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Abstract

Rheology is a wide-reaching field whose applications are underpinned by a prior knowledge

of the ‘viscoelastic’ properties of (complex) materials generally employed across industries

such as oil and gas, food processing, cosmetics, and biophysics; the latter being the main

focus of this thesis. Biomedical studies often only have access to small sample volumes,

which make conventional bulk rheology techniques unsuitable for their characterization, this

has led to the development of a new field called microrheology, where new techniques can

characterise the viscoelastic properties of complex fluids by using only a few microlitres of a

sample volume. As a branch of rheology, microrheology utilises the same underpinning prin-

ciples and aims to calculate a material’s properties, including the complex shear modulus,

which in turn describes how the material behaves.

The following thesis is aimed at investigating the use of microrheology with optical

tweezers in a series of papers exploring different areas within the field of microrheology.

Each paper targets certain gaps within the field and as such this thesis is fairly broad reach-

ing touching on algorithm development, machine learning and shear flow analysis.

Chapter 2 presents the work “i-RheoFT: Fourier transforming sampled functions without

artefacts”, and introduces an open access MATLAB code, “i-RheoFT”, which can evaluate

the Fourier transform of any generic time-dependent function with a finite number of data

points. I-RheoFT could be of particular interest and use to those who study sampled or

time-averaged functions. The paper investigates three experimental parameters employing

i-RheoFT: (i) the density of initial experimental data points that describe the signal, (ii) the

interpolation function used to perform virtual oversampling of the signal, which is required

for accurate evaluation of the Fourier transform, and (iii) the effect that signal noise has

on the Fourier transform. As the chapter shows, a high number of initial data points or a

high signal-to-noise ratio corresponds to a good performance for each interpolation function

used. Alternatively, a low number of initial points or signal-to-noise ratio corresponds to

poor performance across each interpolation function used. As one would expect, there ex-

ists a threshold, for both the signal-to-noise and the number of initial points, at which the
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performance becomes acceptable and has been identified in both cases in the chapter. More

recently further development of this work has led to the creation of two open source applica-

tions [1, 2] available for download, these aim to compute the complex shear modulus from

bulk rheology and atomic force microscopy measurements respectively. Moreover, since its

publication this work has been used in three studies [3–5], two of which feature the author

of this thesis as a co-author.

Chapter 3 examines the claim that linear microrheology with optical tweezers should

not be used for the study of living systems due to the variation between the time required

to collect statistically valid data and the mutational time of the studied living system. This

work is a first step at enhancing conventional statistical mechanics analysis of particle trajec-

tories, captured using microrheology with optical tweezers, by exploiting machine learning

techniques to reduce the current measurement time from tens of minutes down to as little as

one second. The chapter describes how computer simulated trajectories, of Newtonian flu-

ids with viscosities spanning three decades, have been used to corroborate the requirement

for sufficiently long measurements to offer a good estimation of the fluid viscosity using

conventional analytical techniques. In addition, the work provides a method for estimating

the measurement time of a microrheology with optical tweezers experiment, based on the

relative viscosity of the fluid being analysed to produce an uncertainty as low as 1%. Fur-

thermore, this chapter presents a machine learning algorithm that can predict the viscosity

of both simulated and real trajectories, carrying an error as low as ∼ 0.3%, using only one

second of data. It is believed that with this machine learning enhancement, microrheology

with optical tweezers will become a powerful tool for studies involving living systems.

Chapter 4 presents an investigation into flow induced self-assembly (FISA) of particles

suspended in a viscoelastic shear thinning fluid subjected to simple shear flow. This phenom-

ena is currently not fully understood and little has been done in literature so far to investigate

the possible effects of the shear-induced elastic instability. In this work, a bespoke cone and

plate shear cell is used to provide new insights on the FISA dynamics. In particular, we have

fine tuned the applied shear rates to investigate the chaining phenomenon of micron-sized

spherical particles suspended into a viscoelastic fluid characterised by a distinct onset of

elastic instability. This has allowed us to reveal three phenomena never reported in literature

before, i.e.: (I) the onset of the elastic instability is strongly correlated with an enhancement

of FISA; (II) particle chains break apart when a constant shear is applied for ‘sufficiently’

long-time (i.e. much longer than the fluids’ longest relaxation time). This latter point corre-

lates well with the outcomes of parallel superposition shear measurements, which (III) reveal

ii



a fading of the elastic component of the suspending fluid during continuous shear flows.
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Chapter 1

Introduction

1.1 Summary

This thesis presents a series of papers that have been published in the field of microrheology;

an extension of the larger field of rheology. The works aim to address gaps within the lit-

erature surrounding passive microrheology with optical tweezers (MOT). The effectiveness

of this measurement method has not been fully realised, due to its relative novelty within

the field, and as such the papers presented here target specific areas of passive MOT to help

bridge these gaps.

Beginning with an introductory chapter, this thesis provides some context and back-

ground to the field of rheology, microrheology and MOT. The first paper presented in this

thesis is “i-RheoFT: Fourier transforming sampled functions without artefacts”, found in

Chapter 2, and focuses on the development of an open-access code for Fourier transforming

generic time-dependent signals over a finite range. “Machine learning opens a doorway for

microrheology with optical tweezers in living systems” is introduced in Chapter 3 and inves-

tigates both the requirement for passive MOT measurements to be measured for a long time

and the use of machine learning to overcome this requirement. The final paper presented in

this thesis is found in Chapter 4, titled “The role of elastic instability on the self-assembly of

particle chains in simple shear flow”, studies the relationship between the self-assembly of

particle chains at shear rates tuned to the onset of elastic instability. The final chapter of this

thesis summarises the findings, and future work, for each of the published works.
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1.2 Introduction to Methods

1.2.1 Rheology

Rheology is the study of the flow of matter and was first introduced by Bingham in 1920 after

a number of experiments [6–11] began to challenge the classical Hookean and Newtonian

descriptions of materials. For context, Hooke’s law is concerned with purely elastic solids

(i.e. solids that store potential energy), the simplest example being a spring, where the

deformation of the spring (x) is linearly proportional to the force (Fs) being applied such

that:

Fs =−kx, (1.1)

where k is the spring constant. Or for the case of purely elastic solids:

σ = Eε, (1.2)

where σ is the stress (ratio of force and area) applied to the material, E is the modulus

of elasticity, and ε is the extensional strain (ratio of the change in length and the original

length) applied to the material. On the other side of the spectrum, Newton’s description of

fluids bears a striking resemblance to Hooke’s law. A schematic representation is displayed

in Fig.1.1 where a fluid is placed between parallel, stationary and moving plates.

From Fig.1.1, the fluid that is closest to each plate will gain the velocity of that plate

(ignoring resistance effects). Consequently, the fluid between the plates will develop a ve-

locity gradient in the direction of the moving plate. Intuitively, the velocity at any given point

on this gradient is dependent on the velocity of the moving plate and the distance from the

plate, which is the shear rate (γ̇). Interestingly, the configuration shown in Fig.1.1 is called

viscometric flow, where the gap size is small to ensure the velocity gradient is constant. As

described previously, the stress applied to the fluid is just the force divided by the area and is

linearly proportional to the shear rate by:

σ = ηγ̇ (1.3)

where η is the resistance to flow, commonly called the viscosity.

In both classical descriptions k, E and η are constant for the same material and Eqs.(1.1)-

(1.3) are linearly proportional, meaning that doubling the applied force, doubles the defor-

mation (or shear rate). Hence, researchers are interested in calculating the constants (k, E
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Figure 1.1: Schematic representation of Newtonian description of fluid behaviour under vis-

cometric flow, where AP is the area of the plate, U is the relative velocity of the moving plate,

F is the force applied to the plate, d is the distance between plates, s is the deflection path,

and γ̇ is the shear rate.

and η) as they give a clear description of how the material will behave. Unfortunately, many

materials behave neither purely elastically nor purely viscously but instead have both com-

ponents and such classical descriptions of the material no longer give a good approximation

of these materials [12].

The field of rheology concerns itself with the materials that lie in between the two ex-

tremes of Hookean solids and Newtonian liquids, and these materials can be described as

viscoelastic as they have both an elastic and viscous component. A common ‘Kitchen Sci-

ence’ experiment that demonstrates viscoelasticity involves combining corn-starch and water

to produce a material that flows like a fluid if force is applied slowly, while the rapid appli-

cation of force induces solid like behaviour. Importantly, materials that fall on the spectrum

between the two extremes can behave very differently to each other and determining the

variation between them is the remit of Rheologists.

As mentioned above, Hooke’s Law measurements are often interested in calculating the

elastic modulus, which is a single number providing information about the material i.e. the

larger the elastic modulus the “stiffer” the material. To achieve this, researchers will ap-

ply stress to a solid of known dimension and measure the strain or vice versa, making the

calculation of E trivial using Eq.(1.2).
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Rheologists do something very similar except they must carry out oscillatory measure-

ments instead of a linear application of stress/strain. For a detailed description of such os-

cillatory measurements this author would recommend [13] but for convenience they will be

summarised here. Imagine in Fig.1.1 the moving plate is oscillating back and forth at a

steady frequency with a set shear stress. As the plate moves, the fluid between each plate

would be moving to catch up but there would be a delay between the maximum applied shear

stress and the maximum deflection between the plates (i.e. shear strain). This oscillatory test

would produce sine wave functions of the shear stress and strain as they increase and de-

crease during the measurement. By measuring the shear strain amplitude (γA) for a chosen

shear stress amplitude (σA), one can calculate the complex shear modulus (G∗) through:

G∗ =
σA

γA
, (1.4)

which describes the entire viscoelastic behaviour of the material for the frequency ap-

plied. Additionally, the delay between the sine waves (or phase shift, δ ) is also recorded

during these measurements so that a vector diagram can be created as detailed in Fig.1.2.

G”

G’

G*

δ

y, Vi

x, El

Figure 1.2: Vector diagram showing the relationship between the complex shear modulus G∗

and the phase angle δ can be used to compute the elastic (G′) and viscous (G′′) component

of G∗. [13]

This vector diagram can be used to split the complex shear modulus G∗ into the elastic

(G′) and viscous (G′′) components, which can be used to infer how the material under ex-

amination generally behaves i.e. if G′ > G′′ the material will behave more like a solid and if

G′ < G′′ the material will behave more like a liquid.

However, as we have seen from the corn-starch and water example given above, the speed

(or frequency) at which force (stress) or deformation (strain) is applied will determine the

mechanical properties of the complex material and therefore applying stress/strain at just one

frequency is not sufficient to describe the full behaviour. The gold standard for measuring

the complex shear modulus is using a conventional bulk rotational rheometer to apply a
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frequency sweep to the material. In such systems the material is rotated between two plates

rather than a single plate moving back and forth, but the principles are the same. At each

pre-set frequency, the stress or strain is pre-set or measured and the complex shear modulus

can be calculated. However, the stress and strain in both these experiments is measured in the

time domain, whereas the aim here is to determine the frequency dependent complex shear

modulus (G∗(ω)). To calculate this, one may determine the magnitude of G∗(ω) through

the ratio of peak stress to peak strain, use the lag-time between the stress and strain curves

to determine the phase angle (δ ) and then compute G′(ω) and G′′(ω). Alternatively, one

may apply a Fourier transform to both the time-dependent stress and time-dependent strain

individually such that:

G∗(ω) =
σ̂(t)
γ̂(t)

≡
∫+∞

−∞
σ(t)e−iωtdt∫+∞

−∞
γ(t)e−iωtdt

(1.5)

where i is the imaginary unit (i =
√
−1), ω is the angular frequency, and σ̂(t) and γ̂(t)

are the Fourier transforms, denoted by the hat ( ˆ ) , of the time dependent stress and strain

respectively. Due to the oscillatory nature of the experiment, the applied oscillatory strain

and measured stress can be represented as:

γ(ω, t) = γAsin(ωt) (1.6)

and

σ(ω, t) = σAsin(ωt +δ (ω)) (1.7)

respectively [14]. Where δ (ω) is the frequency dependent phase shift. These frequency

dependent representations of the oscillatory stress and strain produce a new expression of

the complex shear modulus as follows:

G∗(ω) =
σA

γA
cos(δ (ω))+ i

σA

γA
sin(δ (ω))≡ G′(ω)+ iG′′(ω) (1.8)

This general formula can be used to determine the properties of not only purely elastic

solids and viscous liquids (δ (ω) = 0≡G∗(ω) =G′(ω) and δ (ω) = π/2≡G∗(ω) = iG′′(ω)

respectively) but also every material in between that has a combination of each component

across a full range of frequencies. One should note that this method of analysis is only pos-

sible on the materials linear viscoelastic (LVE) region, which can be determined through an

amplitude sweep, as applying a stress or strain above this region would result in destruc-

tion of the sample [13]. Interestingly, it has been shown that the frequency dependent shear

complex modulus provides information about the internal structure of materials from the
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atomic scale (10−10m) at THz up to the macroscopic scale (cm) at relatively low frequencies

[15–18], hence the importance of determining the LVE properties over the widest possible

frequency range. The difficulty with achieving such a range with oscillatory amplitude and

frequency sweeps is that these measurements can only provide information at the frequen-

cies analysed, the experimental timescales associated with these tests can be on the order

of hundreds of seconds, and the limits of a desired frequency range may be impossible to

measure with a conventional rheometer. These limitations have led to the development of

new procedures. A recent study by Geri et al. [19] introduced an “optimally windowed-

chirp” (OWch) sequence aimed at replacing the standard, time-consuming frequency sweep.

