 
uncertainty as the median of forecasters’ subjective variances. It measures the annual 
average uncertainty of each forecaster. Data for the forecaster probability distribution of 
the GDP growth rate were obtained from the Survey of Professional Forecasters at the 
Federal Reserve Bank of Philadelphia.

Table 1 presents the descriptive statistics of the main variables of this study. The mean 
daily stock return was 0.060%. During our sample period (January 1992 to December 
2021), four years were recessionary periods, including the Dot-com Crash, Global Finan-
cial Crisis, and Coronavirus disease (COVID-19) pandemic. The average annual US real 
GDP growth rate is 2.518%. The forecast uncertainty ranged between 0.290 and 0.538 

Table 1  Descriptive statistics

Variable Obs Mean Std Min Max

Return (%) 1,031,914 0.060 1.987 − 61.047 87.736

NBER recession indicator 30 0.133 0.346 0 1

Annual GDP growth (%) 30 2.518 1.871 − 2.775 6.100

Forecaster uncertainty 30 0.418 0.064 0.290 0.538

1  To check the representativeness of 137 US firms, we calculate the correlation coefficient between the S&P 500 index 
and our sample index. The composite sample index is derived from the average value of all ticker price data. As a result, 
the correlation coefficient is close to 1 (0.947 at the 1% significant level); this result provides supporting evidence for the 
similarity between the S&P 500 and our index. We subsequently investigate the market cap of our sample companies to 
that of the S&P 500. Throughout the test period, our sample’s aggregate market capitalization surpasses half of the total 
market capitalization of the benchmark on average (see Table A1 in the Appendix).



Page 4 of 14Ahn et al. Financial Innovation            (2024) 10:6 

with a sample mean of 0.418 and a standard deviation of 0.064, indicating a symmetric 
distribution around the mean.

This table summarizes the descriptive statistics of our sample data. The sample period 
is from January 1992 to December 2021. We use daily returns of S&P 500 constituent 
stocks. The annual GDP growth rate is the percentage change in US real GDP from the 
preceding year. Forecaster uncertainty is defined as the median of forecasters’ subjective 
variances according to Bloom (2009).

Power law exponent

The universal nature of the power law of returns is widely recognized in financial mar-
kets (Gabaix 2009). An implication of the presence of a power law in economics is the 
increased occurrence of extreme events compared to what would be expected in a 
Gaussian distribution. In other words, according to Gabaix et al. (2005), stock market 
crashes are not outliers of a power law; therefore, analyzing tail distributions can provide 
valuable insights into the regular behavior of the market within the tails and the occur-
rence of extreme events such as herding behavior (Gabaix 2016, 2009). The key to com-
prehending the stock market as a whole can be unlocked by striving to understand the 
power law phenomenon.

Typically, a power law distribution is defined by its counter cumulative density func-
tion, known as the survival function, which is characterized by the scaling exponent ζ . 
Our analysis of herding in stock returns (x) is based on the literature on power law distri-
butions, expressed as

where P(X ≥ x) is the probability that a random variable X is greater than x , F(x) is the 
cumulative distribution function, k is a constant, and ζ is the power law exponent. By 
taking the logarithms of both sides of Eq.  (1), the following linear regression model is 
obtained:

where c is a constant, and ε is the error term following the independent and identically 
distributed normal distribution. The power law exponent is normally obtained as the 
slope ζ of the linear function. Due to the autocorrelation of residuals ε , ζ has an asymp-
totic standard error of ζ (n/2)−1/2 , for which n is the number of observations.

We fit the stock return data in our sample to a power law distribution for each year 
in the sample period. Specifically, for the power law exponents, we take the absolute 
value of the normalized daily stock return in each year to analyze extreme negative 
and positive returns together (Gabaix et al. 2003). We definethe tail of the distribution 
as a region with more than two standard deviations from the mean of the distribution 
(Gabaix et al. 2006; Plerou et al. 1999). We then estimated the power law exponent ζ 
using Eq. (2).

