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SUMMARY
This paper explores the applicability of Ensemble Kalman Inversion (EKI) with level-
set parameterization for solving geophysical inverse problems. In particular, we focus
on its extension to induced polarization (IP) data with uncertainty quantification. IP
data may provide rich information on characteristics of geological materials due to its
sensitivity to characteristics of the pore-grain interface. In many IP studies, different
geological units are juxtaposed and the goal is to delineate these units and obtain es-
timates of unit properties with uncertainty bounds. Conventional inversion of IP data
does not resolve well sharp interfaces and tends to reduce and smooth resistivity vari-
ations, while not readily providing uncertainty estimates. Recently, it has been shown
for DC resistivity that EKI is an efficient solver for inverse problems which provides
uncertainty quantification, and its combination with level set parameterization can de-
lineate arbitrary interfaces well. In this contribution, we demonstrate the extension of
EKI to IP data using a sequential approach, where the mean field obtained from DC
resistivity inversion is used as input for a separate phase angle inversion. We illustrate
our workflow using a series of synthetic and field examples. Variations with uncertainty
bounds in both DC resistivity and phase angles are recovered by EKI, which provides
useful information for hydrogeological site characterization. While phase angles are less
well-resolved than DC resistivity, partly due to their smaller range and higher per-
centage data errors, it complements DC resistivity for site characterization. Overall,
EKI with level set parameterization provides a practical approach forward for efficient
hydrogeophysical imaging under uncertainty.

Key words: Ensemble Kalman methods – Induced Polarization – Inversion – Data
Assimilation – Uncertainty Quantification – Level sets.

1 INTRODUCTION

1.1 Motivation

The advances of hydrogeophysics have been motivated by a
better quantitative understanding of the subsurface hydro-
logical parameters inferred from geophysical data (Binley
et al., 2015). A key motivation for hydrogeophysics is to
leverage the high spatial coverage and imaging capabilities
to provide insights to describe subsurface structure and pro-
cess. However, conventional geophysical inversions naturally
yield smooth images due to spatial regularisation. The way
the inverse problem is posed also causes the reporting of un-
certainty estimates to be frequently ignored in geophysics.
We seek to develop and demonstrate an efficient and flexi-
ble inversion method that is suitable for different geophys-
ical data and provides some estimates of uncertainty. Such
understanding of uncertainty is related to the analysis of in-
formation content (or data worth) (JafarGandomi & Binley,

2013) and is an emerging field of research in hydrogeophys-
ical studies.

1.2 Geophysical inversion

Geophysical inversion is typically posed as an optimization
problem: the goal is to update model parameters until the
value of an objective function decrease to a certain pre-
defined threshold. Typically, the model values are the geo-
physical properties at each point (or grid) of the model do-
main, while the objective function is the sum of data (in-
versely weighted by data uncertainty) and regularized model
misfits. The relative strength of the two terms are also con-
trolled by a scalar weight, which is usually determined by
line search. The regularization is needed because this mesh-
based inversion is under-determined and ill-posed. A stan-
dard choice of regularization is to apply a roughness filter
for neighbouring grid cells and this approach is commonly
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known as smoothness-constrained inversion (SCI). SCI is an
extremely robust and efficient method and thus is often seen
as the default method for inversions of electrical geophysical
data. However, this typical inversion approach has two main
disadvantages. The first is that the standard choice for regu-
larization often yields unrealistic overly-smooth estimates of
geophysical properties that cannot capture sharp discontinu-
ities (e.g. from the presence of different geologic properties)
that are commonly found in real geophysical settings. The
second disadvantage of SCI is that its deterministic formu-
lation does not provide measures of the uncertainty of the
resultant model. Uncertainty in model estimates arises not
only from the presence of measurement errors but also from
the inherent non-uniqueness of the solution to the inverse
problem.

Many approaches have been developed to circumvent
the issues of SCI. This includes disconnecting the smooth-
ness constraints at known locations (Slater & Binley, 2006)
or re-running SCI with bootstrapping subsets of the dataset
to provide a measure of uncertainty (Yang et al., 2014;
Fernández-Muñiz et al., 2019). However, to date, most in-
version approaches generally only account for uncertainty
that arises from measurement errors but not the model pa-
rameter uncertainties (Tso et al., 2017, 2019). Alternative
regularisation approaches that allow enhancements of sharp
interfaces within an image (e.g. Farquharson & Oldenburg,
1998), as well as geostatistical approaches (Bouchedda et al.,
2017; Yeh et al., 2002), have also been explored.

Other global techniques, such as those discussed in Sen
& Stoffa (2013), have also been used for geophysical in-
versions. For example, Bijani et al. (2017) used a genetic
algorithm-based Pareto Multi-Objective Global Optimiza-
tion (PMOGO) method to perform joint inversions and
showed great flexibility and promising results avoiding min-
imal entrapment. There have also been attempts to improve
SCI from some of its limitations, such as using convolutional
wavelet transform to perform SCI inversion on the feature
space (Pang et al., 2020), and the use of area-to-point krig-
ing to obtain fine-scale geophysical properties fields from
resolution-limited SCI images (Nussbaumer et al., 2019). Fi-
nally, complex priors, such as those from training images,
can be encoded in a low-dimensional space to aid inversion
(Lopez-Alvis et al., 2022).

1.3 Bayesian Inversion

The Bayesian approach to inverse problems (see e.g. Stuart,
2010) provide us with a framework to quantity uncertainty
in the solution of an inverse problem which, in turn, can be
posed in terms of computing the posterior distribution of the
unknown model parameters given observed data. Since the
posterior is, in general, not available in closed form, sampling
methods such as Markov Chain Monte Carlo (MCMC) or
Sequential Monte Carlo (SMC) are required to approximate
statistics of the posterior via Monte Carlo estimates com-
puted from samples. However, in order to compute accurate
statistics via fully-Bayesian sampling methods, very long
chains are often required to obtain a sufficiently large num-
ber of de-correlated samples (Iglesias et al., 2013a, 2018).
This is particularly the case for a wide class of problems in
which the parameter that we wish to infer (and hence the
posterior) is defined on a very high-dimensional space that

arises from discretizing partial differential equations (Cotter
et al., 2013). Unfortunately, many geophysical problems fall
in the above class, because the property value of each grid
cell (typically hundred thousands or even millions of them)
needs to be inferred from the data. Since MCMC involves
evaluating the forward model at every step of the chain,
this method is computationally unfeasible for geophysical
settings unless these are either 1D or low-resolution 2D, or
when the geoelectrical properties are parameterized in terms
of a few (i.e. ≈ 10) parameters. In the context of geophysi-
cal inversion, examples of the settings in which MCMC has
been used to provide a fully Bayesian, probabilistic estimate
of the resultant model include the works of Ramirez et al.
(2005) and Irving & Singha (2010), with the former using
voxel-based proposals, and the latter uses a binary facies-
based parameterization.

In order to reduce the computational burden of sam-
pling algorithms for geophysical inverse problems, recent
work (Kang et al., 2021) has used deep learning (e.g. varia-
tional autoencoders) to build computationally efficient sur-
rogates of the forward model that can be used within the
sampling algorithm. Furthermore, variational inference ap-
proaches (Zhang & Curtis, 2020) can be employed to charac-
terize the functional form of the posterior and to estimate its
key statistics (e.g. mean and variance), rather than obtain-
ing samples from it. Bayesian evidential learning (Scheidt
et al., 2018) has been proposed to reduce the number of di-
mensions and map the constitutive statistical relationships
between the reduced model parameters and the reduced data
using canonical correlation analysis (CCA) in order to allow
fast sampling of the posterior space (e.g. Hermans et al.,
2016; Thibaut et al., 2022; Michel et al., 2020, 2022).

The performance of Bayesian methods is highly depen-
dent on the prior distribution which plays a role analogous
to that of regularization in deterministic approaches. While
Gaussian priors can be a computationally convenient choice
to characterize geophysical properties, the resulting samples
from the prior (and hence the posterior) are overly smooth.
More recent approaches have shown the use of geostatistics
(Aleardi et al., 2021), training images (Oware et al., 2019),
adaptive zone boundary delineation (de Pasquale et al.,
2019), or Vornoi cells (Galetti & Curtis, 2018) can provide
a more flexible approach to generate prior samples of geo-
physical properties that have substantially different values
on regions with unknown geometries.

1.4 Ensemble Kalman Inversion

Ensemble Kalman Inversion (EKI) is a computational
framework for inverse problems. It comprises a class of al-
gorithms that can be seen as derivate/Jacobian-free optimi-
sation methods (Iglesias, 2016; Iglesias et al., 2013b) as well
as sampling schemes that produce a Gaussian approxima-
tion of the posterior (Iglesias et al., 2018; Iglesias & Yang,
2021). We refer the reader to the papers by Calvello et al.
(2022) and Chada et al. (2021) which include extensive re-
views with different variants formulations and recent theo-
retical developments. Methods that are similar to EKI in-
clude Ensemble Smoother with multiple data assimilation
(Emerick & Reynolds, 2013) and Kalman Ensemble Gener-
ator (Bobe et al., 2020). Here we adopt the Bayesian per-
spective of EKI and consider the classical EKI algorithm of
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Iglesias & Yang (2021). This algorithm starts with an initial
ensemble of samples (often called particles) from the prior
of model parameters. Then, each of these samples is itera-
tively updated according to a Kalman-based formula which
maps the ensemble from the prior into an ensemble from
the approximate posterior. The number of iterations (usu-
ally between 10 or 20 of them) is determined adaptively to
ensure a smooth transition between prior and posterior. At
each iteration, the main computational cost is that of run-
ning the forward model multiplied by the number of particles
(between 102 and 103). Upon convergence, sample statistics
can be computed from the posterior ensemble.

In contrast to fully-Bayesian algorithms (e.g. MCMC)
which are designed to sample from the target (in this con-
text) the posterior distribution, EKI provides only a Gaus-
sian approximation of the posterior. However, EKI does not
suffer from the curse of dimensionality inherent to sampling
methods while providing good approximations of the pos-
terior. Indeed, numerical work on tractable dimensions has
shown that, for a wide range of inverse problems, EKI pro-
vides accurate approximations of the posterior while incur-
ring in a fraction of the cost of fully-Bayesian methods (Igle-
sias et al., 2013b; Iglesias, 2015; Iglesias et al., 2018).

Because of the need to run the forward model for each
ensemble member, the computational cost of EKI is higher
than conventional variational optimization methods such as
SCI. However, as mentioned earlier, EKI does not require the
Jacobian of the forward map (i.e. the input-output map that
arises from running the forward model). Without the limit-
ing requirement for Jacobians of the forward map, fresh ways
to tackle the ill-posedness of geophysical inverse problems
via realistic (often non-differentiable) parameterizations of
the unknown quantities become possible. This advantage of
EKI was exploited recently (Tso et al., 2021) where EKI
approach with level set parameterization was used to in-
vert ERT data. Instead of directly estimating the geophys-
ical properties everywhere in the model domain, Tso et al.
(2021) introduced a level-set function (also defined every-
where) that parameterized the geometry of different zones.
By thresholding the level-set function, we obtained a (non-
differentiable) map that acted as a classifier for a set of un-
known zones/regions with different, and also unknown, val-
ues of geophysical properties. The inverse problem was then
posed in terms of estimating the level-set function as well
as the resistivity values on each zones. Using EKI to solve
this inverse problem enabled us to delineate the geometry
of structures in a geophysical property field.

One of the main advantages of the level-set parameteri-
zation used in Tso et al. (2021) is that it can describe a wide
range of arbitrary geometries. However, this level of gener-
ality means that the inverse problem is high-dimensional
because the level-set at every grid cell of the computational
domain needs to be estimated. Fortunately, as stated earlier,
the EKI framework is very robust and can handle very large
problems as shown in Tso et al. (2021).