As with all chirps, the OWch sequence is a frequency-modulated deterministic signal and

can be thought of as a combination of both a frequency and amplitude sweep. The benefits

of using such a signal are: (i) using an OWch sequence can dramatically reduce the mea-

surement time of oscillatory tests by 2 orders of magnitude and (ii) the optimisation of the

OWch sequence leads to minimum error determined by the noise floor of the rheometer. In

addition, a study by Tassieri et al. [20] has provided a simple analytical tool, i-Rheo that can

access the widest possible range of frequencies using a step-strain measurement. In such a

measurement, a finite strain is applied instantaneously to a sample and the stress is measured

over time. The stress and strain in this instance can be related to the time-dependent shear

modulus through:

G(t) =
σ(t)
γ(t)

, (1.9)

only if the ramp time from the experimental stress and strain measurement is discarded and

a preconceived fit is applied to the functions. i-Rheo on the other hand, does not require

preconceived fitting procedures nor the idealisation of the experimental data. Instead, this

tool works by first interpolating between the data points of the time-dependent functions

(σ(t),γ(t)) using a cubic spline function, then virtually oversampling the interpolation, i.e.

increasing the number of data points, and finally passing this new function (g(t)), which

must vanish for negative times, through the following Fourier transform method:

−ω
2ĝ(ω) = iωg(0)+

(
1− e−iωt1

) (g1 −g(0))
t1

+

+ġ∞e−iωtN +
N

∑
k=2

(
gk −gk−1

tk − tk−1

)(
e−iωtk−1 − e−iωtk

)
, (1.10)

where ω is the frequency, ĝ(ω) is the Fourier transform of the signal, g(0) is the value of the

signal extrapolated to zero time, t1 and g1 are the initial time and corresponding signal value
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respectively, ġ∞ is the gradient of the signal extrapolated to infinite time, and tk and gk are the

finite number of data points over which the signal was sampled where k = 1...N. The above

Fourier transform method (Eq.(1.10)) is a significant improvement over a conventional dis-

crete Fourier transform (DFT) because rheology measurements, such as the aforementioned

step-strain measurement, often have features that do not fit with the preconceived approxi-

mations of a DFT, which can lead to an output in the Fourier domain that is peppered with

artefacts [21]. The effectiveness of i-Rheo was validated by Tassieri et al.[20] and subse-

quent works [22–24] and allows researchers to determine the complex shear modulus using

a relatively simple experimental procedure.

Rheology is a vitally important field of study used across a vast array of disciplines

including the oil and gas, food processing and cosmetic industries, to name a few, and more

recently within biophysics to measure the properties of biological materials [25–30].

1.2.2 Microrheology

Conventional rheological techniques, such as the rotational tests described above, are the

gold standard when it comes to measuring material properties. However, the major draw-

back with this technique is the requirement for millilitres of a sample. This makes the proce-

dure unsuitable for use in biophysical studies when only rare or precious samples are often

available. Microrheology is a branch of rheology and is a field of study that aims to de-

termine the LVE properties of materials at the micron length scale i.e. using a few µL of

sample. Although microrheological techniques appear at first glance to be vastly different

from those of conventional bulk rheology, the fundamental underlying principles are the

same, with the aim of calculating the frequency dependent complex shear modulus of vis-

coelastic materials. Generally, microrheology techniques will employ microscale dielectric

particles suspended in the material of interest to determine these properties. Depending on

how these microscale particles are utilised determines whether the microrheology technique

is ‘passive’ or ‘active’. Passive microrheology analyses the random Brownian motion of the

microscale particle, caused by the inherent thermal fluctuations of the material’s molecules,

to determine the LVE properties. Conversely, active microrheology techniques utilise an ex-

ternal force, such as magnetic or optical tweezers, to oscillate the suspended particles (much

like bulk rheology) through the material while measuring the force response and hence de-

termine the LVE properties [31]. One hybrid technique that can be used for both passive and

active studies is microrheology with optical tweezers (MOT). Although this thesis consists

of multiple research papers in slightly different areas, the main microrheology technique
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discussed throughout all chapters is passive MOT and as such the principles underpinning

passive MOT will be summarised here.

In order to understand how a particle suspended in a material can be used to determine the

LVE properties of said material using passive MOT, one must first understand how optical

tweezers (OT) are utilised in such a technique. OTs were first introduced by Ashkin [32] in

the 1970s and are employed as extremely sensitive force transducers throughout the natural

sciences [33–38]. They can optically trap, in three dimensions, a micron sized dielectric

particle suspended within a media through the use of a highly focused monochromatic laser

beam.

The mechanism of this optical trap can be described by the ray-optics model as the di-

electric particle’s diameter is more than twice the wavelength of the laser beam. This author

would direct the reader to a detailed description of the ray-optics model in chapter 4 of [39],

for convenience it will be summarised henceforth. As understood by Maxwell in 1873 [40],

electromagnetic waves can apply force to a mirror or scattering object. An intuitive analogy

would be a wave of water exerting a force on a barrier as it is reflected away. In the same

way, a wave of laser light carries that same ability to apply force, however it is unremarkable

at the macroscopic scale. Yet, as the length scale is decreased to the micron scale (10−6m)

the optical force is sufficient to displace micron sized particles. The particle in question has

a different refractive index to the media surrounding it and therefore as a ray of laser light

enters the particle, the light is refracted causing a change in momentum of the ray. This

change in momentum imparts an opposite and equal force to the particle, as described by

Newton’s third law.

A particle positioned at the beam centre will experience equal counteracting resultant

forces and will therefore remain fixed. Within a highly focused laser, the beam’s greatest

intensity is at the beam centre and decreases towards the beam edge. If the particle moves

away from the centre, the higher intensity rays close to the beam centre will refract to a

greater extent than those rays closer to the beam edge. Consequently, these rays experience a

greater change in momentum and hence a larger resultant force towards the trap center. The

particle, in turn, will experience a restoring force, due to the large resultant force, back to

the beam centre and hence the particle is now optically trapped. The shape of this restoring

force is best described as a quadratic potential which is linearly proportional to the distance

the particle is away from the beam centre i.e. the further it moves away the more restoring

force it feels, providing the displacement is within the bead diameter.

Atoms and molecules continuously streak through the suspending media at random, due
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to thermal fluctuations, bombarding any particle in their path. In turn the particle experiences

Brownian motion [41] and randomly ‘walks’ through the media. In the case of an optically

trapped particle in a MOT setup, the particle is weakly confined by the trap but can explore

the volume of that trap. One important benefit of MOT is that calibration of the optical trap

requires no external measuring equipment based on the theory of Equipartition of energy.

This theorem states that for an object in thermal equilibrium, the same average energy, kBT/2

will be present in each degree of freedom, where kB is Boltzmann’s constant and T is the

temperature. The energy for each degree of freedom would be equal to the potential energy

stored in the optical trap such that:

1
2

kBT =
1
2

κ⟨r2⟩, (1.11)

where κ is the trap stiffness and ⟨r2⟩ is the variance of the particle position, as described

in chapter 5 of [39]. In passive MOT, a high speed motion detection device (usually a high

speed camera) measures the particle’s trajectory as it explores the optical trap and using

Eqn.(1.11), it is therefore possible to find and calibrate the optical trap stiffness by measuring

⟨r2⟩ at a given temperature for the degree of freedom one is interested in [42].

The particle trajectory can be used not only to calibrate the optical trap but also can give

a good estimation of the frequency dependent complex shear modulus, G∗(ω). In the section

“Theoretical Background” of Chapter 3, the reader will see a description of how one is able

to convert the two-dimensional particle trajectory into G∗(ω), but for convenience it will be

briefly summarised here.

For any generic fluid, the LVE properties can be inferred from the 2D trajectory of an

optically trapped particle through the calculation of either the normalised mean squared

displacement (NMSD, Π(τ)) or the normalised positional autocorrelation function (NPAF,

A(τ)). The NMSD and NPAF are related to each other through the following equation:

Π(τ) =
⟨∆r2(τ)⟩t0

2⟨r2⟩eq
≡ ⟨[r(t0 + τ)− r(t0)]2⟩t0

2⟨r2⟩eq
= 1−A(τ), (1.12)

where τ is the lag-time (t− t0), ⟨r2⟩eq is the variance of the particle position and ⟨∆r2(τ)⟩t0 is

the mean squared displacement (MSD). It is important to note that the brackets ⟨...⟩t0 denote

an average over all initial times t0. As will be shown in the following chapters, the necessity

to perform time averaging to obtain the NMSD and NPAF means that it is of vital importance

to capture the particle position over a long time with many individual time steps.

The NMSD and NPAF are related to the frequency dependent complex shear modulus

through:
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G∗(ω)
6πa
κ

=
Â(ω)

Π̂(ω)
, (1.13)

where a is the particle radius, κ is the trap stiffness and Â(ω) and Π̂(ω) are the Fourier

transforms of A(τ) and Π(τ) respectively [43–45]. The analysis of these Fourier transforms

can be determined through the use of Kramers-Kronig transformations [46–48]; however,

such transformations produce high frequency artefacts in G∗(ω). More recent analytical

methods, including the symmetric method introduced by Nishi et al. [49] and i-Rheo de-

scribed previously [20], have aimed at reducing these high frequency artefacts; although

i-Rheo has been shown to have greater accuracy [50] and therefore will be utilised in this

thesis.

As discussed, passive MOT solves the problem of conventional bulk rheology techniques

with its ability to attain the frequency dependent complex shear modulus, which describes

the full behaviour of a material, using only a few µL of sample.

1.3 Thesis Aims

The aims of this thesis are:

• To open the availability of the analytical tool i-Rheo to a broader audience of re-

searchers.

• To investigate how experimental parameters translate through the virtual oversampling

procedure used in i-Rheo.

• To explore the claim that conventional MOT cannot be used to measure living systems.

• To show the potential machine learning has to enhance MOT and significantly reduce

measurement time.

• To investigate the role of elastic instability on the flow-induced self-assembly of sus-

pended particles in simple shear flow.

1.4 Thesis Outline

This thesis is a collection of original works that explore different areas within the field of

microrheology. Each of the following technical chapters have their own aims and present

individual pieces of published work carried out through the duration of the PhD.
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Chapter 2 is the presentation of an open-access MATLAB code (i-RheoFT) that evaluates

the Fourier transform of any generic time-dependent function sampled over a finite set of data

points over a finite range. This work explored the effectiveness of i-RheoFT by comparing

the resultant Fourier transforms of two generic functions to their corresponding analytical

expressions. Additionally, this paper further investigated the performance of i-RheoFT by

altering both the density of initial experimental points and signal-to-noise ratio of the generic

functions as well as the interpolation method used to perform the virtual oversampling used

within the code.

Chapter 3 presents a substantial investigation of the efficacy of passive MOT for use

on living systems. This work explores the necessity of conventional passive MOT experi-

ments to have long measurements (∼ 17mins) with many individual readings (1 million data

points), making them unsuitable for analysis of living systems, which are able to change

their material properties at much shorter time scales. Furthermore, this work presents a ma-

chine learning algorithm that has the ability to predict viscosity of Newtonian fluids on only

1s of particle trajectory data, opening a doorway for passive MOT studies involving living

systems.

Chapter 4 is an experimental investigation of particle self-assembly behaviour in simple

shear flow whilst suspended in a viscoelastic shear thinning fluid (Polyacrylamide), whose

frequency-dependent viscoelastic moduli have been determined through the use of classi-

cal bulk rheology and MOT measurements. In this work, a range of shear rates have been

selected that bound the transition of the fluid from shear thinning to elastic instability. In

addition, this work presents evidence that the self assembly of particle chains is significantly

enhanced by the onset of elastic instability. Furthermore, the work displays the spontaneous

reduction in particle chain length at relatively long times, during shear flow, which is specu-

lated to be caused by a shear induced disentanglement of the polymer chains constituting the

viscoelastic fluid as discussed in the chapter.

Chapter 5 is a discussion of the findings from each paper, their impact on the field of

microrheology and it describes potential future work for each chapter.
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2.1 Abstract

In this article we present a new open-access code named “i-RheoFT” that implements the

analytical method first introduced in [PRE, 80, 012501 (2009)] and then enhanced in [New

J. Phys. 14, 115032 (2012)], which allows to evaluate the Fourier transform of any generic

time-dependent function that vanishes for negative times, sampled at a finite set of data points

that extend over a finite range, and need not be equally spaced. i-RheoFT has been employed

here to investigate three important experimental factors: (i) the ‘density of initial experimen-

tal points’ describing the sampled function, (ii) the interpolation function used to perform

the “virtual oversampling” procedure introduced in [New J. Phys. 14, 115032 (2012)], and
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(iii) the detrimental effect of noises on the expected outcomes. We demonstrate that, at rela-

tively high signal-to-noise ratios and density of initial experimental points, all three built-in

MATLAB interpolation functions employed in this work (i.e., Spline, Makima and PCHIP)

perform well in recovering the information embedded within the original sampled function;

with the Spline function performing best. Whereas, by reducing either the number of initial

data points or the signal-to-noise ratio, there exists a threshold below which all three func-

tions perform poorly; with the worst performance given by the Spline function in both the

cases and the least worst by the PCHIP function at low density of initial data points and by

the Makima function at relatively low signal-to-noise ratios. We envisage that i-RheoFT will

be of particular interest and use to all those studies where sampled or time-averaged func-

tions, often defined by a discrete set of data points within a finite time-window, are exploited

to gain new insights on the systems’ dynamics.