(1)P(X ≥ x) = 1− F(x) = kx−ζ ,

(2)log P(X > x) = c − ζ · logx + ε,
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Theory development
Quantum model

This subsection derives the power law distribution of stock returns from the Schrödinger 
equation, which originates from the FP equation. The model also predicts the relationship 
between the power law exponent and business cycles. Stock return is defined as

where p and x are the stock price and its log return, respectively. The dynamics of stock 
returns are then modeled using the following stochastic differential equation:

where v(x, t) denotes drift, σ(x, t) represents volatility, and Wt is the standard Wiener 
process.

We assume that the drift of stock returns arises from an external potential V (x, t) and 
define

which is analogous to classical kinetics. We further define the diffusion coefficient D(x, t) 
as

The probability density function of x is denoted as ρ(x, t) . According to the FP equation, 
we have

For simplicity, we assume that the diffusion coefficient is constant, that is, D(x, t) = D.
Furthermore, �(x, t) and a Hermitian operator Ĥ are introduced as follows:

where C is the normalization constant and Ĥ is the Hermitian operator,

Then, we define imaginary time τ = −iℏt and a mass m = ℏ
2

2D
 and Eq. (3) can be rear-

ranged into the well-known Schrödinger equation,

x = ln pt − ln pt−�t ,

dx = v(x, t)dt + σ(x, t)dWt ,

v(x, t) = −∂V (x, t)

∂x
= −Vx,

D(x, t) = 1

2
σ 2(x.t).

(3)∂

∂t
ρ(x, t) = ∂2

∂x2
(D(x, t)ρ(x, t))+ ∂

∂x
(Vxρ(x, t)).

�(x, t) = ρ(x, t)√
ρs(x)

,

L̂ρ(x, t) = −
√
ρs(x)Ĥ�(x, t),

ρs(x) =
1

C
exp

(
−V (x)

D

)
,

C =
+∞
∫

−∞
exp

(
−V (x)

D

)
dx,

Ĥ = 1

2
Vxx +

1

4D
V 2
x − D

∂2

∂x2
.
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where U(x) is the effective potential:

We chose the functional form of the external potential V (x) based on empirical evi-
dence. Some studies show a contrarian effect on stock markets worldwide (Shi and Zhou 
2017; Clare et al. 2014; De Bondt and Thaler 1985). Relatively high or low stock returns 
revert, indicating a market force that always draws short-run fluctuations back to the 
long-run equilibrium. Thus, we define the potential as V (x) = α|x − a| . If stock returns 
deviate from the equilibrium return a , the market force from the potential will draw 
back stock returns at the speed of α . Given V (x) = α|x − a| , we have

where the extra drift α
2

4D does not affect the wave function (Bracewell 2000). Following 
this, we can solve the time-independent Schrödinger equation which is given by:

The solution is well known with energy E = −mα2

2ℏ2  (Griffiths 2005):

Hence, the general solution of Eq. (4) is

Using �(x, τ) , ρs(x) , τ = −iℏt , and m = ℏ
2

2D
 , we obtain

where A is the normalization multiplier. After normalization, the final form of the solu-
tion is a Laplace distribution:

From Eq. (5), we obtain the tail distribution of log returns. We define the gross return 
as

In the right tail satisfying y > ea , we have

(4)iℏ
∂

∂τ
�(x, τ) = Ĥ�(x, τ ) ≡

(
− ℏ

2

2m

∂2

∂x2
+U(x)

)
�(x, τ),

U(x) = −Vxx

2
+ V 2

x

4D
.

U(x) = −αδ(x − a)+ α2

4D
,

Eψ(x) = Ĥψ(x) = − ℏ
2

2m

∂2

∂x2
ψ(x)− αδ(x − a)ψ(x).

ψ(x) =
√
mα

ℏ
exp

(
−mα

ℏ2

)
|x − a|.