Using level-set parameterizations within EKI for generic
inverse problems was first proposed in Iglesias et al. (2016)
and further studied by Chada et al. (2018). This framework
has also been applied by Muir & Tsai (2020) and Muir et al.
(2022) in deep-earth geophysics applications. The level-set
parameterization within EKI was also used recently to infer
permeability and porosity during resin transfer moulding

for composite manufacturing (Matveev et al., 2021; Iglesias
et al., 2018) as well as to infer elastic properties of biological
tissue via magnetic resonance elastography (Iglesias et al.,
2022).

1.5 Induced Polarization

Geoelectrical methods are one of the most commonly used
techniques for near-surface geophysical investigations. Elec-
trical resistivity measurements are sensitive to both pore
volume and pore surface area properties, but their utility
for permeability (k) estimation, for example, is inherently
limited because the two contributions cannot be separated;
meanwhile, induced polarization (IP) has unique sensitivity
to interconnected pore surface area (Slater, 2007; Kemna
et al., 2012). The past two decades has seen a steady growth
in IP applications for subsurface investigations, including
hydrological (e.g. McLachlan et al., 2020; Kemna et al.,
2004; Rucker et al., 2021), engineering (e.g. Slater & Binley,
2006; Revil et al., 2020), and biogeochemical (Kessouri et al.,
2019; Saneiyan et al., 2019; Williams et al., 2005; Ntarla-
giannis et al., 2005) applications. In particular, IP has been
used in a number of studies to quantify the distributions of
k, such as delineating k profiles from cross-borehole IP sur-
veys (Binley et al., 2016), mapping k of a riverbed (Benoit
et al., 2018), identifying the contact of two lithological units
in a river corridor (Mwakanyamale et al., 2012; Slater et al.,
2010), or assess the variation in soil moisture and textu-
ral properties in studies of unstable hillslopes (Revil et al.,
2020). Similarly, IP has been used to delineate the subsur-
face hydrocarbon contamination at a former industrial site
(Flores Orozco et al., 2013).

1.6 Uncertainty propagation

The full value of the unique sensitivity of IP can only be
shown when its inversion can provide some measures of un-
certainty. Unfortunately, such analysis is rarely conducted
for field-scale studies. A number of previous works have used
Bayesian method such as MCMC to model induced polar-
ization (Chen et al., 2012; Madsen et al., 2017; Bérubé et al.,
2017). Few studies have incorporated IP data for Bayesian
hydrogeophysical analysis; however, they tend to use the
smooth inverted resistivity and phase angle images deter-
ministically as input for subsequent Bayesian analysis. For
example, Wainwright et al. (2016) use inverted IP data to
inform probabilistic mapping of biogeochemical hotspots us-
ing an indicator field approach. The extent to which un-
certainty in IP imaging propagate to uncertainty in images
of hydrological properties remain largely unknown. Concur-
rently, there is an interest to understand the way in which
uncertainties in geophysical images are translated to maps of
hydrological properties–this would require an understanding
of the effects of uncertainties in the petrophysical relation-
ships that link geophysical and hydrological variables. This
can be done both numerically (Day-Lewis et al., 2005; Moy-
sey et al., 2005; Singha & Moysey, 2006; Tso et al., 2019)
and empirically, e.g. using co-located data for comparison
(Isunza Manrique et al., 2023). Brunetti & Linde (2018)
showed that accounting for petrophysical uncertainty im-
proves Bayesian hydrogeophysical model selection. Current
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understanding is lacking on the impact of uncertainty from
inverted IP data on hydrological estimates. It is critical to
assess the magnitude and sources of uncertainties within im-
ages of inferred physical properties, such as k, that are gen-
erated from IP data.

1.7 Paper overview

The EKI method outlined in Tso et al. (2021) has clear ad-
vantages over existing methods for ERT inversions of DC
resistivity data, especially for resistivity fields with discon-
tinuous regions. However, its benefits for IP data and for
generating maps of hydrological properties have yet to be
illustrated. The principal aim of this work is to apply and
demonstrate the use of EKI with level set parameterization
for IP imaging, and to advance the use of EKI in geophysics
by investigating the effects of different prior formulations
and data noise levels. The outcomes of this inversion can
then be used in a workflow that we propose to estimate the
spatial distribution of hydrological properties with uncer-
tainty bounds from IP imaging. In section 2 we introduce the
methods we use for which, in addition to the single level-set
parameterization employed in Tso et al. (2021), we consider
a parameterization in terms of multiple level-sets which can
allow us to parameterize (and hence infer) a larger range of
geophysical scenarios. We report results from our example
applications in section 3. Finally, we discuss our findings in
section 4 and provide our conclusions in section 5.

2 METHODS

In this section, we introduce the EKI framework for IP which
relies on a level-set parameterization. First, we introduce
the forward model for IP in subsection 2.1 as well as the
SCI method. The Bayesian inversion approach is discussed
in subsection 2.2. The parameterization of geophysical prop-
erties in terms of level-sets is presented in subsection 2.3 and
the EKI approach to address the re-parameterized problem
is developed in subsection 2.4. Finally, in subsection 2.5 we
present implementation details.

2.1 Forward problem and smoothness-constrained
inversion(SCI)

In the frequency domain, induced polarization can be repre-
sented as a frequency-dependent complex resistivity ρ∗. For
a generalized 2D or 3D IP problem with a heterogeneous ρ∗

field, the measured (complex) potential V ∗ due to current
injection at electrode locations xA and xB , with strength I,
can be described by the following partial differential equa-
tion:

−∇ ·
(

1

ρ∗(x)
∇V ∗(x)

)
= I(δ(x− xA)− δ(x− xB)), (1)

with appropriate boundary conditions (e.g. Binley & Slater,
2020).

To infer the field ρ∗, a conventional smoothness-
constrained inversion (SCI) can be used. This procedure
uses the Gauss-Newton method to minimizes the combined
observed data, d∗ (which is the log-transformed complex
impedance log(V ∗/I) in this study), and the model misfit

by minimizing the following objective function (e.g. Binley
& Slater, 2020):

1

2
∥Wd∗(d

∗ −F(ρ∗))∥2 + β

2
∥Wρ∗ρ

∗∥2 , (2)

where F is the forward (or parameter-to-output) map that
predicts potentials (e.g. via equation (1)) for a given ρ∗, Wd∗

is a matrix that assigns weights (accuracy) to the data, β is
a tuning regularization parameter and Wρ∗ , often referred
to as the model roughness matrix, is usually a differential
operator that enforces smoothness in a minimizer of equa-
tion (2) (e.g. gradient/Laplacian filters). The second term
in equation (2) can be seen as a form of Tikhonov regular-
ization that stabilises the inversion.

2.2 The Bayesian Approach

Let us use the representation of the complex resistivity ρ∗(x)
in terms of its magnitude and phase angle denoted by ρ(x)
and φ(x), respectively. We note that ρ(x) is equivalent to
the DC resistivity since, for most hydrogeophysics problems,
we expect the phase angle to be small (typically a few tens of
milliradians). For computational convenience, the complex
vector of measured potential d∗ is re-written as a real vector
of the form d∗ = [d, ξ] where d and ξ denote the magnitude
and phase angle of d∗, respectively.

We assume that the data and the unknown are related
via

d =Fd(ρ, φ) + ηd (3)

ξ =Fξ(ρ, φ) + ηξ (4)

where ηd and ηξ are independent random measurement er-
rors that follow Gaussian distributions with zero mean and
covariance Σd and Σξ, respectively. Here Fd and Fξ denote
the two components of the forward map (magnitude and
phase angle of potential’s prediction).

A complete formulation of the inverse problem for IP
data will consist of jointly inferring ρ(x) and φ(x) given both
d and ξ. Here we adopt a more practical approach in which
we first invoke the assumption that φ is small and compute,
as in standard ERT, the DC resistivity from measurements
d. Then, we use our estimate of DC resistivity to infer phase
angle φ given ξ. Since the imaginary component of complex
resistivity is so small, the phase angle estimation can be seen
as a final correction after DC resistivity is estimated.

We formulate both inverse problems from our two-step
method via the Bayesian approach (Stuart, 2010) in which
we assume that ρ(x) and ϕ(x) are random functions. We
put a prior distribution for (ρ, φ), denoted by P(ρ, φ) and,
for simplicity, we assume independence (under the prior) so
that P(ρ, φ) = P(ρ)P(φ). The prior comprises our knowledge
of the unknown functions ρ and φ prior to the data.

The solution of the first Bayesian inverse problem (in-
ferring ρ given d) is the posterior on the DC resistivity P(ρ|d)
which, from Bayes’s rule the is given by

P(ρ|d) ∝ P(d|ρ, φ = 0)P(ρ) (5)

where P(d|ρ, φ = 0) is the likelihood of d evaluated at phase
angle φ = 0.

For the second step we compute the marginal posterior
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of φ given ξ. This is defined by

P(φ|ξ) =
∫

P(φ, ρ|ξ)dρ (6)

where P(φ, ρ|ξ) is the joint posterior which, again from Bayes
rule, is given by

P(φ, ρ|ξ) ∝ P(ξ|ρ, φ)P(φ)P(ρ). (7)

where P(ξ|ρ, φ) is the likelihood of ξ. In order to further
simplify the problem, we propose to approximate P(ξ|ρ, φ) ≈
P(ξ|ρ = ρ, φ) where ρ denotes the mean of DC resistivity
posterior P(ρ|d) defined via equation (5). In other words, we
build (7) with the likelihood of ξ evaluated at the mean of
the DC resistivity posterior. Using this approximation in (6)
we find

P(φ|ξ) ∝
∫

P(ξ|ρ = ρ, φ)P(φ)P(ρ)dρ = P(ξ|ρ = ρ, φ)P(φ).

(8)
From our Gaussian assumptions on ηd and ηξ and ex-

pressions (3)-(4), it follows that

P(ρ|d) ∝ exp

[
− 1

2

∥∥∥Σ−1/2
d (d−Fd(ρ, 0))

∥∥∥2 ]P(ρ) (9)

and

P(φ|ξ) ∝ exp

[
− 1

2

∥∥∥Σ−1/2
ξ (ξ −Fξ(ρ, φ))

∥∥∥2 ]P(φ) (10)

Algorithmically, the proposed approximations amount
to computing the marginal posterior of the DC resistivity
(given d) while keeping the phase angle fixed φ = 0 in the
likelihood. Then, the posterior marginal for the phase an-
gle (given ξ) is computed using the mean of DC resistivity
posterior marginal as a fixed estimate within the likelihood
function. Our objective now is to use the EKI framework to
produce samples from the approximate posterior from equa-
tions(9) and (10). To this end, in the following subsection we
introduce suitable parameterizations of the resistivity and
the phase angle that will enable us to infer discontinuous
properties.

2.3 Parameterization of spatial fields

As discussed in the introduction, the selection of the prior
in Bayesian algorithms is crucial for their estimation perfor-
mance. This is particularly challenging for subsurface prop-
erties with discontinuities, which makes common techniques
to prescribe priors such as stationary Gaussian random fields
not applicable. To tackle this challenge, this work utilises
two level-set parameterizations that enable us to delineate
arbitrarily shaped zones of different permeability and to in-
fer the values of the DC resistivity and phase angle within
each of those zones. Note that through the paper, for sim-
plicity, we refer to DC resistivity, or complex resistivity mag-
nitude, as “resistivity”.