2.2 Introduction

In the field of soft-matter physics, it has been shown that at thermal equilibrium the motion

and the interactions between the materials’ building blocks govern the linear mechanical

properties of matter [15, 17, 18]. These can be educed via a statistical mechanics (SM) analy-

sis of the thermally driven motion of their constituents (e.g., molecules); whose dynamics can

be measured either directly (e.g., neutron spin echo (NSE)[52, 53]) or implicitly by means

of (nano/micro) tracers embedded into the samples [54]. Interestingly, the majority of these

experimental methods return a measure of the materials’ dynamics in an analytical form of

a time-dependent exponential decay function, which in the simplest cases assumes the shape

of a ‘single’ exponential decay exp(−t/τc), with τc being the characteristic relaxation time

of the process under investigation (e.g., the diffusion of monodisperse molecules/tracers in

Newtonian fluids [55] or bond percolation of transient gels [56]).

In general, for more complex systems than those just mentioned, a SM analysis of ma-

terials’ thermal fluctuations may return more convoluted functions, such as a ‘stretched’

exponential exp(−t/τc)
β , with β < 1. This is indeed a common outcome of both dynamic

light scattering (DLS) [57] and diffusing wave spectroscopy (DWS) [58] measurements; e.g.,

when employed in the study of the dynamics of semi-flexible biopolymer solutions [59], for

which the high-frequency mechanical properties are expected to show a frequency (ω) de-

pendency of the linear viscoelastic (LVE) moduli proportional to ωβ , with β = 0.75 [60]. By

increasing systems’ complexity, such as in the field of polymer physics, a SM analysis of the
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shear component of the stress tensor allows to evaluate the time-dependent materials’ shear

relaxation modulus G(t) [23]. This is often a multi-modal decay function (i.e. characterised

by multiple relaxation times) that embodies, without disclosing at once, the full frequency

spectrum of the materials’ LVE properties. These are instead fully revealed by the frequency-

dependent materials’ complex shear modulus G∗(ω), which is a complex number whose real

and imaginary parts provide quantitative information on the elastic and viscous nature of the

material, respectively [20]. Notably, these two moduli are in principle simply related to each

other by means of the Fourier transform of the time derivative of G(t), whose computation

given a discrete set of data is at the heart of this article. A similar issue is encountered in the

field of microrheology [39], where in the particular case of measurements performed with

optical tweezers, a SM analysis of the trajectory of an optically trapped particle suspended

into a complex fluid may return the particle normalised position autocorrelation function

A(τ), or equivalently its normalised mean square displacement Π(τ)= 1−A(τ) (where τ is

the lag-time or time interval), whose temporal form is a generic decay (or growth) function

governed by the frequency-dependent linear viscoelastic properties of the suspending fluid

[24].

Interestingly, a common feature for all the above mentioned time-dependent functions

is that they are evaluated for a discrete number of timestamps, within a finite observation

time window. Yet, one of the aims of most of the studies where they are employed is of-

ten to evaluate the ‘continuous’ frequency spectrum of the system, over the widest range of

experimentally accessible frequencies. Thus the need of an effective Fourier transform algo-

rithm to translate the information embedded into a generic time-dependent sampled function

into those equipollent, but more explicit, in the frequency-domain. This is a non-trivial task

[61], and has driven scientists to overcome such an issue by fitting the experimental data by

means of a generalized Maxwell model (i.e., a finite sum of weighted single exponentials,

each identifying a characteristic relaxation time of the system), which has a straightforward

Fourier transform, but may potentially interpret the data [50]. Remarkably, an effective

solution to this issue has been presented by Evans et al. [61] and its efficacy has been aug-

mented by Tassieri et al. [44] by means of a “virtual oversampling” procedure that involves

first a numerical interpolation between experimental data points by using a standard non-

overshooting cubic spline function, and then generating a new, over-sampled data set, by

sampling the interpolating function at a number of equally spaced points on a logarithmic

time scale. The effectiveness of this method has been validated for a variety of applications

within the fields of rheology and microrheology [44, 61]; however, its general validity has
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been not fully exploited yet.

In this work, we have implemented the analytical method developed by Evans & Tassieri

into a open-access MATLAB code named “i-RheoFT” (allowing its use to a broad audience,

see SI) and investigated its accuracy as function of three important experimental factors that

are often overlooked in many applications: (i) the density of initial experimental points (DIP)

describing a generic time-dependent function (i.e., the sampled function), (ii) the interpola-

tion function used to implement the virtual oversampling procedure, and (iii) the destructive

effects on the expected outcomes due to the presence of (white) noise.

As we shall demonstrate, the relative value of the first parameter plays a crucial role in

the quality of the outputs of all those experimental methods (such as DLS, DWS and NSE)

where data are acquired at high frequencies (e.g., at 107 Hz or at 109 Hz in the case of

DLS and NSE measurements, respectively) and stored in the form of time-averaged func-

tions, which are often evaluated on-the-fly by means of fast correlators. These correlation

functions are commonly evaluated only for a relatively ‘small’ number of lag-times within a

finite time window, often spanning several decades (e.g., from 10−7 sec to 102 sec in the case

of DLS measurements); thus avoiding the risk of clogging the machines’ internal random-

access memory (RAM) after a few seconds of measurement duration. The investigation of

the second point has been driven by the fact that a few research groups have implemented

the oversampling procedure by using different interpolation functions [62, 63] than the one

employed in the original work [44]. Therefore, here we have compared the effectiveness

of the following three interpolation functions already built-in MATLAB: a cubic spline data

interpolation (Spline) [64] (as the one used in [44]), a modified Akima piecewise cubic Her-

mite interpolation (Makima) [65] and Piecewise Cubic Hermite Interpolating Polynomial

(PCHIP) [66]. Notably, we can anticipate that, at relatively high DIP values and signal-

to-noise ratios (SNR), all three of the above mentioned interpolation methods recover the

information embedded into the sampled function to a high degree of fidelity, allowing the

evaluation of its Fourier transform without a significant loss of information. Whereas, at

relatively low values of either of DIP or SNR, the same is not true and a clear discrimination

between their efficacy is achieved in both the time- and the frequency-domains.
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2.3 Theoretical background

2.3.1 Fourier transform of raw data

In the digital era, continuous data storing does not exist and signals are stored at a finite

acquisition rate (AR), whatever fast this process could be. Therefore, measurements are rep-

resented by a finite sequence of points, often equally spaced in time and rarely acquired at

time intervals equally spaced on a logarithmic scale. Nonetheless, a logarithmic timestamp

is often used in post-acquisition storing procedures, such as those employed in the study of

fast quasi-stochastic phenomena, for which (i) a high AR is necessary and (ii) prolonged

measurements are mandatory because of statistical principles. However, these two require-

ments would place a high demand on the RAM capacity of any machine. Thus, the common

use of correlators to evaluate on-the-fly a correlation function of the acquired signal for a

finite set of lag-times often logarithmically spaced within a defined time window that spans

several decades; yet, without a need of storing the raw data.

Interestingly, the discrete nature of measurements has revealed to be a hurdle to overcome

in many applications, especially for those where a Fourier transform is involved; simply

because the latter is a linear (integral) operator that requires the integrating function to be

defined ∀t ∈]−∞,+∞[, and not just for a finite set of timestamps. This is equally true for

all those processes where the integrating function is defined only for positive times (i.e.,

∀t ∈ [0+,+∞[) and it is (or assumed to be) identically equal to zero ∀t ∈]−∞,0−] because

of causality; such as in the studies of materials’ relaxation processes after they have been

subjected to either a finite deformation or a constant stress (creep), both applied within a

small time interval (ε) [20, 61]. In this regard, an analytical procedure for the evaluation of

the Fourier transform of any generic function sampled over a finite time window has been

proposed by Evans et al. [61] to convert creep compliance J(t) (defined as the ratio between

the material strain γ(t) and the applied constant stress) into G∗(ω) directly, without the use

of Laplace transforms or fitting functions. This method is based on the interpolation of the

finite data set by means of a piecewise-linear function. In particular, the general validity of

the proposed procedure makes it equally applicable to find the Fourier transform ĝ(ω) of

any time-dependent function g(t) that vanishes for negative t, sampled at a finite set of data

points (tk,gk), where k = 1 . . .N, which extend over a finite range, and need not be equally
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spaced [61]:

−ω
2ĝ(ω) = iωg(0)+

(
1− e−iωt1

) (g1 −g(0))
t1

+

+ġ∞e−iωtN +
N

∑
k=2

(
gk −gk−1

tk − tk−1

)(
e−iωtk−1 − e−iωtk

)
(2.1)

where ġ∞ is the gradient of g(t) extrapolated to infinite time and g(0) is the value of g(t)

extrapolated to t = 0 from above.

This method has been improved by Tassieri et al. [44] while analysing microrheology

measurements performed with optical tweezers [39]. The authors found that a substantial

reduction in the size of the high-frequency artefacts, from which some high-frequency noise

tends to spill over into the top of the experimental frequency range, can be achieved by an

over-sampling technique. The technique involves first numerically interpolating between

data points using a standard non-overshooting cubic spline, and then generating a new, over-

sampled data set, by sampling the interpolating function at a number of equally-spaced points

on a logarithmic time-scale. We remind that, over-sampling is a common procedure in signal

processing and it consists of sampling a signal with a sampling frequency fs much higher

than the Nyquist rate 2B, where B is the highest frequency contained in the original signal.

A signal is said to be oversampled by a factor of β ≡ fs/(2B) [67].

2.3.2 Interpolation functions

In this work we have employed three built-in interpolation functions listed in MATLAB: (i)

Makima, (ii) Spline and (iii) Piecewise Cubic Hermite Interpolating Polynomial (PCHIP).

The spline function has been used in previous studies by Tassieri et al. [24], however it

is susceptible to overshooting if there are large jumps between data points. Makima and

PCHIP are two interpolation functions that aim to reduce this oscillatory behaviour hence

their selection for this work. These functions are fully described in Ref.s [64–66] and here

they are briefly summarised for convenience of the reader.

The Makima algorithm for one-dimensional interpolation, also described in Ref.s [68,

69], is a modification to the Akima algorithm that performs cubic interpolation to produce

piecewise polynomials with continuous first-order derivatives. The algorithm preserves the

slope and avoids undulations in flat regions. A flat region occurs whenever there are three or

more consecutive collinear points, which the algorithm connects with a straight line. When

two flat regions with different slopes meet, the modification made to the original Akima

algorithm gives more weight to the side where the slope is closer to zero. This modification
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gives priority to the side that is closer to horizontal, which is more intuitive and avoids

overshoot. Notice that, the original Akima algorithm gives equal weights to the points on

both sides, thus evenly dividing the undulation.

The Spline algorithm, performs cubic interpolation to produce piecewise polynomials

with continuous second-order derivatives. The result is comparable to a regular polynomial

interpolation, but is less susceptible to heavy oscillation between data points for high degrees.

Still, this method can be susceptible to overshoots and oscillations between data points at

long times. Interestingly, when this is compared to the Akima algorithm, the latter produces

fewer undulations and is better suited to deal with quick changes between flat regions.

The PCHIP algorithm, also performs a piecewise cubic polynomial interpolation in

much the same way as the Spline function just mentioned. However, they differ in one

key area which is that while the Spline functions’ second-order derivative is continuous, the

second-order derivative for PCHIP is unlikely to be and therefore the interpolation function

is shape preserving for large jumps between data points. Additionally, the non continuous

nature of the second-derivative means that PCHIP has no overshoots and much lower oscil-

lation when the data is not smooth when compared to the Spline function.

2.3.3 Sampled functions and the density of initial points

In order to quantify the fidelity of the above mentioned interpolation procedures in recov-

ering the original information contained by a sampled function, we have employed them to

evaluate the Fourier transform (via Equation (2.1)) of two functions that are similar to those

often seen in optical tweezers experiments [24, 39]: (I) a single exponential decay function:

A(t) = exp(−t/τc), (2.2)

describing the dynamics of a Maxwell fluid characterised by a single relaxation time τc, as

shown in Figure 2.1 (top); and (II) a set of data resembling the mean square displacement of

a weakly trapped probe particle suspended into a non-Newtonian fluid (Figure 2.1 (bottom)),

which have been evaluated by means of the following series:

Π(q, t) =
∞

∑
q=1

1
q4

(
1− e−q4t

)
, t ⩾ 0, (2.3)

where q is the mode number and time is measured in units of the longest relaxation time for

q= 1. It is important to notice that Equation (2.3) is a series definitely convergent, and in this

work we have used its approximant Π11(q, t) = ∑
11
q=1(1− e−tq4

)q−4; which provides a good

estimation of the series ∀t. This has been corroborated by evaluating the incremental value
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of the mean relative error of the approximant Π11(q, t) when compared to the approximants

Π100(q, t) and Π200(q, t), for t ∈ [10−2,102]; which results in being as low as 0.0000287%.