�(x, τ) = Aψ(x)e−
iEτ
ℏ = A exp

(
−mα

ℏ2
|x − a| + mα2τ

2ℏ3
i

)
.

ρ(x, τ) =
√

ρs(x)Aψ(x)e−Et = A

√
α

2D
exp

(
− α

D
|x − α| + α2t

4D

)
,

(5)ρ(x) = α

2D
e−

α
D |x−α|.

Y = pt

pt−�t
= ex.
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Hence, our result follows power law distribution in the tail, and the power law expo-
nent is αD.

The formula for the power law exponent could be useful for connecting herding behav-
ior in stock returns to business cycles. Recessions are accompanied by economic uncer-
tainty (Bloom 2014). Therefore, the market return moves slowly toward equilibrium 
(a smaller α ) and becomes more volatile (a larger D ). Hence, recession leads to strong 
herding behavior, resulting in a smaller α/D . On the contrary, during booms, the market 
return reverts quickly toward equilibrium with a larger α with less volatility, implying a 
smaller D . Thus, a boom leads to a larger power law exponent and, thus, weak herding 
behavior. Therefore, our model predicts a positive association between business cycles 
and power law exponent.

Hypothese
Most studies document asymmetric market movements with respect to economic 
cycles. The literature on return volatility documents substantial volatility clusters dur-
ing economic downturns (Choudhry et al. 2016; Corradi et al. 2013). Additionally, it is 
widely accepted that analysts’ forecasts are more dispersed during economic troughs 
than during peaks (Amiram et al. 2018; Hope and Kang 2005). Thus, our first testable 
hypothesis is as follows:

Hypothesis 1  The herding behavior in stock returns is stronger during recessions than 
in booms.

To test this hypothesis, we first calculated the power law exponents during booms and 
recessions and compared their magnitudes. To examine the relationship between busi-
ness cycles and herding behavior further, we ran the following regression model:

where ζt and gt are the power law exponent and GDP growth rate, respectively, in year 
t . A significantly positive β indicates that GDP growth rate has explanatory power for 
herding behavior, as hypothesized.

Herding assumes a certain degree of coordination between groups of agents. This 
coordination may arise in different ways, either because agents share the same infor-
mation or follow the same rumor (Cont and Bouchaud 2000). Herding may be stronger 
when financial markets experience extreme uncertainty (Bouri et al. 2019). When infor-
mation asymmetry is minimal, market participants do not necessarily need to observe 
or follow other participants’ transactions. However, with severe information asymmetry, 
traders are more inclined to imitate other participants to compensate for missing infor-
mation through the behavior of their counterparts (Alhaj-Yaseen and Yau 2018; Park 
and Sabourian 2011; Devenow and Welch 1996). Moreover, extant literature has docu-
mented a significant relationship between economic growth and economic uncertainty. 
Specifically, a low economic growth rate is associated with high economic uncertainty 

P
(
Y ≥ y

)
= P

(
x ≥ lny

)
=

+∞
∫
lny

α

2D
e−

α
D |x−α|dx ∝ y−

α
D .

(6)ζt = α + βgt + εt ,
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(Bloom 2014). Therefore, we conjecture that economic uncertainty (higher volatility) is 
an intermediary linking the business cycle (lower GDP growth rate) and herding behav-
ior (smaller power law exponent). Our second hypothesis is as follows:

Hypothesis 2  Economic uncertainty is the origin of counter-cyclical herding behavior 
in stock returns.

To examine whether economic uncertainty is the intermediary, we test the following 
models:

As a robustness test, we employ the following models:

where ut stands for economic uncertainty in time t . In the first model, we run a regres-
sion of economic uncertainty on the GDP growth rate. In the second model, we use eco-
nomic uncertainty as an explanatory variable for the power law exponent, that is, as a 
proxy for herding behavior. For the remaining models, we test whether business cycles 
and herding behavior are connected through economic uncertainty by examining fac-
tor loading on the dummy variable: (i) D1t = 1 when gt > g  and ut < u , and otherwise 
equals zero; and (ii) D2t = 1 when gt < g  and ut > u , and otherwise equals zero.