The first level-set parameterization that we use is the
one employed in Tso et al. (2021) to invert ERT data via
EKI. This parameterization requires only one level-set func-
tion and several thresholds to parameterize multiple zones.
For completeness we include the description in Appendix B.
By construction, this single level-set formulation does not

allow more than two zones to intersect which may be a dis-
advantage in some geologic settings. To overcome this dis-
advantage, here we also consider a level-set approach that
uses multiple level-set functions to allow the parameteri-
zation (and hence inference) of regions that can all inter-
sect. This level-set approach was initially proposed in Lit-
man (2005) for inverse scattering, and we introduce it below
in the context of both DC and IP inversion. While this ap-
proach with multiple level-sets can handle more geophysical
settings compared to the one used in Tso et al. (2021), it
increases the number of unknowns and hence the dimension
of the input space. Therefore, more samples may be needed
within the inversion algorithm with the corresponding in-
crease in computational cost. Hence, we recommend using
the single level-set approach in Tso et al. (2021) as long as
there is strong prior evidence (e.g. from preliminary strati-
graphic analysis) suggesting that the underlying geophysical
can be described with the single level-set parameterization.

2.3.1 Parameterization with multiple level-sets.

Let us adapt the approach of Litman (2005) for our inverse
problem with IP data. For brevity we describe only the pa-
rameterization of resistivity ρ(x) while we employ the anal-
ogous parameterization for the phase angle φ(x). Also, for
simplicity we consider a simple four-zone parameterization
that relies on the assumption that the unknown resistivity
takes only four (unknown) resistivity values ρ1, ρ2, ρ3 and
ρ4 on (unknown) regions denoted by Ω1, Ω2, Ω3 and Ω4,
respectively. These regions are, in turn, parameterized via
thresholding two level-set functions, denoted by ξ1(x) and
ξ2(x). In more detail, we assume those regions are defined
by

Ω1 ={x : ξ1(x) ≤ α1, ξ2(x) ≤ α2},
Ω2 ={x : ξ1(x) > α1, ξ2(x) ≤ α2},
Ω3 ={x : ξ1(x) ≤ α1, ξ2(x) > α2}
Ω4 ={x : ξ1(x) > α1, ξ2(x) > α2}

(11)

where α1 and α2 are user defined parameters. In summary,
the 4-zone characterization of the unknown resistivity is
given by

ρ(x) =


ρ1, ξ1(x) ≤ α1, ξ2(x) ≤ α2

ρ2, ξ1(x) > α1, ξ2(x) ≤ α2

ρ3, ξ1(x) ≤ α1, ξ2(x) > α2

ρ4, ξ1(x) > α1, ξ2(x) > α2

(12)

The level-set parameterization above can be used to pa-
rameterize 2N zones (N > 1) in terms N level-set functions.
If the number of zones is not a power of two we can simply
split one of the zones. For example, in the case where we
know that only three zones exist, we can use the 4-zone pa-
rameterization above with ρ3 = ρ4 and the third zone given
by Ω3 ∪ Ω4.

In principle, this multiple level-set parameterization re-
quires us to know, a priori, the number of zones on which
the geoelectric properties take different values. However, it
is worth noticing that the value, ρn, that the property takes
on the nth zone is also an unknown that we infer along-
side the level-set functions. Therefore, as long as we choose
N to be the largest number of zones that we could expect,
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6 Tso et al.

and provided the measurements are sufficiently informative,
the EKI framework should infer the correct number of zones
even if this is smaller than the original N . Nonetheless, the
inference of the number of zones will be achieved indirectly
by identifying the same (or very close) value of ρn’s on dif-
ferent zones.

With the aid of the parameterization in (12), the poste-
rior for the DC resistivity can be re-written in terms of the
joint posterior of ρ1, ρ2, ρ3, ρ4 and the level-set functions
ξ1(x) and ξ2(x) that determine the regions defined in equa-
tion (11). Our aim is to choose a prior of Gaussian Random
Fields (GRF) for ξ1(x) and ξ2(x) and then approximate the
re-parameterized marginal posteriors via EKI.

2.3.2 Parameterization of Random Fields

Iglesias (2016) and Chada et al. (2018) have shown that
an accurate EKI implementation of a level-set parameter-
ization requires to further parameterize the GRF (for the
level-set function) in terms of hyperparameters which should
be inferred within the EKI algorithm. To this end we take
a further step and parameterize both ξ1(x) and ξ2(x) (or
more when more than 4 regions are considered) by using
the stochastic partial differential equations (SPDE) frame-
work in which 2D realizations of GRFs can be obtained by
solving the following fractional SPDE:

[(
1 0
0 1

)
−∇ ·

(
L2

1,α 0
0 L2

2,α

)
∇

](να+1)/2

ξα(x) =

[
τ2
α2π

1/2 Γ(να+1/2)
Γ(να)

L1,αL2,α

]1/2
ωα(x)

(13)
with α = 1, 2 and where να controls smoothness of the

realization, L1,α and L2,α are intrinsic length scales along
the horizontal and vertical direction respectively, τα is an
amplitude scale, Γ denotes the gamma function and ωα(x) is
Gaussian white noise. Imposing appropriate boundary con-
ditions for equation (13) (Roininen et al., 2014) leads to
solutions which are GRFs with Matérn isotropic covariance
function (Lindgren et al., 2011). This parameterization of
GRFs can be modified to include a degree of anisotropy
along some preferential direction (Roininen et al., 2014).
Other parameterizations of GRFs that can alternatively be
used are those defined on simple domains, and for which
the eigenfunctions and eigenvalues of prior covariance can
be obtained closed-form (Dunlop et al., 2017).

Since the level-set functions ξα(x) are merely artificial
functions (i.e. with no direct physical interpretation) that we
use to parameterize the unknown geometry of the zones, we
consider a fixed amplitude scale τα = 1 which means that,
at every point of the domain x, ξα(x) is a standard normal.
Based on this selection, we can select threshold values α1

and α2 in (11) and (12) to ensure that, a priori, at every x
there is a specific value for the probability of this point to
belong to each zone. For example, taking values α1 = α2 = 0
will ensure that there is a (prior) probability equal to 0.25
that any given point x belongs to any of the four zones.

We recall that the parameter να defines the smoothness
of the level-set function ξα(x) and, thus, the smoothness (or
roughness) of the interface between zones. While we could
include this parameter as part of the unknown input param-
eters that we wish to infer, for simplicity here we keep the
parameter να = 2.0 fixed. For the 2D experiments that we
present in the following section, our selection of να provides

a sufficient degree of smoothness of the level-set function in
order to capture well-defined zones.

Given those considerations let us now write the pa-
rameterizations above in a more compact form by noticing
that equation (13) defines an operator PGRF that takes the
hyper-parameters, L1,α, L2,α of the GRF (recall τα = 1 and
να = 2 are now fixed) together with the white noise ωα(x)
in the right-hand side of (13), into a realization of the GRF
ξα(x), i.e.

ξα = PGRF (L1,α, L2,α, ωα) (14)

On the other hand, notice that equation (12) defines a map-
ping of the form

ρ = PLS(ρ1, ρ2, ρ3, ρ4, ξ1, ξ2). (15)

We can thus compose these two functions to finally arrive
at ρ = P(uρ) where

uρ(x) =

(
ρ1, ρ2, ρ3, ρ4,

{
L1,α, L2,α, ωα(x)

}2
α=1

)
(16)

and

P(uρ) = PLS
(
ρ1, ρ2, ρ3, ρ4,PGRF (L1,1, L2,1, ω1),PGRF (L1,2, L2,2, ω2)

)
(17)

We may use the same four-zone parameterization for the
phase angle φ = P(uφ), with parameters comprised in uφ,
analogous to those in equation (16). Note that the parame-
ters L1α, L2α, ωα(x), and hence the corresponding level-set
functions ξα(x) that we inferred for the DC resistivity will
be, in general, different from those for the phase angle. Con-
sequently, the inferred geometry of the four zones obtained
for the DC resistivity may not necessarily coincide with the
geometry of the zones determined by the inferring phase
angle.

Finally, it is worth mentioning that the proposed pa-
rameterization can be easily extended for a 3D geometry and
also to account for the case in which the unknown property
(e.g. resistivity or phase angle) is spatially variable within
each of the different regions (see ERT examples in Tso et al.,
2021).

2.4 Solving the re-parameterized Bayesian inverse
problem via EKI

In this section, we use the parameterizations of the DC re-
sistivity and phase angle to approximate the posteriors from
equation (9) and equation (10). Let us define

Gd(uρ) := Fd(ρ, 0) = Fd(P(uρ), 0).

where we have used the paramterization ρ = P(uρ) from
the previous subsection. We now wish to approximate the
posterior on the parameter uρ which from (3) follows

d = Gd(uρ) + ηd, with ηd ∼ N(0,Σd), (18)

From Bayes’ rule we have that the sought posterior is

P(uρ|d) ∝ exp
[
− 1

2

∥∥∥Σ−1/2
d (d− Gd(uρ))

∥∥∥2 ]P(uρ) (19)

where P(uρ) denotes the prior on uρ. Once this prior is spec-
ified (see subsection 2.4.1 below), the prior P(ρ) on the orig-
inal physical property ρ can be defined as the push-forward
measure of P(uρ) under the map P. This is denoted by
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Ensemble Kalman Inversion for IP 7

P#P(uρ). In simple words this means that samples, ρ(j),
of P(ρ) can be obtained by sampling from P(uρ) and map-

ping those samples, say u
(j)
ρ , into the physical property via

ρ(j) = P(u
(j)
ρ ).

It can be shown that the above selection of the prior
on ρ as P(ρ) = P#P(uρ) implies P(ρ|d) = P#P(uρ|d), i.e.,
the sought marginal posterior on the DC resistivity can be
obtained by pushing forward the posterior on the parameters
uρ. Again, in terms of samples which are provided by the
EKI discussed below, this simply means that once we obtain
posterior samples for the parameter uρ, evaluating P(uρ)
gives us samples from the posterior DC resistivity.

Similarly, by defining Gξ(uφ) := Fξ(ρ, φ) we can formu-
late the posterior on the phase angle parameters

P(uφ|ξ) ∝ exp
[
− 1

2

∥∥∥Σ−1/2
ξ (ξ − Gξ(uφ))

∥∥∥2 ]P(uφ) (20)

where P(uφ) denotes the prior on uφ which we assume have
analogous form to that in (23).

We reiterate that Gξ depends on the mean of the ap-
proximate marginal posterior P(ρ|d). Nonetheless, both (19)
and (20) can be written as:

P(u|w) ∝ exp
[
− 1

2

∥∥∥Σ−1/2(w − G(u))
∥∥∥2 ]P(u) (21)

where

(u,w,G,Σ,P(u)) =
{

(uρ, d,Gd,Σd,P(uρ)) to approx. (19)
(uφ, ξ,Gξ,Σξ,P(uφ)) to approx. (20)

Therefore we can use a generic solver for Bayesian inverse
problems to first approximate (19) and then (20) as dis-
cussed earlier. To this end, here we apply the EKI frame-
work from Iglesias et al. (2018) and Iglesias & Yang (2021)
that we summarize in Algorithm 1 in Appendix A. The EKI
algorithm is presented to approximate the posterior P(u|w)
from (21) in which observed/measured data is w, the un-
known parameter is u, the forward map is G(u) and the
noise covariance is Σ. As discussed in subsection 1.4, the
EKI algorithm defines a transition between the prior and
the posterior via constructing a sequence of q intermediate
Gaussian measures:

P(u) = P0(u) → ... → Pq+1(u) = P(u|w) (22)

Each intermediate distribution Pm(u) (m = 1, . . . , q) is ap-

proximated with an ensemble of particles, {u(j)
m }Jj=1. The

EKI algorithm (Iglesias et al., 2018) consists of iteratively
updating each particle according to an update formula that,
at the iteration level n, can be derived from (i.) linearizing
the forward map around the mean of Pm(u), (ii.) applying
Bayes rule to the linearized problem invoking the Gaussian
approximation of Pm(u), and finally (iii.) using covariance
approximations for the derivatives from the linearized prob-
lem.