Interestingly, the Fourier transform of the time derivative of both the functions described

by Equations (2.2) and (2.3) can be calculated analytically and therefore an exact expression

of the related complex moduli (i.e., G∗
A(ω) and G∗

M(ω), describing the viscoelastic properties

of the suspending fluids) can be derived for both of them [24, 39, 50]:

G∗
A(ω) = iωÂ(ω) =

(ωτc)
2

1+(ωτc)2 + i
ωτc

1+(ωτc)2 (2.4)

and

G∗
M(ω) = [iωΠ̂(ω)]−1 =

[
11

∑
q=1

(q4 − iω)

(q8 +ω2)

]−1

(2.5)

where Â(ω) and Π̂(ω) are the Fourier transforms of the functions described by Equa-

tions (2.2) and (2.3), respectively. It follows that, Equations (2.4) and (2.5) can each act as

a reference for a quantitative evaluation of the errors generated during the Fourier transform

of a discrete set of data representing either of Equations (2.2) or (2.3), as function of both

the density of initial points (DIP) and the oversampling factor (β ). However, while the latter

is a well known parameter in signal processing and would not affect the effectiveness of

Equation (2.1) for relatively high values of β [44] (here it is kept constant to 50), DIP is

introduced in this work to inform the scientific community of its relevance when modelling

or interpreting a discrete set of data by means of a continuous interpolation function:

DIP =
log10(Ne)

log10(tN/t1)
(2.6)

where Ne is the number of experimental data points within the explored time window, which

extends from a lower end equal to t1 to a maximum time equal to tN . Therefore, a function

sampled at a few MHz over a time window spanning from t1 = 10−7s to tN = 10s would

have DIP= 1 if Ne were equal to 108. Interestingly, this is not the case for the majority of

the experimental techniques mentioned in the introduction (e.g. DLS, DWS, etc.), for which

the technological constrain dictated by the finite RAM of the instruments is compensated

by the adoption of correlators that convolve the high-speed acquired data into a finite set

of averaged values calculated for a relatively small number of lag-times. Thus, returning a

DIP value often much smaller than 1; which, as we shall demonstrate below, may lead to

erroneous outcomes, especially at relatively low DIP values.
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2.4 Results and Discussion

Let us start by considering both Equations (2.2) and (2.3) sampled at a relatively low acqui-

sition rate, as shown in Figure 2.1. Both the functions are represented by 10 experimental

points equally spaced on a logarithmic scale (black dots) and a continuous (pink) line, within

a time window ranging from 10−2s to 102s; which implies a DIP= 1/4.

The experimental data have been interpolated by using the three MATLAB built-in func-

tions mentioned above and compared with the theoretical curve. At a glance, from Figure 2.1

it is possible to see the detrimental effect caused by a relatively low DIP value on all three

interpolation processes, especially at large lag-times, where the Spline function performs

worse. In order to quantify such a discrepancy, we have evaluated the relative absolute error

(RAE(t)) of the three interpolation functions (gI(t)) with respect to the theoretical functions

computed by means of Equations (2.2) and (2.3):

RAE(t) =
|gI(t)−A(t)|

A(t)
or RAE(t) =

|gI(t)−Π(t)|
Π(t)

(2.7)

The insets in Figure 2.1 show the RAE(t) of the three interpolation functions, with a focus

in the time window ranging from 101s to 102s, where the error is at its highest. Interestingly,

in the case of the single exponential decay, all three RAEs increase rapidly by almost ten

decades across the explored time window, with the Spline function returning the highest er-

ror. A similar outcome can be seen in the case of Π(τ), where both PCHIP and Makima inter-

polation functions perform significantly better than the Spline function, returning a RAE(t)

at long times almost five decades smaller. Notice that, the minima in the RAE(t) are due to

the inherent nature of interpolation functions to pass through each experimental data point;

a condition that is not guaranteed by any fitting procedure.

In order to investigate the fidelity of the interpolation process as function of DIP, we

have evaluated the mean relative absolute error (MRAE) of the interpolating functions for

Ne varying from 10 to 104, which implies a DIP ranging from 1/4 to 1 (see Figure 2.2). The

MRAE is defined as follows:

MRAE =
100
N

N

∑
n=1

|gI(n)−A(n)|
A(n)

(2.8)

where N is the number of points at which all the functions are evaluated within the exper-

imental time window [10−2,102]; in this study N = 104. Notice that, a similar expression

to Equation (2.8) can be written in terms of Π(τ). From Figure 2.2 it is interesting to note

that, at relatively low DIP values, all three function perform poorly; with the Spline function

performing worst and the PCHIP returning the lowest error in both the cases; yet higher than
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Figure 2.1: (Top) A single exponential decay function vs. time, representing the relaxation

modulus of a single mode Maxwell fluid. (Bottom) A generic function resembling the nor-

malised mean square displacement vs. time of an optically trapped particle suspended into a

non-Newtonian fluid. Equations (2.2) and (2.3) are represented by a finite number of ‘sam-

pled’ points and a continuous (pink) line. The points are also interpolated by means of three

MATLAB built-in interpolation functions: Spline, PCHIP and Makima. The insets show the

relative absolute error of each interpolation function with respect of either of Equations (2.2)

and (2.3), as calculated using Eq.(2.7). The time window of the inset encompasses the final

three points of the main graph, where the relative error is at its highest.
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103% in the case of the single exponential decay (Figure 2.2, top). This exceptionally large

error, found at low values of DIP, is due to the large difference between the theoretical func-

tion and each of the interpolation functions connecting the final data points, as displayed in

Figure 2.1(top), where there is the largest time step. We argue that, the better fidelity shown

by the PCHIP function can be attributed to the non continuous nature of the second-derivative

of its interpolation algorithm, which prevents from overshoots and returns much lower os-

cillation in case of large jumps between data points (i.e., at low DIP) when compared to the

Spline function.
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Figure 2.2: Mean relative absolute error (MRAE) vs. the density of initial experimental

points (DIP) of the three MATLAB built-in interpolation functions: Spline, PCHIP and

Makima. (Top) The MRAE is evaluated with respect to Equation (2.2). (Bottom) The MRAE

is evaluated with respect to Equation (2.3).

Notably, for DIP values approaching 1, all three interpolation functions successfully re-
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cover the sampled functions to a high degree of accuracy, returning MRAE values lower than

10−5% for the case of the single exponential decay. In this case, from a practical point of

view, it is worth noting that the MRAE of all three interpolation functions falls below 1%

for DIP values higher than circa 0.56, which implies a minimum number of 174 initial sam-

pled points within the explored time window. Interestingly, when this outcome is applied for

instance to DLS measurements (for which the experimental time window spans from 10−7

sec to 102 sec), a DIP of 0.56 would imply a minimum number of ≈ 105 initial timestamps

(or lag-times); a condition never met in real experiments, where instead a DIP of circa 0.25

is commonly found. In the case of the NMSD (see Figure 2.2, bottom), at low DIP values,

both PCHIP and Makima start with a MRAE smaller than 0.1%, while the Spline function

starts with a MRAE value of circa 4%; thus confirming its poor performance at relatively low

DIP values. Nonetheless, when comparing the errors generated by the interpolation proce-

dures for the two cases of study, it is striking the different behaviour of their MRAE curves,

which differ from each other by almost five orders of magnitude in opposite direction at the

extremes of the explored range of DIP values.

Let us now investigate how the error propagates into the frequency-domain as function of

both the chosen interpolation algorithm and the DIP, when performing the Fourier transform

by means of the Evans & Tassieri’s method. In Figure 2.3, the viscoelastic moduli evaluated

by means of Equations (2.4) and (2.5) are drawn together with those derived by Fourier

transforming the interpolation functions shown in Figure 2.1 for the case of DIP= 1/4.

From Figure 2.3, it is evident the detrimental effects of using a relatively low DIP value

for determining the dynamic information embedded within the sampled functions. In par-

ticular, as discussed earlier, the Spline function carries the biggest error because of its poor

performance in resembling the sampled functions at long times, which translates into arte-

facts in the low-frequency behaviour of both the moduli. Notably, these artefacts are sig-

nificantly reduced in the case of Makima and even further in the case of PCHIP, which is

the one that performs best at low DIP values. In Figure 2.3 we also report the viscoelastic

moduli evaluated in the case of DIP= 1 as a means of comparison. The inset of Figure 2.3

(h) highlights the relatively small divergence of the elastic modulus from the expected value

at high frequencies shown by all three of the interpolation functions. We argue that this

(small) discrepancy is caused by the different constrains on the first and second derivatives

adopted by the three interpolation algorithms to model the sampled function at the bound-

aries of the experimental time window; i.e, here within the time-gap occurring between the

first experimental point at t1 and the asymptotic one at t = 0.
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Figure 2.3: Comparison between the frequency-dependent complex moduli obtained via

Equation (2.4) and those evaluated by Fourier transforming via Equation (2.1) the interpola-

tions functions shown in Figure 2.1 for DIP= 1/4 in (A,B,C,E,F,G) and for DIP= 1 in (D,H).

Note the spline interpolation function was used in (D) to represent High DIP (magenta line)

and the Spline (red), PCHIP (green) and Makima (blue) functions were used in (H).
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In order to quantify these discrepancies, we have evaluated the MRAE of both the real

and imaginary parts (i.e., G′
i(ω) and G′′

i (ω)) of the calculated complex modulus with re-

spect to their expected values (i.e., G′
A(ω) and G′′

A(ω), G′
M(ω) and G′′

M(ω)) obtained from

Equations (2.4) and (2.5), respectively:

MRAE =
1

Nω

Nω

∑
n=1

|G′
i(ωn)−G′

A(ωn)|
G′

A(ωn)
(2.9)

where n = 1...Nω is the number of frequencies at which Eq. (2.9) is evaluated (here Nω =

500, with ωn equally spaced on a logarithmic scale ranging from 10−2 to 102 Hz). A sim-

ilar expression can be written for the viscous modulus, with G′
i(ωn) and G′

A(ωn) replaced

by G′′
i (ωn) and G′′

A(ωn), and for Equation (2.5) by replacing G∗
A(ωn) with G∗

M(ωn), respec-

tively. In particular, we have evaluated the MRAE for DIP values ranging from 1/4 to 1;

and the results are reported in Figure 2.4 for both the sampled functions. From Figure 2.4

top, it can be seen that (i) at relatively low DIP values (i.e., for DIP≲ 0.33) both the in-

terpolation functions PCHIP and Makima perform significantly better than the Spline one;

which, (ii) for DIP> 0.33 returns relatively lower values of the MRAE for both the moduli.

Interestingly, for DIP> 0.9 the MRAE reaches a plateau value for both the moduli and all

the interpolation functions; with the MRAEs of the elastic modulus showing an identical

value for all three interpolation functions starting from DIP= 0.75. Moreover, it can be seen

that for 0.33 <DIP< 0.9 both PCHIP and Makima return a MRAE of the viscous modulus

much higher than for the elastic one, which is actually comparable to the MRAE of both the

moduli obtained by means of a Spline interpolation. From Figure 2.4 top, we can assert that,

all the three interpolation functions provide a MRAE of both the moduli smaller than 1% for

DIP> 0.4, which implies the need of a minimum number of initial data points of circa 40

within the explored time window.

From Figure 2.4 bottom, it can be seen that (i) at relatively low DIP values (i.e., for

DIP≲ 0.28) both the interpolation functions PCHIP and Makima return a similar value of

the MRAE (i.e. lower than 5%) for both the moduli; whereas, the Spline function returns a

similar value of the MRAE only for the elastic modulus, while the MRAE for the viscous

modulus goes up to a value of 50% at DIP= 0.25. Interestingly, for DIP> 0.5 the MRAE of

both the viscoelastic moduli reach similar constant values for all the interpolation functions.

Specifically, the MRAEs of the elastic modulus is of the order of 1% and the MRAEs of

the viscous modulus is of the order of 0.1%. Notably, also in this case, the Spline function

returns overall a lower (and constant) MRAE than both PCHIP and Makima for DIP> 0.4.

Let us now investigate how the presence of (white) noise impacts on the effectiveness of
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Figure 2.4: Mean relative absolute error (MRAE) of the frequency-dependent complex

moduli determined by Fourier transforming (via Equation (2.1)) the interpolation functions

shown in Figure 2.1 (top & bottom) for DIP values ranging from 1/4 to 1.
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the analytical method developed by Evans & Tassieri, when the above mentioned interpo-

lation functions are employed to analyse both Equations (2.2) and (2.3), sampled at a fixed

acquisition rate and for which the amplitude of the added noise is varied to explore a range

of signal-to-noise ratios (SNR) spanning from 1dB to 350dB. The latter has been calculated

by using the following equation:

SNR =

(
Asignal

Anoise

)2

, (2.10)

where Asignal and Anoise are the root mean square amplitudes of the signal and the noise,

respectively.