Empirical results
The annual power law exponent is shown in Fig. 1. The Gray-shaded areas indicate years 
of economic recessions based on the NBER recession indicator. As evident by the figure, 
the power law exponents are generally smaller in recession years than in non-recession 
years.

We begin our analysis by confirming prior findings in literature. Overall, most stud-
ies on the power law distribution of stock returns, such as those of Feng et  al. (2012) 
and Gopikrishnan et al. (1999), report a range of power law exponents between two and 
four. Our estimated power law exponent was approximately 3.138 with an R2 of 97.75% 
for the entire sample period, which is consistent with the findings of prior studies. It 
has been suggested that the degree of herding in the tail is stronger when the power law 
exponent is smaller in magnitude (Feng et al. 2012; Cont and Bouchaud 2000; Eguiluz 
and Zimmermann 2000).

Further we examined the link between herding behavior and business cycles by 
comparing power law exponents during recessions with those in booms. For this 
purpose, power law exponents are divided into two groups, booms and recessions, 
according to the NBER recession indicator. As is evident in Table  2, the power law 

(7)ut = α + βgt + εt ,

(8)ζt = α + βut + εt ,

(9)ζt = α + βD1t + γD2t + εt ,

(10)ζt = α + βgt + γD1t + δD2t + εt ,

(11)ζt = α + βut + γD1t + δD2t + εt ,
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exponents are significantly larger during booms than during recessions. The differ-
ence in power law exponents during booms and recessions is significant at the 1% 
level for the mean based on the t-test and the median based on the Wilcoxon rank-
sum test. As a smaller power law exponent indicates stronger herding, we can firmly 
conclude that there is stronger herding in stock returns during recessions than during 
booms.

We then estimated the regression model from Eq.  (6) using power law exponents 
and GDP growth rates. The results are shown in Model (1) of Table 3, where we use 
the heteroskedasticity and autocorrelation consistent estimator for the standard error 
(Newey and West 1987). The GDP growth rate is significantly and positively associ-
ated with the power law exponent at the 1% significance level. If the GDP growth rate 
decreases by one percentage point, the corresponding power law exponent drops by 
0.159, intensifying herding behavior in stock returns.

Additionally, we tested whether economic uncertainty links business cycles and 
herding behavior. The results are summarized in Table  3. Models (2) and (3) pre-
sent the estimation results of Eqs. (7) and (8), respectively. In Model (2), the GDP 

Fig. 1  The power law exponent, economic uncertainty, and business cycle. The solid line is the annual 
power law exponent calculated by aggregating daily normalized S&P 500 stock returns, and the dashed line 
is the annual forecaster uncertainty according to Bloom (2009). The shaded areas indicate recession periods 
identified by the NBER recession indicator

Table 2  Power law exponents in booms and recessions

The first column shows the average power law exponents and their standard errors during the boom and recession periods. 
The p-values for the t-test of equality between means and Wilcoxon rank-sum z-test of equality between medians are 0.001 
and 0.005, respectively

Mean Median

Boom 3.837 ± 0.097 3.755

Recession 2.843 ± 0.196 2.810
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growth rate is significant and negatively associated with forecaster uncertainty, 
which is our proxy for economic uncertainty. The adjusted R2 is approximately 30%, 
indicating that GDP growth rate explains a significant portion of economic uncer-
tainty. In Model (3), forecaster uncertainty is significant and negatively associated 
with the power law exponent. Combining the results from Models (2) and (3), eco-
nomic uncertainty appears to be the link between the GDP growth rate and herding 
in stock returns.