We follow the approach from Iglesias & Yang (2021) to
compute the number of intermediate distributions, q, adap-
tively. Convergence of Algorithm 1 is controlled by the pa-
rameter sm. The algorithm stops once sm+1 = 1, i.e. we
set q = m + 1 and the corresponding particles {u(j)

m+1}Jj=1

provide a Gaussian approximation to the posterior P(u|w).
The computational cost of EKI is given by J×q simulations
which scales well with respect to the number of particles J .
Hence, the computational burden of EKI can be amortized

via the use of parallel computing since the prediction step
Algorithm 1 is perfectly parallelizable.

Despite the large amount of recent progress in develop-
ing theory for EKI (see Calvello et al. (2022)), the conver-
gence of any existing variant of EKI algorithms can only be
rigorously proved in the case when the forward map is linear
and when the prior and the noise distributions are Gaussian.
In particular, the seminal work of Schillings & Stuart (2017)
introduced the continuous-time formulation of EKI which,
in turn, lead to convergence proofs in the mean-limit set-
tings albeit restricted to the case of linear forward models
(which is not the case for ERT or IP). Notwithstanding, the
EKI algorithm can be applied for nonlinear forward models
as well as any choice of distribution for the prior and the
noise, and although further theory that ensures convergence
of EKI for the nonlinear and non-Gaussian cases is lack-
ing, a large body of numerical evidence suggests that, for
a broad range of problems, EKI can provide robust/stable
estimates with the same accuracy of optimizer and/or fully-
Bayesian samplers (such as MCMC or SMC) when the com-
putational budget does not allow for large number of forward
model solves (Iglesias et al., 2013a, 2018; Iglesias, 2015). It is
thus clear that EKI is a suitable choice for high-dimensional
Bayesian inverse problems which cannot be solved via fully-
Bayesian samplers.

2.4.1 The Prior

We assume that, under the prior, the components of uρ (i.e.
eq. (16) for the 4-zone case) are independent. Thus, can write
the prior, for the general case of 2N -zones and N level-set
functions, as

P(uρ) =

2N∏
n=1

P(ρn)
N∏

α=1

P(L1,α)P(L2,α)P(ωα), (23)

where the terms in the right-hand side of equation (23) are
the priors of each component of uρ. As discussed earlier,
here we choose the prior on the function ωα(x) (i.e. P(ωα)
in (23)) as Gaussian white noise, so that the corresponding
samples of each level-set function, ξα(x), are realizations of
GRFs.

Before we introduce the prior of the length scales of the
level-set functions L1,α and L2,α, let us first notice that these
hyperparameters of the level-set function ξα(x) determine
how rapid this function changes along each of the two spatial
directions. For example, functions with large L2,α and small
L1,α will enable to describe zones that are long along the
vertical direction while shorter in the horizontal direction.
When the geometry of the zones is completely unknown a
priori, we suggest placing a uniform prior over a domain
that covers both small and relatively long length scales. If
we assume that the 2D domain consist of the rectangular
region [0, D1]×[0, D2], our numerical experiments show that
the following uniform priors

P(L1,α) = P(L2,α) = U

[
Dα

15
,
Dα

5

]
, α = 1, . . . , N (24)

cover a wide range of lentghscales (relative to the size of the
domain) that can be used to characterize zonal geometries
of different sizes. As shown in previous work on level-set pa-
rameterization for Bayesian inversion (Dunlop et al., 2017;
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8 Tso et al.

Chada et al., 2018), if we do not infer these length scales
within the EKI (i.e. if we keep them fixed) there is a high
risk that the geometric features of the unknown may not be
accurately captured with the inferred level-set parameteri-
zation.

For the priors of the values of the zones resistivities, i.e.
ρn’s we also select uniform priors

P(ρn) = U
[
ρn∗, ρ

∗
n

]
, n = 1, 2, . . . , 2N (25)

where the lower and upper values ρn∗ and upper values ρ∗n
are specified according to each specific example that we dis-
cuss in the following section. These limit values may be in-
formed with our prior knowledge of each zone’s resistivity,
but in the absence of this knowledge, we can simply employ
the same prior on each zone.

Furthermore, even though the priors are defined on spe-

cific intervals (e.g.
[
ρn∗, ρ

∗
n

]
for resistivity) the posterior en-

semble can take values outside these intervals since we do
not impose any constraints on the updated particles (strictly
speaking, this violates Bayes’ formulation and we recom-
mend re-running the inversion with larger prior intervals).
Therefore, one can expect (as we confirm in our synthetic
experiments) that when the prior interval is not well spec-
ified, measurements will be sufficiently informative to pro-
duce posteriors that are centred around the truth.

Finally, we make the choice of uniform priors for sim-
plicity. Nonetheless, prior information on the site could sug-
gest that different distributions are more suitable priors.
There is, again, no restriction in terms of the type of distri-
bution which can be used within the EKI algorithm.

2.4.2 Measures of performance and posterior estimates

The performance of the EKI algorithm can be monitored
in terms of various quantities related to the data misfit as
proposed in Iglesias & Yang (2021). More specifically, we
consider:

Dm =
1

M

∥∥∥∥∥ 1J
J∑

j=1

[
Σ−1/2

(
w − G(u(j)

m

)]∥∥∥∥∥
2

. (26)

where M is the size of the vector, w, i.e. the observed data.
To the first order, it is not difficult to see (e.g. from Iglesias
& Yang (2021)) that

Dm =
1

M

∥∥∥∥∥Σ−1/2
[
w − 1

J

J∑
j=1

G(u(j)
m )
]∥∥∥∥∥

2

≈ 1

M

∥∥∥Σ−1/2
[
w − G(um)

]∥∥∥2
(27)

where um denotes the ensemble mean at the iteration m. On
the other hand, since our underlying observational model is
of the form w = G(u) + η where η ∈ RM is Gaussian with
zero mean and covariance Σ. It then follows that∥∥∥Σ−1/2(w − G(u))

∥∥∥2 =
∥∥∥Σ−1/2η

∥∥∥2 ∼ χM

where χM is the chi-squared distribution with M degrees of
freedom. Thus,

E
[ ∥∥∥Σ−1/2η

∥∥∥2 ] = M

Therefore, if the converged posterior ensemble yields output
values close to the measurement error (or noise level), we
should expect that the data misfit from (26) achieve values
close to one.

Upon convergence, we compute the means of the param-
eters’ marginals posterior transformed into physical space.
More specifically, we compute

uρ =
1

J

J∑
j=1

u(j)
ρ , and uφ =

1

J

J∑
j=1

u(j)
φ (28)

where {u(j)
ρ }Jj=1 and {u(j)

φ }Jj=1 denote the converged sam-
ples from the posteriors (i.e. equations 19 and 20) obtained
via EKI. Then, we compute and display the transformed
posterior means defined by

ρ⋆ = P(uρ), and φ⋆ = P(uφ). (29)

As discussed earlier, given the above converged samples of
the parameters, samples from the marginal posteriors of DC
resistivity and phase angle are obtained via

ρ(j) = P(u(j)
ρ ), and φ(j) = P(u(j)

φ ) (30)

Notice that the sample means computed from the individ-
ual posterior samples in equation (30) do not coincide with
the transformed means computed via equation (29). Here we
consider both quantities but for visualisation and geological
interpretation the latter provide us with a clear delineation
of the interfaces between the zones. Indeed, by definition of
the map P in equation (17) (see also equation (15) and equa-
tion (12)) the estimates ρ⋆ and φ⋆ will display a sharp dis-
continuity at the zone interfaces due to the thresholding of
the corresponding mean level-set function. In contrast, the
posterior mean from samples (equation 30), will not show
such a clear delineation because of the uncertainty associ-
ated with the location of these interfaces. To quantify this
uncertainty, however, we compute the sample standard de-
viation (STD) from the posterior samples in equation (30).

Additional measures of the uncertainty in the geome-
try of the zones are given by zonal probabilities, namely
the probability that, under the posterior, any given point
x belongs to one of the zones. The computations of zone
probabilities are described below for the case of the DC
resistivity and analogously for the phase angle. Given an
EKI-converged posterior parameter sample

u(j)
ρ (x) =

(
ρ
(j)
1 , ρ

(j)
2 , ρ

(j)
3 , ρ

(j)
4 ,
{
L

(j)
1,α, L

(j)
2,α, ω

(j)
α (x)

}2
α=1

)

we use the corresponding level-set functions ξ
(j)
α =

PGRF (L
(j)
1,α, L

(j)
2,α, ω

(j)
α ) (computed via solving equation

(13)). Then, from equation (11), zone 1 probability can be
defined via:

P1(x) = P(ξ1(x) ≤ α1, ξ2(x) ≤ α2) =
∫ α1

−∞

∫ α2

−∞ πξ1,ξ2(y1, y2)dy

(31)
where πξ1,ξ2(y1, y2) denotes the posterior density of the ran-
dom variable (ξ1(x), ξ2(x)) (for the fixed x). It is not difficult
to see that P1(x) can be approximated from the ensemble
of posterior level-set functions as follows:

P1(x) =
∫∞
−∞

∫∞
−∞ IR(y1, y2)πξ(y1, y2)dy1 dy2 ≈ 1

J

∑J
j=1 IR(ξ

(j)
1 (x), ξ

(j)
2 (x))

(32)
where R = (−∞, α1] × (−∞, α2] and IR(y1, y2) = 1 if
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Ensemble Kalman Inversion for IP 9

(y1, y2) ∈ R while IR(y1, y2) = 0 otherwise). We employ
analogous definitions for probabilities of zones 2, 3, and 4,
as well as the zone probabilities for phase angle.

It is important to note that the posterior zonal prob-
abilities defined in (32) depend on our choice of thresholds
α1 and α2. As discussed in subsection 2.3.2, one can choose
these thresholds so that prior zonal probabilities take spe-
cific values that we select according to our prior knowledge,
if available, of the likelihood of each zone. In the example
given in subsection (2.3.2), we noted that α1 = α2 = 0 (the
choice for our 4-zone formulation) yields constant and equal
prior zonal probability for each zone, but a different choice
of α1 and α2 may assign higher probability to one of the
zones under the prior. Hence, the interpretation of poste-
rior zonal probabilities should be made within the context
of our selection of prior zonal probabilities. This is partic-
ularly important when we compute zonal probabilities for
the single level-set parameterization (for 3 zones) described
in Appendix B and first used in Tso et al. (2021). For that
case, since the prior of the level-set function has zero mean
function, a choice of, for example α1 = −α2 with α2 > 0 will
result in prior zonal probabilities equal to one (for all x) for
zone 2 while zero for zone 1 and zone 3, which represents
a prior field that everywhere (including those outside the
imaging domain) belongs to the background zone (typically
with the intermediate resistivity or phase angle ranges) with
a probability of one.

2.5 Implementation details

As stated earlier, in our approach to EKI inversion of IP data
we first use EKI to estimate the DC resistivity while keep-
ing the phase angle fixed. After convergence, we fix the DC
resistivity as the mean of the posterior resistivity obtained
in the previous step and run EKI to infer phase angle only.
See Fig.1 for a flowchart that summarizes our IP inversion
algorithm.

An alternative implementation of IP EKI inversion
would be to jointly invert resistivity and phase angle. In
other words, use EKI to iteratively update both properties
simultaneously. In the joint approach, however, the number
of unknown parameters doubles which results in substan-
tially slower convergence of the EKI scheme. This sequential
approach is more flexible than a joint inversion approach as
it allows potential differences in the patterns of the resistiv-
ity and phase angle fields.

As in the EKI implementation of Tso et al. (2021) for
ERT data, we use a forward modelling grid that extends lat-
erally several times the dimension of the IP imaging area to
simulate an infinite earth in field studies. For convenience,
here we discretize the parameter grid used for inversion as a
grid consisting of squares covering the entirety of the imag-
ing area. At each iteration, the parameter grid is interpo-
lated to the forward modelling grid to obtain simulated IP
data. For this paper, we have implemented the EKI method
in MATLAB(R).