As a means of discussion, in Figure 2.5 are reported both Equations (2.2) (top) and (2.3)

(bottom) drawn as continuous (pink) lines by using 104 experimental points linearly spaced

within a time window of [10−2,102] sec (i.e., DIP= 1), to which a random white noise having

a SNR = 50 has been added. The resulting ‘noisy’ functions have been then interpolated by

means of all three the above mentioned MATLAB built-in interpolation functions. From

Figure 2.5, and further elucidated hereafter, it can be seen that, at relatively low SNR, the

different nature of the interpolation functions can lead to very large deviations from the

expected values within the time window [0, t1], where t1 = 1/AR. This is especially true in the

case of the Spline function, as shown by the insets of Figure 2.5, both at top and bottom. In

contrast, due to its non-continuous nature of the second derivative that prevents overshoots,

the PCHIP algorithm performs better than both Spline and Makima functions. Notably, as we

shall demonstrate below, these deviations are the major source of error at high frequencies

when performing the Fourier transform via Equation (2.1), which otherwise reveals to be

almost unaffected at low frequencies by the presence of the noise themselves; as shown in

Figure 2.6, but also supported by the experimental evidences reported in Figures 7 and 8 of

Ref. [20]. Here, Figure 2.6 shows a comparison between the viscoelastic moduli calculated

via Equations (2.4) (top) and (2.5) (bottom) and those evaluated by Fourier transforming via

Equation (2.1) the interpolations functions shown in Figure 2.5. From Figure 2.6 it is clear

that the high frequency noise caused by the ‘miss modelling’ of the short time (i.e., ∀t ∈

]0, t1[) behaviour of the experimental data tends to spill over into the top of the experimental

frequency range, with the moduli evaluated either via PCHIP or Makima adhering most to

the exact solutions, especially at relatively low frequencies; whereas the Spline function

performs worse over the whole frequency range. Interestingly, also in this case, for a given

set of experimental data, there exists a threshold value of the SNR above which all the three

interpolation functions allow an accurate estimation of the Fourier transform.
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Figure 2.5: (Top) Equation (2.2) and (bottom) Equation (2.3) drawn as continuous (pink)

lines by using 104 experimental points linearly spaced in time. A white noise having a

SNR = 50 is added to the experimental data, which are then interpolated by means of three

MATLAB built-in interpolation functions: Spline, PCHIP and Makima. The insets highlight

the detrimental effects on the interpolation process due to the presence of noise, both at short

and long time scales.

In order to identify the threshold value for each interpolation method applied to both

Equations (2.2) and (2.3) (with DIP = 1), we have evaluated the MRAE of the transformed

data (i.e., Equations (2.9)) as function of the SNR; with the latter ranging from 1dB to 350dB.

The results are reported in Figure 2.7 for both the sampled functions shown in Figure 2.5.

From Figure 2.7 top, it can be seen that at low values of SNR (i.e. ≲ 50 dB) all of the

interpolation functions perform poorly, with a MRAE as large as 108% for the Spline inter-

polation function at SNR = 0; thus performing significantly worse than PCHIP and Makima.
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Figure 2.6: Comparison between the frequency-dependent complex moduli obtained via

Equations (2.4) (top) and (2.5) (bottom) and those evaluated by Fourier transforming via

Equation (2.1) the interpolations functions shown in Figure 2.5.

However, as one would expect, by increasing the SNR to a relatively high value (here above

∼ 170dB) the MRAEs of the moduli associated with each interpolation function fall below

1% and asymptotically approach the values presented in Figure 2.4 for DIP = 1. Interest-

ingly, from Figure 2.7, one could argue that, in presence of noise, the interpolation processes

performed by PCHIP and Makima work best, when compared to the Spline. However, in

response it must be highlighted that, in real experiments, it is rare to process data with low

SNR; such as those reported in the insets of Figure 2.5, where both the Equations (2.2) and

(2.3) are drawn with a SNR = 50, which would commonly be discarded as ‘noisy measure-

ments’.
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Figure 2.7: Mean relative absolute error (MRAE) of the frequency-dependent complex

moduli determined by Fourier transforming (via Equation (2.1)) the interpolation functions

shown in Figure 2.5 (top & bottom respectively) for SNR values ranging from 1dB to 350dB.

The error bars represent one standard deviation of uncertainty calculated over ten repeats.

2.5 Conclusion

In this article we have presented an open-access code named i-RheoFT that allows to evalu-

ate the Fourier transform of any generic time-dependent function that vanishes for negative

times, sampled at a finite set of data points that extend over a finite range, and need not

be equally spaced. The analytical method that underpins this code has been originally in-

troduced by Evans & Tassieri [44, 61] in the form of an open-access LabVIEW executable

specialised for the analysis of microrheology measurements performed with optical tweez-

ers. Here we expand the range of its potential applications by implementing it into an open-
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access MATLAB code, with the aim of reaching a broader audience and encouraging its

exploitation in a variety of applications.

The effectiveness of i-RheoFT has been corroborated here by evaluating the Fourier

transform of two generic functions having a known analytical expression of their Fourier

transforms. Moreover, the analytical method has been tested as function of three important

experimental parameters: (i) the ‘density of initial experimental points’ (DIP) describing the

sampled function; (ii) the interpolation algorithm used to perform the “virtual oversampling”

procedure introduced by Evans & Tassieri, which here is achieved by means of the follow-

ing three built-in MATLAB functions: Spline, Makima and PCHIP; and (iii) the destructive

effects on the expected outcomes due to the presence of (white) noise.

The outcomes of this study reveal that, at relatively high DIP values and signal-to-noise

ratios, all three interpolation functions perform well in recovering the original information

of the sampled function, with the Spline function always performing best. Whereas, by

reducing either the number of initial data points or the signal-to-noise ratio, there exists a

threshold value below which all three functions perform poorly, with the Spline function

always returning the highest error of all three functions.

Therefore, we envisage that these results and i-RheoFT will be of particular interest and

use to all those (experimental and simulation) studies where fast streams of acquired data

are processed on-the-fly to build time-averaged functions, which are often defined by a finite

number of data points over a limited time window spanning several decades; as for instance,

in the cases of diffusing wave spectroscopy and dynamic light scattering measurements.
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2.9 Appendix

The following appendix is the supplementary information available alongside the pa-

per (through this link: https://www.nature.com/articles/s41598-021-02922-8#

additional-information), which provides the MATLAB code used for i-RheoFT in ad-

dition to how to use it. In addition, screenshots of each open-source application have been

provided.

2.9.1 MATLAB Script

In this section we report the MATLAB script that has been used in this work to evaluate the

Fourier transform of two generic functions defined by Equations 2 and 3 in the main text,

which are evaluated for a finite set of timestamps. A “readme” file is reported in the next

section.

%% I-RheoFT: Fourier transforming sampled functions without

artefacts.

% Authors: Matthew G. Smith , Graham M. Gibson & Manlio

Tassieri

% University of Glasgow

% Date: 14/09/2020

% Aim: This program is designed to evaluate the Fourier

transform (FT)

% of a generic function , sampled at a finite rate. It will

produce the FT

% named GFT and the Complex modulus in the form G' and G"

named gdata I.

% When the% script is run it will ask for the file name (.

csv/.xlsx),

% the value of the function at time = 0 (g0), the gradient

of the function
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% at time=+ infinity (ginf) and the interpolation function

you wish to use

% (spline , makima or pchip). As recommended in the paper ,

if the function

% has a Density of Initial Points (DIP) of more than 0.35

then the spline

% function should be chosen as this gives the lowest error.

% The oversampling (OverSample) and the number of frequency

points

% (freqpoints) can be edited , although a significant

increase in either

% could lead to longer run times.

%% Ask user for File , g0 , g infinity and interpolation

function

filename = input('Please input file name: ','s');

file = readtable(filename);

g0 = input('Please input g0: ');

ginf = input('Please input ginf: ');

InterpFunc = ...

input('Please input the Interpolation Function(spline ,

makima ,pchip): ','s');

file = table2array(file);

t = file (:,1).';

g = file (:,2).';

t0 = 0;

Num_Init_Pts = length(t);

freqpoints = 200;

OverSample = 1e5*Num Init Pts;

%% Interpolation , Oversampling and Fourier transform

% Interpolation and Oversampling

t_I = linspace(t(1),t(end),OverSample);

Gint_I = interp1(t,g,t I,InterpFunc);

% Fourier Transform using function below

[GFT ,gdata_I] = IRHEO GT(t_I ,Gint_I ,freqpoints ,g0,ginf);
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%% The Fourier Transform function

function [GFT ,gdata_I] = IRHEO GT(t_I ,Gint_I ,freqpoints ,g0 ,

ginf)

gdata_I = zeros(freqpoints ,3);

GFT = zeros(freqpoints ,3);

wrange = logspace(-2,2, freqpoints); % Freqency Range

A = zeros(1,length(t_I) -1);

for n = 1: freqpoints

w = wrange(n);

for k = 2: length(t I)

A(k) = ((( Gint_I(k)-Gint_I(k-1))/(t_I(k)-t_I(k-1)))*...

(exp(-i*w*t_I(k-1))-exp(-i*w*t_I(k))));

end

GFT1 = ((i*w*g0+((1-exp(-i*w*t_I(2)))*(( Gint_I (1)-g0)/t_I

(2)))+ ginf*exp(-i*w*t_I(end)))+sum(A))/(i*w)^2;

Gstar = GFT1*(i*w);

GFT(n,:) = [w real(GFT1) imag(GFT1)];

gdata_I(n,:) = [w real(Gstar) imag(Gstar)];

end

end

2.9.2 README

This is a MATLAB code that implements the analytical method originally introduced by

Evans & Tassieri[44, 61], which allows to evaluate the Fourier transform of any generic

timedependent function that vanishes for negative times, sampled at a finite set of data points

that extend over a finite range, and need not be equally spaced. In particular this program

has been designed to evaluate the Fourier transform of data fed in the form of a .csv/.xlsx

file, while also giving the user the option to use any of the three interpolations functions

described in the main manuscript.

Installation

The .m file to be installed is iRheoFT.m, which is written in MATLAB R2018b. It is recom-

mended that the input data should be in a column format in a .csv or .xlsx file. Attention must
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be paid to make sure that both the data and the .m file are in the same directory in MATLAB;

otherwise the data file will not be found.

How to use?

Once the files have correctly been installed in the same directory of MATLAB, running the

script will produce a series of prompts for the user to input. Firstly, it will ask the user to

input the file name including the file type (.csv/.xlsx). It will then ask the user to input the

value of the function at time 0 and then the value of the gradient of the function at time plus

infinity. Finally, it will ask the user to input which interpolation method they would like

to use (Spline, Makima or PCHIP) and this should be chosen depending on the Density of

Initial Points (DIP) of the data analysed. The DIP can be calculated from Equation 6. One

can also edit the Oversampling and the number of frequencies used, although the default

values should be valid in most of the cases. Once the script has finished running, the Fourier

transform of the function will be contained in the variable GFT and the Complex Modulus

will be contained in the variable gdata I.

Example Data

A possible starting point to make sure the program is working properly, would be to generate

a single exponential decay function that takes the form of Equation 2. The relaxation time

used in the manuscript is 6.5 sec, with 103 points logarithmically spaced in a time window

ranging from 0.01 - 100 sec. The data should be saved as a .csv or a .xlsx file and loaded

into the same directory of iRheoF T.m. In order to produce the viscoelastic moduli curves,

one should plot the log-log of gdata I, where column 1 is the frequency, column 2 is G′ and

column 3 is G′′. The plot should be similar to Figure 3 (D), if this is the case then the code

is working as intended.

2.9.3 Open-source Applications
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Figure 2.8: Screenshot from the open-source application “I-Rheo” developed from the work

in “i-RheoFT: Fourier transforming sampled functions without artefacts”. Available to

download at [1]

Figure 2.9: Screenshot from the open-source application “I-Rheo AFM2” developed from the

work in “i-RheoFT: Fourier transforming sampled functions without artefacts”. Available to

download at [2]
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3.1 Abstract

It has been argued that linear microrheology with optical tweezers (MOT) of living systems

“is not an option”, because of the wide gap between the observation time required to col-

lect statistically valid data and the mutational times of the organisms under study. Here,

we have exploited modern machine learning (ML) methods to reduce the duration of MOT

measurements from tens of minutes down to one second, by focusing on the analysis of

computer simulated experiments. We explicate for the first time in literature the relationship

between the required duration of MOT measurements (Tm) and the fluids relative viscosity

(ηr) to achieve an uncertainty as low as 1% by means of conventional analytical methods;

i.e., Tm ∼= 17η3
r minutes. Thus, revealing why conventional MOT measurements commonly

underestimate the materials’ viscoelastic properties, especially in the case of high viscous

fluids or soft-solids. Finally, we have developed and corroborated by means of real experi-

mental data a ML algorithm to determine the viscosity of Newtonian fluids from trajectories

of only one second in duration, yet capable of returning viscosity values carrying an error as

low as ∼ 0.3% at best; hence the opening of a doorway for MOT in living systems.

3.2 Introduction

Since their first appearance in the 1970s [32, 71, 72], Optical Tweezers (OT) have been

employed as extremely sensitive force transducers across a variety of disciplines within the

Natural Sciences [33–38]. OT rigs rely on the ability of a highly focused laser beam to

optically trap in 3D micron sized dielectric particles suspended in a fluid. This is achieved

by optically guiding a monochromatic laser beam through a microscope objective with a

high numerical aperture. Once trapped, the particle experiences a quadratic potential and

therefore a restoring force that is linearly proportional to the distance of the particle from the

trap centre; with a constant of proportionality of the order of a few µN/m. It follows that

by measuring the particle position to a high spatial resolution (i.e., of a few nm), scientists

have successfully measured forces as low as a few pNs, such as those generated by the

thermally driven motion of water molecules [73] or those exerted by single motor proteins

[74]. Interestingly, accessing particles’ trajectory to high temporal and spatial resolutions is

one of the requirements underpinning microrheology techniques [75, 76], as elucidated in

this paper for the specific case of Optical Tweezers.