In Models (4)–(6), we present the results from the estimations of Eqs. (9)–(11). In par-
ticular, the factor loading on the dummy variable indicates the importance of economic 
uncertainty on top of business cycles in explaining herding behavior in stock returns. In 
Models (5) and (6), Dummy2 ( D2t = 1 when gt < g  and ut > u , and otherwise equals 
zero) is highly significant. Accordingly, we conclude that GDP growth rate explains 
herding behavior in stock returns through economic uncertainty. In other words, ris-
ing uncertainty accompanied by low economic growth significantly accelerates herding 
behavior in stock returns.2

Table 3  GDP growth rate, economic uncertainty, and the power law exponent

This table displays the regression results using annual data. Model (1) is a regression of the power law exponent on the US 
GDP growth rate. Model (2) is a regression of forecaster uncertainty on the GDP growth rate. Model (3) is a regression of the 
power law exponent on forecaster uncertainty. Models (4)–(6) are regressions of the power law exponent on two dummy 
variables: Dummy1 is defined as 1 when the GDP growth rate is higher and forecaster uncertainty is smaller than the sample 
average, and zero otherwise. Dummy2 is defined as 1 when the GDP growth rate is lower and forecaster uncertainty is larger 
than the sample average, and zero otherwise. The variance inflation factors (VIF) of Models (4)–(6) are less than 5, implying 
that multicollinearity does not reduce the precision of our estimated coefficients and cannot weaken the statistical power 
of our regression models (Table 7). The numbers within parentheses are z-statistics calculated with heteroskedasticity and 
autocorrelation-consistent standard errors, according to Newey and West (1987). *, **, and *** represent significance at the 
10%, 5%, and 1% levels, respectively. PLE denotes the power law exponent.

(1) (2) (3) (4) (5) (6)
PLE Forecaster 

uncertainty
PLE PLE PLE PLE

GDP growth rate 0.159*** − 0.020*** 0.112**

(5.614) (− 3.477) (2.309)

Forecaster uncertainty − 3.436*** − 1.838*

(− 4.862) (− 1.683)

Dummy1 − 0.018 − 0.014 − 0.171

(− 0.130) (− 0.114) (− 1.054)

Dummy2 − 0.556*** − 0.270* − 0.506**

(− 2.816) (− 1.658) (− 2.504)

Constant 3.306*** 0.470*** 5.143*** 3.935*** 3.537*** 4.750***

(37.792) (37.538) (18.214) (26.764) (23.389) (10.080)

Observations 30 30 30 30 30 30

R
2 0.255 0.358 0.139 0.212 0.281 0.225

Adjusted R2 0.228 0.335 0.108 0.153 0.198 0.135

2  We consider an inflation rate and federal funds rate as a control variable and still obtain results consistent with Table 3 
(see Table 5 in the Appendix). We also deal with media coverage as a control variable using the “Economic Policy Uncer-
tainty Index,” which uses news coverage about policy-related economic uncertainty (Baker et al. 2016). We find that it 
has a strong correlation coefficient with our uncertainty index, the forecaster uncertainty index; therefore, we do not 
include this index as a control variable (see Table 6 in the Appendix).
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Conclusion
This study examined the relationship between business cycles and herding behavior in 
the US stock market. The recession indicator and GDP growth rate are used as prox-
ies for business cycles, whereas herding behavior is represented by the power law expo-
nent in stock returns. First, we propose a theoretical model of stock returns employing 
quantum mechanics. Our model predicts a positive association between business cycles 
and the power law exponent and economic uncertainty links business cycles and herd-
ing behavior. We then tested these predictions using empirical data. We find evidence 
of stronger herding during recessions than booms. Specifically, the GDP growth rate 
can significantly explain the herding behavior in stock returns. Using forecaster uncer-
tainty as a proxy for economic uncertainty, we confirm that economic uncertainty links 
business cycles with herding behavior in stock returns. Greater economic uncertainty 
is accompanied by a recession, which leads to increased information asymmetry, for 
example, higher dispersion in analysts’ forecasts. Accordingly, investors are more likely 
to mimic others because of lower confidence in their valuations. Finally, information 
asymmetry leads to greater volatility in firms’ activities and drives more extreme stock 
returns, resulting in smaller power law exponents and implying stronger herding behav-
ior in stock returns.