One of the zones is assigned to be the background zones
such that its mean value is assigned for cells that are outside
the parameter estimation grid. This is necessary to satisfy
the infinite earth assumption in the modelling of most field
geophysical problems.

In all the examples, we compare the inversion re-

Figure 1. The flowchart of our sequential EKI algorithm for IP
data inversion. Note that the parameters in the resistivity and

phase angle inversions are independent from each other.

sults from EKI to SCI (see e.g. Binley & Slater,
2020). cR2 (https://www.es.lancs.ac.uk/people/amb/
Freeware/cR2/cR2.htm) is used for forward modelling runs
in EKI and SCI. Note that while the EKI runs invert re-
sistivity and phase angles sequentially, the SCI runs inverts
jointly the real and imaginary conductivities by solving the
IP problem in the complex number domain. Where suitable,
we also compare the results of using SCI with regularization
disconnect.

3 EXAMPLE APPLICATIONS

We report the application of EKI for IP data in four ex-
ample applications. In all cases, unless otherwise specified,
we use the single level-set formulation outlined in Appendix
B. We report the convergence statistics in Table 1. We also
report the prior and posterior zonal resistivity/phase angle
histograms and show the plots of a few example samples for
each example case in the Supplementary Information. Note
that zone numbering for EKI, in general, is arbitrary. Since
we invert DC resistivity and IP data sequentially, they have
independent zone memberships. When results are reported
in the following, zones are arranged in descending resistiv-
ity/ (negative) phase angle order. For brevity, we do not
report results on the posterior estimates on the hyperparam-
eters (i.e. length scales) but we emphasize that these were
used to generate the plots of the posterior estimates for the
spatial fields (resistivity and phase-angle). In addition, the
plots of some of the samples shown in the Supplementary In-
formation show that our estimates of hyperparameters lead
to physically consistent estimates of the geophysical proper-
ties that we infer.

3.1 Synthetic example (inclusions)

3.1.1 Model Setup

The synthetic survey contains 298 dipole-dipole measure-
ments collected by 24 surface electrodes at 0.5 m separa-
tions. The background resistivity and phase angle for the
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true model (Fig. 2a-b) are 100 Ωm and -10 mrad, respec-
tively and a rectangular anomaly (1 m × 1.7 m) for both
resistivity (10 Ωm) and phase angle (-15 mrad) near the sur-
face. An additional rectangular phase angle anomaly (2 m
× 1 m) of -20 mrad is at the lower right of the domain. Ran-
dom noise of 2% for resistivity and 2.0 mrad for phase angle
(typical field data noise levels) are added to the synthetic
data. The same level of measurement errors is assumed in
the inversions.

3.1.2 EKI IP inversion

We first perform IP inversion with EKI using a 2 and 3 zone
formulation for resistivity and phase angle, respectively. The
choice of 2 or 3 zones are based on the conceptualization of
the site, as done in other geometry-based inversions (e.g.
Bijani et al., 2017). Priors for the zonal resistivity ranges
are as follows

P(ρ1) = U
[
80Ωm, 300Ωm

]
,

P(ρ2) = U
[
0.5Ωm, 50Ωm

]
(33)

while those for phase angles are

P(φ1) = U
[
− 12mrad,−5mrad

]
,

P(φ2) = U
[
− 17mrad,−13mrad

]
,

P(φ3) = U
[
− 25mrad,−19mrad

]
(34)

In practice, the ranges for these priors are selected based
on a priori knowledge of the site. We reiterate that in the
absence of prior knowledge we can assign the same prior to
all zonal resistivities/phase angles but defined on a wider in-
terval to account for large prior uncertainty. Conversely, we
could choose different priors that assign higher probability
to specific values if these were informed by prior knowledge.

Note that since the phase angle inversion is performed
after the DC resistivity inversion, they can have different
numbers of zones. The EKI results are compared with con-
ventional SCI (Fig. 2c-d). SCI recovered smooth targets, es-
pecially for phase angle; the lower target (-20 mrad) is not
recovered at all. The posterior zonal resistivity values com-
puted by EKI (from zone 1 to 2) are 99.39 and 5.06 Ωm;
while those for phase angles (from zone 1 to 3) are -20.44,
-14.15, and -6.15 mrad. The posterior mean for the resistiv-
ity field and phase angle computed from the samples given
by eq. (30) are shown in Fig. 2(e,f), while the corresponding
estimates obtained via mapping the posterior mean of in-
put parameters into resistivity and phase angle (i.e. via eq.
(29)) are displayed in Fig. 2(g,h). We note that the target
resistivity anomaly from the truth is at the correct location
and the width and top boundary are almost exactly correct,
although it appears to be not as deep as the true one. The
recovered phase angle targets have geometries that roughly
agree with the true ones, however, the upper left zone is
much smaller while the lower right inclusion (-20 mrad) is
much larger. In particular, the lower right target is less well
resolved because of the sensitivity pattern of the surface
measurements.

Uncertainty analysis of the posterior distribution is pro-
vided by zone 2 probability (Fig. 2i-j) and standard devia-
tion maps. For resistivity, the probability for (correctly) be-
longing to zone 1 and 2 is high. The most uncertain zone

membership is observed near the lower boundary of the in-
clusion. In addition, slightly higher uncertainty is also ob-
served near the lower left and lower right corners. For phase
angle, note that a 3-zone formulation is used, with zone 2
being the background. High zonal probabilities (i.e. zone 2
probability close to 0 or 1) are observed in the top 5m, cor-
rectly associating with the background and inclusion zone.
Elsewhere there are regions where zones are poorly resolved
(i.e. zone 2 probability around 0.5). These observations are
reflected in the standard deviation maps (Fig. 2k-l). For re-
sistivity, standard deviation (STD) values are low every-
where except around the lower parts of the estimated inclu-
sion. For phase angle, however, the STD pattern is more
complex. With the exception of the top 2-3 m and the part
of the lower right region, STD is high everywhere. The lower
left corner region has STD values of up to 5 mrad. Such re-
sults highlight the estimation of phase angles is more chal-
lenging than that of resistivities due to their low signal-to-
noise ratio, which is illustrated well by the greater variability
in the phase angle posterior samples (see Supplementary In-
formation).

3.2 Synthetic example (3 layers)

3.2.1 Model Setup

The true model in this example is conceptualized as a 3-
layer system with inclinations and pinch-out. All layers are
assumed to extend laterally. From top to bottom, the three
zones have resistivity (and phase angle) values of 250 Ωm
(-10 mrad), 10 Ωm (-20 mrad), and 100 Ωm (-15 mrad) as
shown in Fig. 3a-b. Random noise of 2% for resistivity and
2.0 mrad for phase angle are added to the synthetic data.
The same level of measurement errors is assumed in the
inversions.

3.2.2 EKI IP inversion

SCI provides a satisfactory estimate of the top layer; how-
ever, it shows no differentiation of the bottom two zones
(Fig. 3c). They are depicted as a large smooth low-resistivity
anomaly. For EKI, the priors for zonal resistivity values are

P(ρ1) = U
[
0.5Ωm, 50Ωm

]
,

P(ρ2) = U
[
80Ωm, 180Ωm

]
,

P(ρ3) = U
[
200Ωm, 300Ωm

]
while those for phase angles are the same as those in (34).
The estimated zonal resistivity values computed by EKI
(from zone 1 to 3) are 249.5, 246.9, and 5.5 Ωm. Poste-
rior mean resistivity and phase angle fields are shown in
(Fig. 3e,f). Resistivity and phase angle computed from map-
ping posterior mean for input parameters can be found
in (Fig. 3g,h). We notice that the topmost and bottom-
most zones are estimated as almost identical. Taking that
into consideration, EKI recovers the geometry of the middle
pinch-out zone very well.

Because of the close proximity in values for zone 2 and
3, the zonal probability map shows very low zone 2 proba-
bility in the middle pinch-out zone, but only a very small
fraction of the area with a probability close to 1. Again, this
is because the zone 2 and 3 resistivity values are too close
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Ensemble Kalman Inversion for IP 11

Figure 2. (a,b) True resistivity and phase angle models for the 2D surface example, which comprises of an inclusion of identical geometry
in both models and an additional inclusion in the phase angle model. (c,d) The resistivity model estimated by smoothness-constrained

inversion. (e,f) The mean resistivity and phase angle model estimated by EKI across samples. (g,h) The resistivity and phase angle model
obtained from the mean level sets estimated by EKI. (i,j) The prior estimated probability of zone 2 (i.e. not the background) (k,l) The
posterior standard deviation for resistivity and phase angle.
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12 Tso et al.

to each other. For the STD map (Fig. 3i), zone 1 has very
low uncertainty, while that for the bottommost zone and the
boundary of the middle pinch-out zone is quite low too. The
STD at the lower right corner is relatively high, highlighting
it is the most difficult region to resolve.

SCI returns a smooth phase angle image with the upper
half of the domain having less negative phase angles than the
lower half (Fig. 3d). For EKI, three zones are clearly recov-
ered, with zonal phase angles (from zone 1 to 3) equalling
-19.6 mrad (pinch-out), -13.0 mrad, and -6.7 mrad (top) re-
spectively (Fig. 3h). The top zone is recovered (although not
as deep as the true one and the phase angle is less negative
than the true one), while the pinch-out zone is wider and ex-
tends deeper than the estimated value. It is also noteworthy
that there is a small strip of intermediate phase angle be-
tween the top and pinch-out zone. This is partly attributed
to the implicit assumption that by using a single level set for
three zones, the transition from the minimum to the maxi-
mum zone must include the intermediate zone.

Notably, Fig. 3j shows high zone 2 probability only on
this strip of transitional values, while everywhere else has
a low zone 2 probability. Together with the mean map, it
shows the lower left corner (or most of the bottom zone in
the domain) is not well resolved. For the STD map (Fig. 3l),
the uncertainties in the top two layers are low, while that
for the lower layer is high.

3.2.3 Effect of different level set formulations

3.2.3.1 Two level sets for three zones An issue we
observe in Fig. 3 is that since we are using a single level set
to represent three zones, the zone with the lowest value can-
not ”jump” to the zone with the highest value (e.g. Fig. 4h,
and samples in the Supplementary Information). In this par-
ticular example case, this is problematic since the pinch-out
represents an intersection of the 3 zones. We circumvent this
issue by repeating the inversion using the parameterization
in terms of the two-level set functions that we introduced
in 2.3.1 with three zones. The results shown in (Fig. 4) are
much improved and the three distinctive zones for both DC
resistivity and phase angle are better recovered. A useful fea-
ture that can be observed in Fig. 4a is that the top layer is
estimated as an almost discrete value, while the second and
third layers are relatively smooth. This shows that there is
lower uncertainty on the value of the top layer. The pos-
terior zonal resistivities obtained from the mean level sets
returned (from zone 1 to 3) are 249.8, 187.0, and 7.3 Ωm;
while those for phase angles are -20.1, -13.8, and -6.4 mrad.

3.2.3.2 Four zones formulation Another issue that is
worth investigating is the effect of incorrectly specifying the
number of zones. In Fig. 5, we repeat EKI for this example
with four zones, i.e. we allow the four values for resistivity
(and the four values for phase angle) to be inferred. The
priors for the fourth zone are specified as non-informative
priors, spanning the range of the other three zones. The
posterior zonal resistivities obtained from the mean level sets
(c,d) returned (from zone 1 to 4) are 249.4, 123.4, 8.1, and
1.1 Ωm; while those for phase angles are -20.4, -14.0, -6.7 and
-6.1 mrad. For resistivity, the middle layer does not extend
as deep as the true field. For phase angles, the top zone is
largely being identified correctly and the posterior is shown

as four zones. However, it did not identify the bottommost,
less negative phase angle zone at all. Instead, the middle
zone extends to the bottom of the domain. The mean results
(a,b) do, however, correctly show some indication that the
resistivity and phase angle values in the lower left part of the
domain lie somewhere between those in the top two zones.