Microrheology is a branch of rheology (the study of the flow of matter) and is focused on

the characterization of the mechanical properties of complex materials by performing mea-
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surements at micron length scales, often with sample volumes as little as a few microlitres,

or even within living cells [77]. This offers an indisputable advantage over classical bulk

rheology techniques, which require millilitres of sample, especially in biophysical studies

where samples are often rare and/or precious and come in small quantities (e.g., a few micro-

litres). Microrheology techniques are categorised as either ‘passive’ or ‘active’ depending

on whether the motion of the tracer particles is thermally driven or induced by an external

force field, respectively. Interestingly, optical tweezers is one of such techniques that can be

defined as a hybrid microrheology tool [78], because of the quadratic nature of the optical

potential constraining the motion of the probe particle. Indeed, despite the tracer particles

being optically trapped (within the focal plane of a microscope), at short time scales (i.e., for

small displacements) the restoring force exerted on the probe is weak enough for the particle

to experience Brownian motion because of the thermal fluctuations of the molecules of the

suspending media. Nonetheless, active microrheology with OT is still possible by driving the

trapping laser, often in a sinusoidal pattern as elucidated within References [79, 80]. How-

ever, as we shall further corroborate in this work, a necessary condition for executing either

passive or active linear MOT measurements is to perform “sufficiently” long measurements,

commonly of the order of tens of minutes [24, 80]. This is because most of the analytical

methods used to determine the materials’ viscoelastic properties are underpinned by statis-

tical mechanics principles, whose accuracy relies on the analysis of a significant number of

independent readings. Therefore, as pointed out by Tassieri [80], it may not be appropriate to

adopt MOT for studies involving living systems, as biological processes occur at time-scales

ranging from 10−2 to 102sec [81–84], and therefore the viscoelastic properties of biological

systems may not be considered time-invariant during the measurements.

Hence, the aim of this work is to exploit modern Machine Learning (ML) methods to re-

duce the duration of MOT measurements and thus allow scientists to perform microrheology

measurements in living systems. In order to achieve such a challenging aim, in this work, we

have taken a first step towards a possible solution of the problem by focusing initially on the

analysis of computer simulated trajectories of an optically trapped particle suspended within

a set of Newtonian fluids having viscosity values spanning three decades, i.e. from 10−3 to 1

Pa·s, before looking at some experimentally obtained trajectories. The goal was to develop

a ML algorithm that would effectively estimate fluids’ viscosity from relatively short mea-

surements (≤ 1sec) and compare the outcomes with those obtained by analysing the same set

of data with conventional methods based on statistical mechanics principles [24, 43, 44, 85].

Notably, this study has led to the following key findings: (i) we corroborate the requirement
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for MOT studies to perform “sufficiently” long measurements when using conventional ana-

lytical methods for data analysis and (ii) we provide, for the first time in literature, a means

for estimating the required duration of the experiment to achieve an uncertanty as low as

1%; (iii) we provide evidence explaining why conventional MOT measurements commonly

underestimate the materials’ viscoelastic properties, especially in the case of high viscous

fluids or soft-solids (e.g., gels and cells); (iv) we have developed a ML algorithm that uses

feature extraction on only ‘one second’ of trajectory data to determine the viscosity of New-

tonian fluids; yet capable of returning viscosity values carrying an error as low as ∼ 0.3% at

best and of ∼ 7% at worst, which is five times smaller than those obtained from conventional

analytical methods applied to the same data.

3.3 Theoretical Background

3.3.1 Passive Microrheology with Optical Tweezers

Passive MOT is typically performed by means of a stationary optical trap that confines in

3D a spherical particle suspended in a fluid of unknown viscoelastic properties. At thermal

equilibrium, the Brownian motion of the probe particle is caused by the thermal fluctuations

of the fluids’ molecules and it is monitored by means of a high speed motion detection

device. The particle trajectory is typically extracted in 2D, as the one shown in Fig. 3.1(B-

C). Notably, a statistical mechanics analysis of the particle’s trajectory can return not only the

trap stiffness of the OT, but also a good estimation of the frequency-dependent viscoelastic

properties of the suspending fluid [24, 43–45, 51, 85, 87, 88]. The latter can be evaluated by

solving a generalised Langevin equation as the following one:

ma⃗(t) = f⃗R(t)−
∫ t

0
ξ (t − τ )⃗v(τ)dτ − κ⃗r(t), (3.1)

where m is the mass of the particle, a⃗(t) is its acceleration, v⃗(t) is its velocity, r⃗(t) is its posi-

tion, f⃗R(t) is the Gaussian white noise term used for modelling the stochastic thermal forces,

and ξ (t) is the generalised time-dependent memory function accounting for the viscoelastic

nature of the fluid [89]. The convolution integral represents the time-dependent friction force

exerted by the complex fluid onto the particle. The term κ⃗r(t) is the restoring force of the

optical trap, when the confining field E (⃗r) exerted by the optical tweezers is assumed to have

an harmonic form:

E (⃗r) =
1
2

κ⃗r2, (3.2)
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Figure 3.1: (A) A schematic representation of an optically trapped bead within a harmonic

potential, E (⃗r), where κ is the trap r⃗(t) is the bead position from the trap centre. (B-C) Two

examples of 2D trajectories of an optically trapped bead of radius of 1µm suspended in water

for 1024s (B) and for 1s (C). Both trajectories were generated by means of a MATLAB code

adapted from the one developed by Volpe [86]. (D) The mean square displacement (MSD)

curves of a series of 48 simulated trajectories of 1024 sec duration and acquired at a 1 kHz of

an optically trapped particle experiencing constraining forces ranging from 0.01 to 5 µN/m

(see colour bar) and suspended into four different Newtonian fluids having viscosity values

spanning three orders of magnitude (see legend). The inset shows the same data as in the

main, but with the ordinate axis normalised by the twice the variance of the particle trajectory

and the abscissa τ replaced by the dimensionless lag-time τ∗, as elucidated in the body of

the manuscript. (E) Four examples of normalised position autocorrelation functions (NPAF,

symbols) of a particle suspended in four Newtonian fluids having viscosity of 10−3, 10−2,

0.1, 1Pa·s and experiencing constraining forces of 0.25, 1.5, 4, 5µN/m (from left to right and

colour coded as for the colour bar in D), respectively. The lines are single exponential decay

functions A(τ) = e−λτ drawn with λ = κ/(6πηa) evaluated by using the input (nominal)

parameters mentioned above; i.e., λ = 13.26, 7.96, 2.12 and 0.27Hz, respectively. The inset

shows the same data as in the main (symbols only), but the abscissa has been replaced by

τ∗ = λτ .

where κ is the trap stiffness and r⃗(t) is the particle position from the trap centre. Interestingly,

in the case of Newtonian fluids (i.e., for purely viscous fluids with constant viscosity η) and

at low Reynolds numbers (i.e., Re<< 10 for which the inertia term can be neglected; notice
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that, in our experiments the highest Reynolds number is achieved at the highest frequency,

which returns a value on the order of 10−3), Equation (3.1) simplifies as follows [86]:

W⃗ (t)
√

2kBT γ = γ v⃗(t)+ κ⃗r(t), (3.3)

where the term on the left side represents the fluctuating force due to random impulses from

many neighboring fluid molecules, γ = 6πηa is the friction coefficient, a is the particle ra-

dius, kB is the Boltzmann’s constant, and T is the absolute temperature. In this work, Equa-

tion (3.3) has been adopted to generate (thousands of) 2D trajectories of optically trapped

particles suspended into a set of Newtonian fluids having different viscosity values for ma-

chine learning purposes, as explained in the following sections.

In the general case, i.e. for any generic complex fluid, it has been shown [43–45] that

Equation (3.1) can be solved for the fluids’ complex shear modulus (G∗(ω)) in terms of

either the particle normalised mean squared displacement (NMSD), Π(τ), or its normalised

position autocorrelNPAF), A(τ); which are both drawn in the insets of Figure 3.1(D, E) for

some of the cases studied in this work. Notably, these two functions are simply related to

each other and their expressions are:

Π(τ) =
⟨∆r2(τ)⟩t0

2⟨r2⟩eq.
≡ ⟨[r(t0 + τ)− r(t0)]2⟩t0

2⟨r2⟩eq.
= 1−A(τ), (3.4)

where τ is the lag-time (t − t0) and the brackets ⟨...⟩t0 represent an average over all initial

times t0. The relationship between the above two time-averaged functions and the time-

invariant fluids’ complex shear modulus is:

G∗(ω)
6πa
κ

=

(
1

iωΠ̂(ω)
−1
)
≡
(

1
iωÂ(ω)

−1
)−1

≡ Â(ω)

Π̂(ω)
, (3.5)

where Π̂(ω) and Â(ω) are the Fourier transforms of Π(τ) and A(τ), respectively. The iner-

tial term (mω2) present in the original works[43, 45] has been here neglected, because for

micron-sized particles it only becomes significant at frequencies of the order of MHz.

Notably, in the case of Newtonian fluids, the above equations simplify significantly and

the relationship between the fluids’ viscosity and the particle trajectory reads as follows:

Π(τ) = 1−A(τ) = 1− e−λτ , (3.6)

where λ = κ/(6πηa) is the characteristic relaxation rate (also known as the “corner fre-

quency”[42]) of the compound system OT plus fluid. Moreover, it has been shown [85] that

by plotting Π(τ) and A(τ) versus a dimensionless lag-time τ∗ = τλ , all the curves having

different values of η would collapse onto a master curve, as shown in the insets of Figure 3.1
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(D) and (E), respectively. It follows that, for Newtonian fluids it is a straightforward step to

determine their viscosity by analysing the temporal behavior of the NPAF [85]. In particular,

by plotting the natural logarithm of A(τ) versus τ , one would obtain a straight line having a

slope equal to −λ , from which the viscosity could be determined by means of a simple lin-

ear fit. In this work the fitting procedure has been constrained to the ordinate values ranging

from 0 and −1 (equivalent to A(τ) = 1 and A(τ) = e−1, respectively) to minimize the error,

as discussed hereafter.

3.4 Methods

3.4.1 Simulation of particle trajectories

In order to train and test the machine learning algorithm discussed in the next section, we

have used Equation (3.3) to generate thousands of trajectories by means of a MATLAB code

adapted from the one developed by Volpe [86], which is able to simulate a 2D trajectory of

an optically trapped particle suspended into a Newtonian fluid. The input parameters of the

code were the trap stiffness, the viscosity, the temperature, the particle radius, the acquisition

rate and the number of individual readings required. For instance, in Figure 3.1 are shown

two examples of trajectory having the same input parameters, but duration of 103s in (B) and

1s in (C).

Moreover, in order to investigate the impact of the measurements duration on the out-

comes obtained from both the conventional and the ML enhanced MOT approaches, we

generated a set of particle trajectories suspended into four different Newtonian fluids having

viscosity values of 10−3, 10−2, 0.1 and 1 Pa·s, respectively; and trap strengths ranging from

0.01 to 5 µN/m. These trajectories were simulated for 1024 sec at an acquisition rate of 1

kHz, which is equivalent to a real measurement of circa 17 minutes in duration. Notably, due

to their stochastic nature, it is possible to split each of these trajectories into shorter ones of

variable duration, down to 0.05 sec. All these trajectories were analysed to calculate the flu-

ids’ viscosity by means of Equation (3.6), and the mean absolute percentage error (MAPE)

of the outcome was calculated for each trajectory by means of the following equation:

MAPE =
100
Ntra j

Ntra j

∑
i=1

∣∣∣∣∣ηi −η0i

η0i

∣∣∣∣∣, (3.7)

where Ntra j is the number of trajectories for a given duration, η0 is the nominal viscosity

value (used as input in the simulations) and η is the measured one.
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3.4.2 Optical tweezers rig

Experimental measurements were performed by using an OT system based on a continuous

wave, diode pumped solid state (DPSS) laser (Ventus, Laser Quantum), which provided

up to 3 W at 1,064 nm. A nematic liquid crystal spatial light modulator (SLM) (BNS,

XY series 512× 512) was used to create and arrange the desired optical trap. The laser

entered a custom-made inverted microscope that uses a microscope objective lens (Nikon,

100x, 1.3 NA) to both focus the trapping beam and to image the thermal fluctuations of

4.74µm diameter silica beads (Bangs Laboratories), at room temperature ∼ 20oC. Samples

were mounted on a motorized microscope stage (ASI, MS-2000). A complementary metal-

oxide semiconductor (CMOS) camera (Dalsa, Genie HM 1024 GigE) acquired high-speed

images of a reduced field-of-view. These images were processed in real-time at up to ∼ 3 kHz

to calculate the center of mass of the bead by using a particle tracking software developed in

LabVIEW (National Instruments), running on a standard desktop PC [90, 91].