The findings of this study provide a clear link between herding behavior and business 
cycles. The results underscore the importance of monitoring herding activities during 
periods of increased uncertainty accompanied by low economic growth. At the macro 
level, an increase in policy uncertainty can lead to a decline in economic growth (Baker 
et al. 2016). Therefore, policymakers should consider how policy uncertainty influences 
investors’ decision-making (Ahn et al. 2021) in the financial market. For individual inves-
tors, our results provide a way to formulate hedging strategies to mitigate downside risk 
in their investment portfolios during a recession. Our empirical setting is designed to 
confirm the results of the theoretical (toy) model. Future studies can extend our empiri-
cal setting to show (i) the robustness of our main results by adding various control vari-
ables and (ii) the robustness of the transmission channel.

Appendix
See the Tables 4, 5, 6 and 7.

Table 4  Market capitalization

Sample S&P500/
Total S&P500 × 100 
(%)

1996.1.2 54

2002.1.2 60

2012.1.2 59

2021.1.4 40

Average 53
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Table 5  GDP growth rate, economic uncertainty, and power law exponent with control variables 
(inflation and federal funds rates)

The numbers in parentheses are z-statistics calculated with heteroskedasticity and autocorrelation consistent standard 
errors according to Newey and West (1987). *, **, and *** represent significance at the 10%, 5%, and 1% levels in the one-
tailed test, respectively. PLE denotes the power law exponent

(1) (2) (3) (4) (5) (6)
PLE Forecaster 

uncertainty
PLE PLE PLE PLE

GDP growth rate 0.173*** − 0.012*** 0.129**

(3.168) (− 2.610) (1.779)

Forecaster uncertainty − 3.967*** − 2.151*

(− 3.115) (− 1.410)

Dummy1 − 0.046  − 0.002 − 0.180

(− 0.339) (− 0.015) (− 1.132)

Dummy2 − 0.560***  − 0.275* − 0.513***

(− 3.214) (− 1.584) (− 2.703)

Inflation rate − 0.056 − 0.002 0.023 − 0.001  − 0.058 − 0.020

(− 0.766) (− 0.226) (0.251) (− 0.036) (− 0.835) (− 0.367)

Federal funds rate 0.002 − 0.015*** − 0.030 0.009  − 0.007 − 0.006

(0.058) (− 3.088) (− 0.623) (0.248) (− 0.174) (− 0.163)

Constant 3.394*** 0.492*** 5.385*** 3.929*** 3.643*** 4.951***

(23.137) (35.396) (7.532) (24.297) (30.029) (6.299)

Observations 30 30 30 30 30 30

R2 0.262 0.585 0.146 0.212 0.290 0.226

Adjusted R2 0.177 0.537 0.047 0.086 0.143 0.065

Table 6  Correlation between news-based policy uncertainty index and forecaster uncertainty

*** Indicates 1% statistical significance based on the Pearson correlation coefficient

News-based policy uncertainty index Forecaster 
uncertainty

News-based policy uncertainty index 1.000

Forecaster uncertainty 0.489*** 1.000

Table 7  VIF tests

The VIF measures the extent of multicollinearity among explanatory variables in models (4)–(6) of Table 3

(4) VIF

Dummy 1 2.04

Dummy 2 2.04

Mean VIF 2.04

(5) VIF

Dummy 1 2.04

Dummy 2 2.88

GDP Growth rate 1.83

Mean VIF 2.25

(6) VIF

Dummy 1 3.35

Dummy 2 2.18

Forecaster uncertainty 3.05

Mean VIF 2.86
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