3.2.3.3 Effect of non-informative priors While in
many cases informative first guesses of priors for each zone
can be provided, it is worth considering the effects of us-
ing non-informative priors that are identical for each zone.
Therefore, we have repeated the runs reported in Fig. 4 and
Fig. 5 using the following priors for all zones:

P(ρ) = U
[
0.5Ωm, 300Ωm

]
,

P(φ1) = U
[
− 25mrad,−5mrad

]
,

The switch to non-informative priors certainly have caused
has led to some deterioration of EKI results (Fig. 6 and
Fig. 7). For resistivity, the results are no worse than that
in Fig. 3, generally identifying a low resistivity pinch-out
in a resistive background. In both cases, the top layer is
clearly and accurately identified as a discrete, resistive zone.
In Fig. 6, the shape of the bottom of the pinch-out was not
clearly identifiable but Fig. 6a indicates the bottom zone is
likely to be less resistive than the top zone. The posterior
zonal resistivities obtained from the mean level sets returned
(from zone 1 to 3) are 250.4, 241.8, and 17.4 Ωm. Fig. 7
shows clearly the shape of the pinch-out, although the mid-
dle zone extends deeper than the true geometry. The pos-
terior zonal resistivities obtained from the mean level sets
returned (from zone 1 to 4) are 249.4, 12.8, 12.8, and 8.0
Ωm.

For phase angles, in both cases all zones estimated by
the mean level sets are close to -10.0 mrad (i.e. -12.18, -9.56,
-7.68 mrad for Fig. 6, and -11.84, -10.66, -9.51,-8.67 mrad
for Fig. 7 ), thus not returning very useful results for this
problem. This is likely to be caused by more uncertain DC
resistivity as input, as well as the greater dependence on
informative priors of phase angles due to their lower signal-
to-noise ratio.

3.3 Pow Beck sub-catchment

3.3.1 Site and data description

The Pow Beck sub-catchment is located within the Eden
Valley in northwest England (south of Carlisle). Mejus
(2014) used multiple geophysical methods for hydrogeolog-
ical characterization. Among them, four surface IP surveys
were conducted at the site. In this work, we focus on the
data for the survey IP09 of Mejus (2014), which consists
of 48 electrodes at 2 m separation and 338 pairs of trans-
fer resistances and phase angles after data filtering. Af-
ter characterization of data errors, data errors of 0.5% are
assumed for resistivity and while that for phase angle is
based on a curve-fitting, with the resultant formula being
0.0343φ2 − 0.1397φ+ 1.0 mrad.

The geology at the site is dominated by Quaternary su-
perficial deposits and glacial till dominates the Quaternary
cover. Borehole records (1995-2006) from the British Geo-
logical Survey (BGS) with borehole log records showing that
the thickness of superficial deposits varies ranging from 0 to
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Ensemble Kalman Inversion for IP 13

Figure 3. (a,b) True resistivity and phase angle models for the 2D 3-layer example, comprises of three collocated non-horizontal layers.
(c,d) The resistivity model estimated by smoothness-constrained inversion. (e,f) The mean resistivity and phase angle model estimated

by EKI across samples. (g,h) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (i,j) The prior
estimated probability of zone 2 (i.e. not the background) (k,l) The posterior standard deviation for resistivity and phase angle.
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14 Tso et al.

Figure 4. A repeat of Fig. 3 but with two level sets functions, thus allowing jumps from the lowest to the highest-value zones in a
three-zone formulation. (a,b) The mean resistivity and phase angle model estimated by EKI across samples. (c,d) The resistivity and

phase angle model obtained from the mean level sets estimated by EKI. (e,f) The prior estimated probability of zone 2 (i.e. not the

background) (g,h) The posterior standard deviation for resistivity and phase angle.

25 m. The Quaternary cover overlies a bedrock belonging
to the Sherwood Sandstone group, which is comprised of
cemented consolidated sediments. A percussive direct pene-
tration test was also conducted at one location along the IP
survey transect to reveal the vertical variation in material
properties (see Fig. 8a). We also include the classification of
lithological units based on field-based electrical properties
by Mejus (2014) (Fig. 8b). Mejus (2014) also measured IP
properties on laboratory samples of lithologies at the site
and noted a rank in polarization (given by the imaginary
component of electrical conductivity) of overburden (low-
est); clayey till; sandstone (highest).

3.3.2 EKI IP inversion

We perform IP inversion with EKI using a 3 zone formula-
tion for both resistivity and IP and compare its results with

conventional SCI (Fig. 9). Prior zonal values are

P(ρ1) = U
[
10Ωm, 100Ωm

]
,

P(ρ2) = U
[
150Ωm, 250Ωm

]
,

P(ρ3) = U
[
250Ωm, 1000Ωm

]
(35)

while those for phase angles are

P(φ1) = U
[
− 2mrad, 0mrad

]
,

P(φ2) = U
[
− 4.5mrad,−2.5mrad

]
,

P(φ3) = U
[
− 15mrad,−5mrad

]
(36)

Fig. 9 shows the IP inversion results. The SCI result
shows a relatively resistive surface soil layer overlaying a
fairly conductive zone extended to a depth of about 10m,
which overlies a slightly more resistive background. The
mean estimate of EKI, while also showing a resistive up-
per layer, suggests that the underlying conductive layer ex-
tends to a greater depth and is variable horizontally. This
may be a result of greater depth resolution in EKI than
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Ensemble Kalman Inversion for IP 15

Figure 5. A repeat of Fig. 4 but using a four-zone formulation. (a,b) The mean resistivity and phase angle model estimated by EKI

across samples. (c,d) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e,f) The prior estimated

probability of zone 2 (g,h) The posterior standard deviation for resistivity and phase angle.

SCI, as previously reported in Tso et al. (2021). It is, how-
ever, important to emphasize here that our EKI approach
benefits from the 3 zone parameterisation (via the level-set
function) and the corresponding priors of resistivity on each
zone. Since this prior information is not encoded in SCI, it
comes as expected that the resulting overly smooth field has
limited depth resolution.

For phase angle, the SCI results show an area of less neg-
ative phase angle than the background above a depth of 10
m, which is in agreement with the EKI results. However, this
zone is more laterally extensive in the latter. The posterior
zonal resistivities obtained from the mean level sets returned
by EKI (from zone 1 to 3) are 344.3, 275.1, and 55.9 Ωm;
while those for phase angles are -8.7,-3.7, and -0.3 mrad. The
lack of DC resistivity contrast in the EKI results is almost
certainly due to a lack of contrast in this property between
the superficial sediments and the upper zone of the sand-
stone. However, the phase angle does show a contrast, sug-

gesting a variation in electrical capacitive properties, which
illustrates the potential value of IP in this example.

Uncertainty analysis of the posterior distribution is pro-
vided by zonal probabilities and standard deviation maps.
Zonal probabilities in most of the domain are near 0 or 1,
which provide us an indication of how likely (under the pos-
terior) it is for a point x to belong to each zone. It is worth
reiterating that zonal probabilities depend on the threshold
α1 and α2 in the level-set function parameterisation. For the
3-zone formulation that we employ here (see Appendix B)
the values for these thresholds are α1 = −0.1 and α2 = 0.1
and, thus, one should expect that, under the prior, all points
will likely to belong to zone 2 (since the prior mean of the
level-set is zero). Given the low depth-resolution intrinsic to
ERT, it comes as no surprise that the deeper part of the
domain either remains to be zone 2 and zone 3 (given the
proximity in resistivity values between zone 2 and with zone
3). However, it is remarkable that zone 1 (the low resistivity
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Figure 6. A repeat of Fig. 4 but with non-inofrmative priors. (a,b) The mean resistivity and phase angle model estimated by EKI across

samples. (c,d) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e,f) The prior estimated

probability of zone 2 (g,h) The posterior standard deviation for resistivity and phase angle.

region) which is unlikely under the prior, is present in the
central region with high probability under the posterior.

Zonal probabilities are also useful to quantity uncer-
tain near the transition between zones, which in this case is
quite noticeable at around 10m depth for phase angle. The
standard deviation for resistivity is low, with higher values
observed near zonal boundaries. The standard deviation for
phase angle are quite high in most areas since the range
of estimated values are small. The EKI results agree well
with percussive penetration test results (Fig. 8), i.e. a clear
distinction in electrical properties (in particular the phase
angle) at the lithological boundaries.

3.4 Permeable reactive barrier

A permeable reactive barrier (PRB) is an in-situ technology
for the remediation of a range of groundwater contaminants
(chlorinated hydrocarbons, heavy metals, nitrate, etc.). The

barrier is installed downgradient of the contaminant plume;
in-situ treatment is achieved by geochemical or biogeochem-
ical reactions. Zero-valent iron PRBs are the most common
type of such technology, and are used for remediating chlo-
rinated hydrocarbon contaminated groundwater. PRBs are
typically installed using trenching, although more recently
injection type installation has also been adopted. Ensuring
adequate emplacement of the barrier at installation is im-
portant. Furthermore, given that any PRB must retain its
enhanced permeability relative to the host aquifer, it is nec-
essary to monitor the efficiency of the PRB over time to en-
sure satisfactory performance. Slater & Binley (2006, 2003)
reported the use of electrical imaging to characterize the
integrity and monitor the geochemical alteration of a zero-
valent iron PRB over time at the US Department of Energy
Kansas City Plant in Missouri, USA.
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Ensemble Kalman Inversion for IP 17

Figure 7. A repeat of Fig. 5 but using non-informative priors. (a,b) The mean resistivity and phase angle model estimated by EKI across
samples. (c,d) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e,f) The prior estimated

probability of zone 2 (g,h) The posterior standard deviation for resistivity and phase angle.

3.4.1 Site and data description

Here, we re-invert the field data collected by Slater & Bin-
ley (2006). The cross-borehole ERT and IP survey was con-
ducted using 63 electrodes distributed in three boreholes
(see Fig. 6 for location of the electrodes). In total, 2223
quadrupoles are used after filtering. A 5% data error is as-
sumed for DC resistivity, while a 2.0 mrad data error is
assumed for phase angle.

The site includes a conductive, L-shaped, zero-valent
iron PRB. The extent of the PRB is assumed known since
it is an engineered structure. In Slater & Binley (2006), the
regularization at the boundary between the PRB and the
background is disconnected, meaning there is no smoothing
applied across the boundary of the two materials. In con-
trast, for the EKI inversions reported below, we have not
supplied any prior information on the boundary.

3.4.2 EKI IP inversion

For EKI runs in this section, priors for zonal resistivity are

P(ρ1) = U
[
80Ωm, 300Ωm

]
,

P(ρ2) = U
[
0.5Ωm, 50Ωm

]
(37)

while those for phase angles are

P(φ1) = U
[
− 7mrad,−1mrad

]
,

P(φ2) = U
[
− 20mrad,−12mrad

]
(38)

Our initial inversion shows that, unlike previous examples,
setting homogeneous length scales for priors yield better re-
sults. Therefore, for all PRB examples we set the length
scales in x-direction to be identical to that in the z-direction
after running equation (24).

To assess the utility of EKI, we first conduct inversions
using a synthetic model, with a background resistivity of
100 Ωm and phase angle of -2.5 mrad; as well as a PRB
resistivity and phase angle, respectively of 0.1 Ωm and -15
mrad (Fig. 10a-b). Random noise of the same amount as the
assumed data error levels are added to the synthetic data.
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18 Tso et al.

Figure 8. Direct Penetration test (DPT) data from the Pow sub-

catchment taken at approximately X = 42m along the IP sur-

vey line and a simplified profile of the lithological units. (source:
Mejus, 2014).