3.4.3 Machine Learning architecture

In fluid mechanics, machine learning (ML) has been widely used to translate observational

and experimental data into knowledge about the underlying physics of the fluid [92]. De-

pending on the information being used for learning, ML algorithms can be categorised into

supervised, semisupervised, and unsupervised. In this work we consider a supervised ML

algorithm where the input (i.e., the particle trajectories) and the respective output (i.e., the

viscosity) are used during learning. Specifically, we consider feed-forward neural networks

(NNs), or multilayer perceptrons [93, 94], as the nonlinear function approximations between

the input and output. The standard feed-forward NNs passes the input information through

a network of hidden units and activation functions to produce the prediction. Deep Neural

Networks (Deep NN) [95, 96] obtains a nonlinear approximation through the composition

of multiple hidden layers. To obtain the unknown network weights, nonlinear optimisation

methods, such as backpropagation [97], are used by minimising the discrepancy between the

predictions and the known training outputs.

In this paper, we sidestep the conventional method (i.e., Equation (3.6)) of estimating

fluids’ viscosity from the trajectories of optically trapped particles by means of supervised

ML. The training dataset consists of 100,000 particle trajectories, each of 10s duration,

for different fluids’ viscosity. In order to cover the range of explored viscosity (i.e., from

0.001 to 1 Pa·s), the viscosity values are randomly sampled from a log-uniform distribution
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Figure 3.2: A schematic representation of the machine learning architecture used in this

work. A single particle trajectory of x-y coordinates is transformed and preprocessed for

feature extraction. The output of which is concatenated with the trap strength (κ) and the

particle radius (a). This is used as the input for parameter estimation with a single output

node of viscosity. Author Declaration: This figure was designed by Jack Radford b

ranging from 0.0008 to 1.2 Pa·s. Similarly, the trap strengths are randomly sampled from a

uniform distribution ranging from 0.08 to 0.39 µN/m. Prior to the training, each trajectory

coordinate input is normalised and flattened into a one-dimensional array. The normalisation,

i.e., subtracting the coordinates by their initial position, makes sure that there is no significant

shift between the x− and y− component in the flattened array. Therefore, the flattening will

have minimum effect on the trajectory’s temporal correlation. Moreover, we also consider

in this work shorter observation times of the trajectories, i.e., Tm = {1s, 0.5s, 0.1s, 0.05s},

which are obtained through subdivision of the original 10s datasets.

Figure 3.2 shows a schematic representation of the ML architecture used in this study,

consisting of two blocks, i.e., feature extraction and parameter estimation. The one-

dimensional input, obtained by flattening the coordinates, is first processed through the

feature extraction block, which comprises one-dimensional convolutional neural network

(CNN) layers [98, 99]. These CNN layers serve as convolution operator that enhance the lo-

cal temporal structures present in the particle trajectories. In this study, two CNN layers are

employed to eliminate the randomness of particle motion and highlight important features

encoded in the trajectory. While it is possible to add more convolutional layers, we found

that two layers are sufficient for the Newtonian fluid case. In each CNN layer, two filters

with the same kernel width are used to increase the chances of identifying various features in

the data. The filter widths are 10 and 100 for the first and second layers, respectively, which
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correspond to 0.01s and 0.1s in the particle trajectory. The width increase in the second

layer allows for filtering random motion with longer periods. Note that, for observation time

Tm = 0.1s and Tm = 0.05s, the second convolutional layer filter sizes were adjusted, due to

the shorter vector lengths, to be 50 and 25, respectively. The resulting ‘feature maps’ are

transformations of the input data into latent variables which highlight important information

for the task of estimating viscosity.

The feature maps are then concatenated, along with the trap stiffness and particle radius,

to a 1D vector and passed to the parameter estimation block to predict the viscosity. The

concatenation of additional variables is crucial to discriminate between fluids which have

different viscosity, but similar particle trajectories due to other dependant variables (e.g.,

trap stiffness and particle radius). Neural networks are known to be universal approxima-

tors [93], and deeper layers often lead to a more expressive mapping or approximation. The

number of layers and neurons is selected based on Occam’s razor principle [100] to ensure

generalisability and prevent overfitting. In this study, we identified that six fully-connected

dense layers provided a good estimate of viscosity. Each neuron in the hidden layers uses

a ReLu (rectified linear unit) activation function, while a linear activation function is used

in the output layer. The loss function was chosen to be the mean absolute percentage er-

ror (MAPE) to prevent bias in training towards minimising losses for high viscosity values

with larger residuals. The hyper-parameters of the model including the batch size, learning

rate, number of epochs and validation split were 256, 10−5, 200 and 0.1, respectively. The

training has been performed in triplicate for each model with input trajectories having in-

terval Tm from 0.05 to 1 seconds, using an Adam optimizer [101], and was performed on

a desktop PC equipped with an 18-core Intel i9-10980XE CPU (3GHz), 256GB RAM and

an NVIDIA GeForce RTX 3090 with 24GB memory. The training time for each ML model

increased with decreasing input length due to the increasing number of training examples so

each model took from 2.5−6.5hrs to train depending on input trajectory.

3.5 Results

One of the key features and advantages of using optical tweezers for microrheology purposes

is that they can be easily calibrated without the use of external transducers. Indeed, as we

shall discuss hereafter, it has been assumed [24, 43–45, 85, 87, 88] that the trap stiffness

of symmetric OT can be determined to a high accuracy by appealing to the principle of

Chapter 3 46 Matthew G. Smith



Broadband computational rheology for material characterisation

equipartition of energy:
d
2

kBT =
1
2

κ ⟨⃗r2⟩eq., (3.8)

where d is the dimension of the motion. This is true as long as the measurement time is “suf-

ficiently” longer than the characteristic time τOT of the compound system made of OT (i.e.,

its trap stiffness), fluid (i.e., its compliance) and bead (i.e., its radius taken as a characteristic

length of the probe), which is not known a priori in rheological investigations of complex

materials.

However, in the case of Newtonian fluids and operational condition of the instrument

within the micro length- and time-scales, as mentioned earlier, the compound system has a

single characteristic time defined as τOT = λ−1, which can be used as a reference to estimate

the minimum measurement duration required to properly calibrate the trap stiffness. In par-

ticular, by defining the duration of a measurement (Tm) as the ratio between the total number

of readings (N) and the acquisition rate ( f = samples/s) of the detector used for tracking the

particle position, one could define a Deborah number [102] for optical tweezers (DeOT ) as:

DeOT =
τOT

Tm
=

6πηa f
Nκ

, (3.9)

which can be further differentiated into “nominal” (DeOT,Nom.) and “effective” (DeOT,E f f .),

depending on whether the trap stiffness used for determining λ is the nominal value set as

input in the simulation code generating the trajectories or the measured one by means of

Equation (3.8), which is affected by Tm as demonstrated hereafter.

In Figure 3.3–(A) we report the ratio between the two Deborah numbers versus De−1
OT,Nom.

for a series of 528 simulated trajectories of variable duration of an optically trapped particle

experiencing various constraining forces and suspended in four different Newtonian fluids

having viscosity values spanning three orders of magnitude. Interestingly, the ordinate of

such a diagram is equivalent to the ratio between the two trap stiffness κNom./κE f f ., while

the abscissa is proportional to the measurement duration Tm. From Figure 3.3–(A) it is ap-

parent the existence of a crossover value of DeOT,Nom.∼ 1 delimiting two operating ranges of

OT rigs, i.e.: (i) for De−1
OT,Nom. >> 1, the trap stiffness is determined to a high accuracy via

Equation (3.8); whereas, (ii) for De−1
OT,Nom. << 1, the constraining force is undetermined;

or more specifically, κE f f . is overestimated as often happens in many real experiments for

which Tm is not sufficiently long. Based on Equation (3.5), it follows that when the trap

stiffness is overestimated the outcomes of MOT measurements are underestimated, espe-

cially when they are attempted in high viscous fluids or soft-solids (e.g., gels and cells) [104,

105]. Our findings are further corroborated by the data shown in Figure 3.3–(B), where the
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(F)

(E)

(D)

Figure 3.3: (A) The ratio between the effective Deborah number for optical tweezers

DeOT,E f f .DeOT,E f f . and the nominal one DeOT,Nom.DeOT,Nom. versus De−1
OT,Nom. ∝ Tm for

a series of 528 simulated trajectories of different duration of an optically trapped particle

experiencing various constraining forces and suspended into four different Newtonian fluids

having viscosity values spanning three orders of magnitude. (B) The absolute percentage

error (APE) of κE f f . vs. De−1
OT,Nom. for the same set of trajectories as in (A). The line indi-

cates an APE value of 30%, as reported in Ref.[103]. (C–E) The mean absolute percentage

error (MAPE) of viscosity vs. measurement duration (Tm) determined (C) by using the con-

ventional analytical method described in the body of the manuscript; (D) by averaging the

prediction error from ML algorithms with different input dimensions; (E) by averaging the

predictions of the three models with 1s input dimension. (F, closed symbols) The MAPE of

viscosity vs. De−1
OT,Nom. evaluated from the conventional approach applied to the same set

of trajectories used in (A). (F, open symbols) The MAPE of the optimal ML algorithm with

an input measurement time of 1s. The colour bar indicates trap stiffness used during the

generation of the trajectories. The size of the symbols scales with the measurement time as

shown in the inset of (F).

absolute percentage error (APE) of κE f f . is reported against De−1
OT,Nom. and compared with

the experimental results (i.e., the horizontal line) reported by Matheson et al. [103], repre-

senting the threshold value of the APE of κE f f . below which microrheology measurements

performed with OT return an APE of the fluids’ viscosity lower than circa 5% (see Figure 5

of Ref.[103]). It follows that, based on a conservative approach, one could argue that only
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for DeOT,E f f .≤ 0.001 an accurate calibration could be achieved; which implies a minimum

measurement duration of Tm ≥ 1000× τOT for a given system. For instance, in the case

of two measurements both performed at room temperature (i.e., T = 20oC) with a bead of

1µm in radius and a trap stiffness of κ = 2µN/m, but one in water (with η = 0.001Pa·s)

and the other in a fluid having a viscosity thousand times higher than water (e.g., glycerol),

the characteristic times of the two compound systems would be τOT ∼= 0.01s and τOT ∼= 10s,

respectively. It follows that, in order to achieve an accurate calibration of the OT (i.e. for

DeOT ≤ 0.001), the measurements should last at least 10s and 2.78hrs, respectively.

At this point it is important to highlight that optical tweezers rigs are commonly equipped

with either a camera or a quadrant photodiode (QPD) device for tracking the particle posi-

tion to a high acquisition rate, often operating at KHz or MHz, respectively. It follows that,

when microrheology measurements are performed on materials with a higher viscous char-

acter than water, significantly longer measurements would be required, and therefore rigs

equipped with either a QPD or an ultra high-speed camera would be more prone to be mis-

calibrated. This is because they are often equipped with an insufficient capacity of random

access memory (RAM) to process the high–volume of data (of several MB/s) generated dur-

ing the particle tracking procedure (of possible duration of Tm = 104s, which would result in

> 10 GB RAM occupancy); thus, they either crash or, in order to avoid this, measurements

are stopped early causing a DeOT>> 1. A possible solution to avoid memory clogging, but

not the lengthiness of measurements, is achieved by equipping the rig with an online digital

correlator, which allows the machine to process high-volume data streams and to compress

the relevant information in real-time, thus minimising the use of RAM [106, 107].

Let us now investigate how Tm affects the evaluation of the fluid viscosity when it is

determined using a conventional method. In particular, as introduced earlier, in the case of

Newtonian fluids it is a straightforward step to determine their viscosity by performing a

linear fit of Ln
[
A(τ)

]
vs. τ , which here is executed for ordinate values ranging from 0 and

−1 (equivalent to A(τ) = 1 and A(τ) = e−1, respectively) to minimize the error. In Figure

3.3–(C) we report the mean absolute percentage error of the fluids’ viscosity evaluated as

mentioned above versus the measurement duration, which varies from 1s to 1024s. The sim-

ulated trajectories were generated for optically trapped particles suspended into four fluids

having viscosity spanning three orders of magnitude (i.e., from 0.001 to 1Pa·s), but with all

the other inputs having the following values: trap stiffness of 0.25µN/m, particle radius of

1µm, constant temperature of 19oC and acquisition rate of 1kHz. From the diagram it can

be seen that, for short measurement duration (i.e., at Tm = 1s) all the measurements return an

Chapter 3 49 Matthew G. Smith



Broadband computational rheology for material characterisation

error as high as circa 33%; whereas, as the length of the measurement increases, the MAPE

decreases down to a remarkable value of only 1% at Tm = 1024s for the fluid with the lowest

viscosity value of 0.001Pa·s; whereas, for the other fluids it would have required significantly

longer measurements to reach a similar accuracy, as elucidated hereafter. Notably, when the

same data shown in Figure 3.3–(C) are drawn against De−1
OT,Nom. ∝ Tm, all the four curves

collapse onto a master curve as shown in Figure 3.3–(F) (closed symbols), together with

the outcomes obtained from the same analysis as the one described above, but applied to all

the 528 simulated trajectories mentioned earlier. Thus, corroborating the concept introduced

earlier that “the higher the fluid’s viscosity, the longer the measurement must be”. Moreover,

from Figure 3.3–(F) it can be seen that, at relatively low trap strengths, the MAPE of the

viscosity decreases as the Tm increases (i.e., for De−1
OT,Nom. >> 1). However, at relatively

high trap strengths, the error increases again, becoming almost independent by the duration

of the measurement. Notably, this phenomenon can be explained in terms of the relative

value assumed by the time-dependent fluid’s shear compliance (J(t)) to that of the ‘com-

plex’ system (Jcs(t)) composed by (i) the OT (whose contribution is purely elastic; i.e., κ),

(ii) the viscoelastic fluid (whose contribution relies on its elastic and viscous components)

and (iii) the particle radius a (which defines a characteristic length scale). In particular, when

the suspending medium is a Newtonian fluid, J(t) can be expressed as follows [44, 108]:

J(τ) =
τ

η
=

⟨∆r2(τ)⟩t0πa
kBT

, (3.10)

where ⟨∆r2(τ)⟩t0 is the particle MSD as introduced in Equation (3.4). Whereas, Jcs(t) is

proportional to Π(τ) [44] and it assumes the following analytical expression:

Jcs(τ) = JOT

(
1− e−λτ

)
, (3.11)

where JOT = 6πa/κ ∝ ⟨r2⟩eq. is the time-independent compliance of the OT, which is in-

versely proportional to the trap stiffness and whose values are represented in Figure 3.1–

(D) by the plateau values of the MSD curves. Jcs(t) has been derived by combining Equa-

tions (3.6), (3.8) and (3.10) and it is represented by the Π(τ) data drawn in the inset of Figure

3.1–(D) for the same combinations of fluids’ viscosity and trap stiffness discussed above.