In Slater & Binley (2006), the inversion is performed using
SCI with regularization disconnect at the known boundary
of the PRB. Therefore, we consider SCI results with and
without the regularization disconnect. The SCI IP inversion
(Fig. 10c-d) recovers an ‘L-shape’ conductive anomaly that
is consistent with the true PRB position, however, the phase
angle recovery of the barrier region is weak (Fig. 10d). In
contrast, SCI with regularization disconnect return the ’L-
shape’ zone perfectly (Fig. 10e-f).

The posterior zonal resistivity values recovered by EKI
from the mean level sets are 22.61 Ωm (zone 2) and 0.25
Ωm (zone 1) (Fig. 10i). The estimated PRB zone overlap
with the true region very well, except its top part is slightly
thinner. The estimated bottom extent of the PRB is lower
the expected, and it includes a fine, discontinuous, vertical
feature. However, these slight artefacts are unlikely to affect
assessment of PRB integrity. The phase angle values recov-
ered by EKI from the mean level sets are -2.49 (zone 2) and
-13.5 (zone 1) mrad (Fig. 10j). As observed in the EKI field
inversion, only the low part of the ’L-shaped’, more negative
phase angle feature associated with the PRB is recovered,
but not the upper part. The zone 2 probability and STD
maps also show the zonal uncertainty is low everywhere, ex-
cept slightly higher along the estimated boundaries.

For the inversion of field data, the SCI results with and
without regularization disconnect are shown in Fig. 11a-d.
Without the disconnect approach, the inverted resistivity
and phase angle images does not resemble a PRB. The
smooth images have high resistivities and highly negative
phase angles in the middle of the model domain. With the
disconnect applied, very high resistivities and highly nega-
tive phase angles are observed within the L-shaped bound-
ary. However, smooth, higher resistivities and highly nega-
tive phase angles zones are still observed in the middle of
the model domain. This may suggest the PRB extent may
be slightly different than assumed, or the impact of non-
Gaussian noise (which is most likely due to modelling errors
not being fully taken into account).

The EKI results are reported in Fig. 11e-l. Without em-
ploying any prior knowledge of the PRB boundaries, the re-
turned resistivity patterns shows roughly the ’L’ geometry,
although the ’L’ extends lower and its top part is wider than
assumed. The recovered phase angle map shows a highly
negative phase angle zone with a roughly round structure
dipping to the right. Note that its left boundary is almost
identical as assumed and the groundwater flow gradient is
left to right. The zone 2 probability and STD maps also
show the zonal uncertainty is low everywhere, except slightly
higher along the estimated boundaries. The posterior zonal
resistivity from the mean level sets (from zone 1 to 2) are
0.4 and 73.7 Ωm, while for phase angles they are (from zone
1 to 2) -21.0 and -2.5 mrad.

Based on our finding in this example, geoelectrical
imaging with EKI may be a useful tool for probabilistic
PRB integrity assessments. While SCI returns determinis-
tic overly smooth images that may limit the interpretation
of PRB-related features, regularization disconnect relies on
very strong assumptions on the location of the PRB. Such
an assumption may not be desirable because the PRB may
not be constructed exactly as planned, or may have experi-
enced transformation over time. EKI provides an additional
way to invert ERT and IP data and it relaxes this assump-
tion and returns a map of mean zonal resistivity together
with estimates of the posterior zonal probability that can
be useful to monitor the shape and integrity of the PRB
non-invasively over time. While we recognise that measures
of uncertainty in terms of zonal probabilities are highly re-
liant on the choice of the level-set parameterisation and the
thresholds that we selected a priori, our work can be ex-
tended to infer more optimal thresholds from the ERT and
IP data to better inform the uncertainty in the estimates
that we produce.

3.4.3 Effect of data noise

We repeat the inversion of the synthetic PRB case by low-
ering the data noise levels to half of the original or more
(Fig. 12). Specifically, the noise levels are 2% for DC resis-
tivity and 0.5 mrad for phase angle.

The number of iterations required to converge has about
doubled. This is expected as data is assumed to be of higher
quality and are given more weight. The DC resistivity in-
version improves from Fig. 12. In particular, there is an in-
creased number of correctly identified low-resistivity PRB
pixels, and fewer misidentified ones outside the PRB. The
EKI posterior resistivity from the mean level sets is esti-
mated to be 29.33 Ωm and 0.28 Ωm. Phase angle results also
show improvements. While Fig. 10 phase angle estimates do
not show the PRB to resemble an ’L’ shape, here it shows
some indication that the feature is wider at lower depths.
The posterior zonal phase angle is -14.45 mrad and -2.51
mrad. While there have been improvements in resolving fea-
tures with lower data noise, the bottom of the ”L” shape
PRB remains difficult to resolve clearly. The low resolution
in this region may be mitigated by using a deeper borehole
electrode array.
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Figure 9. Pow Beck sub-catchment: (a,b) The resistivity model estimated by smoothness-constrained inversion. (c,d) The mean resistivity

and phase angle model estimated by EKI across samples. (e,f) The resistivity and phase angle model obtained from the mean level sets

estimated by EKI. (g,h) The posterior Zone 2 probabilities for resistivity and phase angle. (i,j) The posterior standard deviation.

3.5 Summary of convergence performance

Table 1 shows the convergence performance of the example
cases in terms of, Dm, the square norm of the average resid-
uals from equation (26). As discussed in subsection 2.4.2 we
expect this measure Dm to achieve values close to one for
the converged (posterior) ensemble (i.e. when m = q + 1).
All cases show a large reduction from the initial value D0

computed from the prior ensemble, which confirms that our
prior is rather uninformative and displays large uncertainty.
In almost all of the reported cases, Dm converges close to
the value 1.0 which, again, is indicative that the data can be
explained, up to noise level (measurement errors) by the pre-
dictions made by the posterior ensemble. Cases where Dq+1

achieves value substantially larger than one could represent
an underestimation of the variance of the measurement er-
ror (e.g. Fig. 7 and Fig. 11 for resistivity) which we use in
(26) to weight the residual. Although we considered realis-
tic measurement errors for both the magnitude and phase
angle components of the potential’s measurements, phase
angle measurement errors were larger (relative to the size
of the measurements) than the magnitude’s errors used for
resistivity inversions. It comes as no surprise that way fewer
iterations were required for phase angle inversion since larger
errors (and so large variance) means the data can be easier

explained, albeit with larger uncertainty, with these larger
measurement errors.

We also report the fraction of cells with their zone mem-
bership being correctly identified in Table 2 in cases where
the true zone geometry is known (1.0 implies perfect identi-
fication). Zone membership is obtained from the mean level
sets by EKI. Note that this measure is highly dependent
on the geometry of the problem and problems with simple
geometry and clear background region tend to have high
scores. This measure is particularly useful to evaluate re-
runs of the same problem. For instance, it shows an im-
provement with (i.) using two level sets functions (higher
score from Fig. 4 than Fig. 3) and (ii.) with lower data noise
levels (higher score from Fig. 12 than Fig. 10). Generally,
in all cases the zone membership is correctly identified for a
large fraction of cells (i.e. >0.7, with the exception of phase
in Fig. 7, which is due to the effect of using non-informative
priors on phase angles) and the score for resistivity is better
than phase angle.

4 DISCUSSION

We have demonstrated the extension of EKI with level
set parameterization from ERT to IP data. This confirms
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Figure 10. (a,b) True resistivity and phase angle models for the 2D PRB example, which comprises of an L-shaped target that represents

the PRB. (c,d) The resistivity and phase angle model estimated by smoothness-constrained inversion (without regularization disconnect).

(e,f) The resistivity and phase angle model estimated by smoothness-constrained inversion (with regularization disconnect). (g,h) The
mean resistivity and phase angle model estimated by EKI across samples. (i,j) The resistivity and phase angle model obtained from the

mean level sets estimated by EKI. (k,l) The prior estimated probability of zone 2 (i.e. not the background) (m,n) The posterior standard

deviation for resistivity and phase angle. The red lines denotes the true PRB boundary. The three vertical arrays of black dots indicate
the borehole electrode positions.

Figure 11. (a,b) The resistivity model estimated by smoothness-constrained inversion for the PRB field example (without regularization

disconnect). (c,d) The resistivity model estimated by smoothness-constrained inversion for the PRB field example(with regularization
disconnect). (e,f) The mean resistivity and phase angle model estimated by EKI across samples. (g,h) The resistivity and phase angle

model obtained from the mean level sets estimated by EKI. (i,j) The prior estimated probability of zone 2 (i.e. not the background)

(k,l) The posterior standard deviation for resistivity and phase angle. The red lines denotes the assumed true PRB boundary. The three
vertical arrays of black dots indicate the borehole electrode positions.
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Figure 12. Repeat of Fig. 10 with lower data noise. (a,b) The mean resistivity and phase angle model estimated by EKI across samples.
(c,d) The resistivity and phase angle model obtained from the mean level sets estimated by EKI. (e,f) The prior estimated probability

of zone 2 (i.e. not the background) (g,h) The posterior standard deviation for resistivity and phase angle. The red lines denotes the true

PRB boundary. The three vertical arrays of black dots indicate the borehole electrode positions.

the potential to extend the method to different geophysi-
cal modalities (Tso et al., 2021), alongside with concurrent
developments in its application in seismic studies (Muir &
Tsai, 2020; Muir et al., 2022). In general, this method is a
highly flexible framework that is suitable for a wide range
of subsurface applications that has sharp changes in prop-
erties and its advantage to solve the inverse problem using
only evaluations of the forward solver (and not its Jacobian)
means it can be readily applied to new problems and even
coupled or joint models.

EKI is a robust approach for solving large-scale high-
dimensional Bayesian inverse problems for which fully-
Bayesian sampling methods such as MCMC are computa-
tionally unfeasible. However, it is important to reiterate that
EKI relies on Gaussian approximations as well as the use of
a small number of realizations. Hence, the estimated un-
certainty may be underestimated and, thus, care should be
taken to interpret the images (and their uncertainties) re-
turned by EKI and the underlying assumptions should be

taken into consideration (e.g. survey geometry, prior ranges,
conceptual model). For instance, when considering the un-
certainty maps, the resolution pattern of the measurement
array (e.g. lower resolution at greater depths for a surface ar-
ray) and prior formulation (e.g. choice of level-set thresholds
α in 2.4.2 and Appendix B) should be taken into account.
Meanwhile, we have shown that since the range of values
for phase angles are small as well as their lower signal-to-
noise ratio, their percentage uncertainty can be very high.
Users should consider these caveats when interpreting the
resultant uncertainty estimates.

We have adopted a sequential approach to invert IP
data in which we first infer resistivity, then we infer phase
angle. While a joint inversion via EKI can also be performed,
the dimension of the input space increases substantially.
Thus a larger ensemble size may be needed which, in turn,
increases the computational cost of the inversion algorithm.
Also, for joint inversions both the magnitude and phase
angle of the potential measurements need to be jointly in-
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verted. Given that the phase angle measurements are smaller
than the magnitude measurements, there is a high risk that
the former will be overshadowed by the latter, and hence not
significantly contribute to the estimation of the geophysical
properties.

We also note the misfit improvements for phase angles
tend to be significantly smaller than resistivity, and the pos-
terior zonal probability patterns are less clear. This does
not imply a lack of value for incorporating IP data. Rather,
it highlights an independent phase angle inversion requires
good estimates of resistivity values as inputs.

Based on the issues arisen in Fig. 3, we have performed
an in-depth investigation on using alternative level-set for-
mulations for EKI, such as using two level-set functions for
three zones and using a four-zone formulation. We find that
using two level-sets and thus allowing jumps from the lowest-
value zone to the highest-value zone greatly improve results
in that example. We also find that incorrectly specifying
a three-zone problem with four zones only slightly affected
EKI results. Using non-informative priors that are identical
for all zones somewhat impacted DC resistivity results, but
had a very large impact on phase angle results. Finally, we
note that each of these alterations to the level set formula-
tion increases the prior uncertainty of the EKI problem, as
indicated by the increases in the prior residuals D0 (relative
to that in Fig. 3) in Table 1. Therefore, we recommend start-
ing with a more basic, more informative prior formulation
when encountering new problems and considering whether
EKI results can be improved by these alternative formula-
tions incrementally.

As discussed earlier, since IP measures the electrical po-
larizability of subsurface materials, it provides additional in-
formation on, for example, hydraulic properties that cannot
be obtained from ERT. However, since phase angle varia-
tions are generally small, it is perhaps even more important
to interpret phase angle estimates alongside its uncertainty
estimates. EKI provides an effective method for geophysical
inversion for both resistivity and phase angles, especially if
they are in arbitrarily shaped zones and there is an abrupt
jump in property values. Joint interpretation of resistivity
and IP images, alongside their uncertainty estimates, can
provide useful and reliable information to delineate the spa-
tial distribution of hydraulic properties.

In addition to visual inspection, EKI for IP results can
also be used to obtain probabilistic maps of properties of
interest, e.g. permeability, given a suitable petrophysical
model, such as the Weller et al. (2015) model. In the Sup-
plementary Information, we have provided an example to
use the results from this paper and uncertainty propaga-
tion methods (Tso et al., 2019) to obtain maps of mean and
standard deviation of permeability, k. An advantage of this
method is that a breakdown for each of the petrophysical
and geophysical parameters can be obtained. For IP inver-
sion, despite the existence of petrophysical relationships be-
tween k and IP for decades, this is one of the first work to
invert field IP data and convert it to k fields with uncertainty
bounds. It represents a step towards making more meaning-
ful hydrological predictions from IP data. Römhild et al.
(2022) has recently used cross-hole IP data to complement
hydraulic test to image near-surface aquifer. In theory, the
EKI level set approach demonstrated herein can be further
extended for similar applications.

5 CONCLUSIONS

We have demonstrated the use of ensemble Kalman inver-
sion with level set parameterization for induced polariza-
tion data. Unlike commonly used smoothness-constrained
inversion, it can effectively estimate resistivity and phase
angle structure with arbitrarily shaped zones. Importantly,
it also provides estimation of uncertainty in terms of zone
membership and standard deviation. These uncertainty es-
timates can be propagated to obtain uncertainty bounds of
hydrological properties of interest (e.g. via petrophysical re-
lationships). Our findings highlight the added value of us-
ing the EKI approach to invert ERT and IP data, not only
for recovering geophysical structures but also for making
probabilistic assessment of hydrological properties. We have
also provided in-depth investigation on the effects of more
advanced level set formulations, the use of non-informative
priors, and data noise on EKI performance. Percentage un-
certainties for phase angles also tend to be higher than that
for resistivity. Overall, EKI provides highly valuable infor-
mation to delineate the juxtaposition of contrasting material
properties.
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A., Ntarlagiannis, D., Bücker, M., Ehosioke, S., Fernandez,

P., Flores-Orozco, A., Kemna, A., Nguyen, F., Pilawski, T.,
Saneiyan, S., Schmutz, M., Schwartz, N., Weigand, M., Wu,

Y., Zhang, C., & Placencia-Gomez, E., 2019. Induced polar-

ization applied to biogeophysics: recent advances and future
prospects, Near Surface Geophysics, 17(6), 595–621.

Lindgren, F., Rue, H., & Lindström, J., 2011. An explicit link
between Gaussian fields and Gaussian Markov random fields:
the stochastic partial differential equation approach, Journal

of the Royal Statistical Society: Series B (Statistical Method-

ology), 73(4), 423–498.
Litman, A., 2005. Reconstruction by level sets of n-ary scattering

obstacles, Inverse Problems, 21(6), S131.
Lopez-Alvis, J., Nguyen, F., Looms, M. C., & Hermans, T.,
2022. Geophysical Inversion Using a Variational Autoencoder

to Model an Assembled Spatial Prior Uncertainty, Journal of
Geophysical Research: Solid Earth, 127(3).

Madsen, L. M., Fiandaca, G., Auken, E., & Christiansen, A. V.,

2017. Time-domain induced polarization – an analysis of
cole–cole parameter resolution and correlation using markov

chain monte carlo inversion, Geophysical Journal Interna-

tional , 211(3), 1341–1353.
Matveev, M., Endruweit, A., Long, A., Iglesias, M., & Tretyakov,

M., 2021. Bayesian inversion algorithm for estimating local

variations in permeability and porosity of reinforcements using

experimental data, Composites Part A: Applied Science and
Manufacturing, 143, 106323.

McLachlan, P., Chambers, J., Uhlemann, S., & Binley, A., 2020.

Limitations and considerations for electrical resistivity and in-
duced polarization imaging of riverbed sediments: Observations

from laboratory, field, and synthetic experiments, Journal of

Applied Geophysics, 183, 104173.
Mejus, L., 2014. Using multiple geophysical techniques for im-

proved assessment of aquifer vunlerability, Ph.D. thesis, Lan-
caster University.

Michel, H., Nguyen, F., Kremer, T., Elen, A., & Hermans, T.,

2020. 1D geological imaging of the subsurface from geophysi-
cal data with Bayesian Evidential Learning, Computers Geo-

sciences, 138, 104456.

Michel, H., Hermans, T., & Nguyen, F., 2022. Iterative prior
resampling and rejection sampling to improve 1-D geophysi-

cal imaging based on Bayesian evidential learning (BEL1D),

Geophysical Journal International , 232(2), 958–974.
Moysey, S., Singha, K., & Knight, R., 2005. A framework for in-

ferring field-scale rock physics relationships through numerical

simulation, Geophysical Research Letters, 32(8), 1–4.
Muir, J. B. & Tsai, V. C., 2020. Geometric and level set tomog-

raphy using ensemble Kalman inversion, Geophysical Journal
International , 220, 967–980.

Muir, J. B., Clayton, R. W., Tsai, V. C., & Brissaud, Q.,

2022. Parsimonious Velocity Inversion Applied to the Los An-
geles Basin, CA, Journal of Geophysical Research: Solid Earth,

127(2).

Mwakanyamale, K., Slater, L., Binley, A., & Ntarlagiannis, D.,
2012. Lithologic imaging using complex conductivity: Lessons

learned from the Hanford 300 Area, Geophysics, 77(6), E397.
Ntarlagiannis, D., Williams, K. H., Slater, L., & Hubbard, S.,
2005. Low-frequency electrical response to microbial induced
sulfide precipitation, Journal of Geophysical Research: Biogeo-

sciences, 110(G2).
Nussbaumer, R., Linde, N., Mariethoz, G., & Holliger, K.,

2019. Simulation of fine-scale electrical conductivity fields using
resolution-limited tomograms and area-to-point kriging, Geo-

physical Journal International , 218(2), 1322–1335.
Oware, E. K., Irving, J., & Hermans, T., 2019. Basis-
constrained Bayesian Markov-chain Monte Carlo difference in-

version for geoelectrical monitoring of hydrogeologic processes,

Geophysics, 84(4), A37–A42.
Pang, Y., Nie, L., Liu, B., Liu, Z., & Wang, N., 2020. Multiscale

resistivity inversion based on convolutional wavelet transform,
Geophysical Journal International , 223(1), 132–143.

Ramirez, A. L., Nitao, J. J., Hanley, W. G., Aines, R., Glaser,

R. E., Sengupta, S., Dyer, K. M., Hickling, T., & Daily, W. D.,
2005. Stochastic inversion of electrical resistivity changes using
a Markov Chain Monte Carlo approach, Journal of Geophysical

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae012/7513182 by C

EH
 W

inderm
ere user on 12 January 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Ensemble Kalman Inversion for IP 25

Research: Solid Earth, 110, B02101.

Revil, A., Soueid Ahmed, A., Coperey, A., Ravanel, L., Sharma,

R., & Panwar, N., 2020. Induced polarization as a tool to char-
acterize shallow landslides, Journal of Hydrology, 589, 125369.

Roininen, L., Lasanen, S., Orispää, M., & Särkkä, S., 2014.
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APPENDIX A: EKI ALGORITHM

APPENDIX B: SINGLE LEVEL-SET
PARAMETERIZATION

As for the two-level-set case, we describe only the formula-
tion for the parameterization of resistivity ρ(x). For simplic-
ity we consider a simple three-zone parameterization that
relies on the assumption that the unknown resistivity takes
only three (unknown) resistivity values ρ1, ρ2 and ρ3 on
(unknown) regions denoted by Ω1, Ω2 and Ω3, respectively.
These regions are, in turn, parameterized via thresholding
the level-set function, denoted by ξ(x). In other words, we
assume those regions are defined by

Ω1 ={x : ξ(x) ≤ α1},
Ω2 ={x : α1 < ξ(x) ≤ α2},
Ω3 ={x : ξ(x) > α2}

(B.1)

where α1 and α2 are user defined parameters. In summary,
the 3-zone characterisation of the unknown resistivity is
given by

ρ(x) =


ρ1, ξ(x) ≤ α1

ρ2, α1 < ξ(x) ≤ α2

ρ3, ξ(x) > α2

(B.2)

where for the results presented here we choose α1 = −0.1
and α2 = 0.1. It is worth noticing that the interface be-
tween Ω1 and Ω2 corresponds to the α1-level-set of ξ(x) (i.e.
{x : ξ(x) = α1}) while the interface between Ω2 and Ω3 is
defined by the α2-level-set of ξ(x). The implicit requirement
that α1 < α2 in (11) means that, under these modelling
assumptions, Ω1 and Ω3 cannot intersect. The modelling
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Algorithm 1 Ensemble Kalman inversion algorithm for a
generic inverse problem.

Inputs: (1) w: measurements; (2) Σ measurements’ er-

ror covariance; (3) {u(j)
0 }Jj=1: initial ensemble from the prior

P(u); (4) forward map G.
Output: {u(j)}Jj=1: posterior ensemble (ensemble from

the approximate posterior P(u|d).
Set s0 = 0
while sn < 1 do

(1) Prediction step. Evaluate

G(j)
n = G(u(j)

n ), j ∈ {1, . . . , J},
and define Gn = 1

J

∑J
j=1 G

(j)
n .

(2) Compute regularisation parameter αn:

Compute α∗
n = 1

M
1
J

∑J
j=1 ||Σ

−1/2(w − G(j)
n )||2

if sn + 1
α∗
n
≥ 1 then Set αn = 1

1−sn
, sn+1 = 1;

else Set αn = α∗
n, sn+1 = sn + 1

αn
.

end if
(3)Analysis step. Define CuG

n , CGG
n by

CGG
n =

1

J − 1

J∑
j=1

(G(u(j)
n )− Gn)(G(u(j)

n )− Gn)
T ,

CuG
n =

1

J − 1

J∑
j=1

(u(j)
n − un)(G(u(j)

n )− Gn)
T .

(A.1)

Update each ensemble member:

u
(j)
n+1 = u(j)

n + CuG
n (CGG

n + αnΣ)
−1(w − G(j)

n + η(j)
n ),(A.2)

where j ∈ {1, . . . , J} and η
(j)
n ∼ N(0,Σ).

n+ 1 → n
end while

framework here is suitable, for example, in the case where
Ω2 corresponds to a background media with medium resis-
tivity while Ω1 and Ω3 consist of non-overlapping regions
of high and low resistivity respectively. This limitations is
addressed by the two-level set formulation discussed in sub-
section 2.3. However, with the increase flexibility comes an
increase of dimension of the input space and, thus, potential
increase in computational cost for the EKI algorithm.
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