From Equations (3.10) and (3.11) it follows that, by dividing the 2nd Maclaurin polynomial

of Jcs(t) by J(τ), one would obtain the following ratio:

Jcs(τ)

J(τ)
=

(
1− τ

τOT

)
≡
(

1− J(τ)
JOT

)
, (3.12)

which provides a means for elucidating the high values of the viscosity MAPE at relatively

high trap strengths, as reported in Figure 3.3–(C). Indeed, from Equation (3.12) one could
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argue that: at short lag-times, Jcs(τ) ∼= J(τ) if and only if τOT >> τ (or equivalently for

JOT >> J(τ)), which is true either for vanishing trap strengths (e.g., blue symbols in Figure

3.1–(D)) or for increasingly high viscous fluids (e.g., star symbols in Figure 3.1–(D)). There-

fore, given that the accuracy to which the viscosity is calculated depends on the number of

data points of the NPAF (or equivalently of the MSD via Equation (3.10)) available at lag-

times τ < τOT – i.e., within the time–window ranging from τ1 = 1/ f (for which A(τ1)∼ 1)

to τ = τOT (for which A(τOT ) = e−1), used for the fitting procedure – the analysis of the par-

ticles’ trajectory will return viscosity values with a high degree of uncertainty at relatively

large κ values, for which τOT −→ τ1. Indeed, as shown in Figure 3.1 (D), for each fluid’s

viscosity, the effective time–window [t1,τOT ] shortens as the trap stiffness increases. From a

physics prospective, this is simply because the stronger is κ , the smaller is the particle vari-

ance from the trap centre (i.e., Eq. (3.8)), thus overshadowing the fluid’s contribution to the

particle dynamics. Notably, the above concept are in agreement with the Fickian approach

adopted by Matheson et al. [4] to estimate the viscosity of Newtonian fluids via MOT mea-

surements, by determining the gradient of the MSD at the first two lag-times (i.e., τ1 = 1/ f

and τ2); for which they obtained an average error of ∼ 10% (see Equation 10 and related

results in Figure 5 of their manuscript).

In order to better understand the optimal modus operandi of MOT measurements, it is

thus important to analyse the relative position of the system’s characteristic time within the

‘finite’ experimental time–window. This concept has been recently introduced by Tassieri

et al.[23] while testing the efficacy of a novel analytical tool (i-Rheo GT) for convert-

ing the time–dependent materials’ shear relaxation modulus into their frequency–dependent

complex shear modulus. In particular, they introduced a dimensionless parameter Ta =

log(τ/t1)/log(tN/t1) that accounts for the relative position of the material’s characteristic

relaxation time τ to that of the experimental time window [t1, tN ]; where t1 is the shortest time

of the experimental data set (here t1 = 1/ f ) and tN is the longest one (here tN ≡ Tm = N/ f ).

Interestingly, in the context of this work, Ta assumes the following form:

Ta =
log( f τOT )

log(N)
, (3.13)

and by plotting the MAPE of the viscosity vs. Ta, as shown in Figure 3.4, it is possible

to identify a value of Ta ≃ 1/3 where MAPE assumes a minima. Notably, this could be

used to express N as a function of DeOT via Equations (3.9) and (3.13), i.e.: N ≃ De−3/2
OT ;

thus, providing a means of estimating the number of data points to be acquired to achieve

a MAPE of ∼ 1% for any generic fluid. This is indeed possible if the trap stiffness of

the OT rig is calibrated first in water and it is also assumed not to vary significantly when
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Figure 3.4: Data taken from Figure 3.3–(F) for the trajectories with maximum Tm and drawn

vs. Ta. The top axis reports the characteristic time of the compound system τOT . The colour

bar indicates the nominal trap stiffness used during the generation of the trajectories. The

two lines are guides for the power laws as indicated in the legend.

measurements are performed on different fluids (i.e., when the refractive index of the sample

under investigation does not differ significantly from that of water). With these conditions

satisfied, one could write:

N ≃ Nwη
3
r , (3.14)

where Nw is the number of positional data points acquired during the microrheology mea-

surement performed in water (e.g., here Nw ≃ 106) and ηr = η/ηw is the relative viscosity

of the fluid under investigation to that of water, of which an estimate is needed to determine

N.

Moreover, from Figure 3.4, it is interesting to notice that (i) for Ta < 1/3, the MAPE of

the viscosity decreases with a power law of T−6
a as Ta −→ 1/3 from the left, and that (ii) the

data points adhering to this scaling law are mostly those obtained from trajectories drawn

by using as inputs a low viscosity value (i.e., 0.001Pa·s) and relatively high trap stiffness as

the outcomes diverge from the minima. Thus implying that the MAPE of the viscosity in

this region is governed mainly by the trap strength. Whereas, for Ta > 1/3, the MAPE of

the viscosity follows a power law of T 3
a and the data points adhering to this scaling law are

mainly related to those trajectories drawn with a relatively low trap stiffness and relatively
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high viscosity, for which the measurement duration is not long enough for the bead to explore

the whole potential well.

In summary, we can argue that microrheology with OT requires long measurement times

with many individual readings to achieve fluid’s viscosity measurements with an error of

only a few percent, which in practice translates to a measurement duration of the order of

tens of minutes when dealing with fluids having viscosity close to that of water, OT rigs

working at kHz and exerting a trap stiffness of the order of a few µN/m. Notably, when

attempting microrheology measurements of fluids with significantly higher viscosity than

water and with the same experimental conditions mentioned above, Equation (3.14) reveals

that the measurement duration would become soon ‘unachievable’ because Tm scales with

the cubic power of the relative viscosity: Tm ≃ Tm,sη
3
r . These conclusions further corroborate

Tassieri’s ‘opinion’ [80] that conventional passive microrheology measurements with OT of

living systems “are not an option”, as biological processes occur at much shorter time scales

than the required Tm and therefore their rheological properties could not be considered ‘time

invariant’ during the measurements. Thus the aim of this paper to employ machine learning

algorithms to significantly shorten the duration of microrheology measurements performed

with OT, as elucidated hereafter.

3.5.1 Enhanced MOT with Machine Learning

Let us now investigate the efficacy of ML algorithms when used to enhance the accuracy

of viscosity measurement of Newtonian fluids in passive MOT measurements. It would

be prudent here to highlight the change in language that will occur when discussing the

aforementioned ML algorithms. Indeed, throughout the previous sections, the attainment of

Newtonian viscosity by means of conventional analytical methods presented in Equations

(3.1) - (3.4) has been justifiably described as ‘calculated’, however the ML algorithms de-

scribed in this paper specifically ‘predict’ the viscosity of the Newtonian fluid in question

and therefore they will be described as such here.

As for the results described in Figure 3.3–(A–C and F), the simulated trajectories used

for evaluating the ML models were generated for optically trapped particles suspended into

four fluids having viscosity spanning three orders of magnitude (i.e. from 0.001 to 1Pa·s).

Figure 3.3–(D) shows the MAPE of the fluids’ viscosity prediction versus the measurement

time, associated with input segment length, for the ML algorithms fed with the following

inputs: the trap strength, particle radius, temperature and acquisition rate having values of

0.25µN/m, 1µm, 19oC and 1kHz, respectively. It can be seen that for measurement times
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shorter than 1s, using the architecture described in the methods section, the MAPE is as

high as 40% depending on fluid viscosity. Interestingly, for a measurement time of 0.05s

the MAPE for the highest viscosity analysed of η = 1Pa·s is 10%, which is four times lower

than the conventional method using 1s of trajectory. This is a striking result, considering

that the characteristic time for that particular point, τOT ≈ 75, is around 1500 times larger

than the measurement time. Whereas, for Tm = 1s, the prediction error drops to between

3− 6% across the three decades of fluid viscosity explored. Notice that, the input mea-

surement times used in this study did not exceed a value of 1s because of the demanding

computational processes involved in training of ML algorithms. Therefore, in order to ob-

tain consistent predictions of fluid viscosity, to extrapolate to 1024s, the input measurement

time used in Figure 3.3–(E) was 1s. The extrapolation was carried out by feeding 1s seg-

ments of particle trajectory into each of the three 1s input ML models trained and averaging

each of the predictions over increasingly longer times. The diagram shows the MAPE of

the ML viscosity prediction versus the measurement time extrapolated to 1024s using the

same parameters described in Figure 3.3–(D). Generally, as the measurement time increases,

the MAPE, starting at values between 3− 6%, quickly drops to a plateau value for each

viscosity, reaching as low as 0.4% for a viscosity of 0.1Pa·s. When compared to the conven-

tional method in Figure 3.3–(C), the viscosity prediction errors displayed in Figure 3.3–(E)

are significantly lower for most of the explored time windows, apart from the MAPE of the

conventional approach at the longest times. It is important to highlight that, in machine learn-

ing algorithms the individual model accuracy is determined by the model hyper-parameters

as well as the size and quality of training data. Moreover, the random initialisation of the

training process can cause the model to learn to predict particular viscosity ranges more ac-

curately than others. The variability in performance of different instances of the same model

for different viscosity values is indicated by the error bars in Figures 3.3–(D-E). Notably, the

significant reduction in MAPE from the conventional approach to the ML prediction occurs

over the entire range of explored viscosity.

As for standard ML studies, we have selected the best performing 1s model to be anal-

ysed for a range of trap strengths as shown in Figure 3.3–(F). Here, the MAPE of both the

conventional method (closed symbols) and the ML model (open symbols) are plotted ver-

sus De−1
OT,Nom. for trap strengths ranging from 0.01−5µN/m. Notice that, the range of trap

strengths used in ML analysis is 0.01− 0.85µN/m, which is slightly wider than the range

of trap strengths used in training (0.08−0.39µN/m). Figure 3.3–(F) shows that the MAPE

values of the ML algorithm are 5 times smaller than those of the conventional method for
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Figure 3.5: (Main) The mean square displacement (MSD) versus lag-time τ of the trajectory

of an optically trapped particle suspended in water and subjected to different trap strengths

κ . (Top-left inset) The same data as in the main, but normalised by twice the variance of

the particle displacement from the trap center, which returns the normalised mean square

displacement (NMSD) versus τ . (Bottom-right inset) The same data as in the top-left inset,

but versus a dimensionless lag-time τ∗ML = κτ/(6πaηML).

De−1
OT,Nom. < 1; i.e., ∼ 7% and ∼ 35% respectively. It is also apparent that, unlike the conven-

tional method, the ML error curves do not collapse into a master curve when drawn against

De−1
OT,Nom.. This is believed to be due to the design of the feature extraction component of the

ML architecture, which uses convolutional filters that learn local temporal structures com-

mon to both short and long trajectories. Therefore, once the model has learned to extract

low- and high-dimensional local features in the measurements a priori during the training

process, the CNN can decode the fluids’ viscosity ‘directly’ from the raw measurements

using a statistically relevant number of steps N′ required to disambiguate features that are

present in the data, rather than from statistically averaged quantities over N = Tm f steps used

in the standard approach. Notably, the number N′ can be much smaller than N and no longer

needs to satisfy the scaling governed by the Deborah number on the individual measurement

– as the missing information has been encoded before the measurement into the learned CNN

parameters.

Confident of the effectiveness of the ML algorithm described above, we have employed

it to determine the viscosity of water from real experimental MOT data obtained by track-

ing the position of an optically trapped bead subjected at different laser powers (i.e., trap
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strengths). The analysis of the trajectories returned the MSD curves shown in the main Fig-

ure 3.5 having different plateau values at long lag-times, whose values are equal to twice the

variance of the particle displacement from the trap center. These latter values can indeed be

used to normalise the MSD curves as shown in the top-left inset of Figure 3.5, thus validat-

ing Equation (3.11) stating that at long lag-times the compliance of the OT overshadows the

one of the fluid. In order to apply the ML algorithm to the raw data of the measurements

described above, the simulated training data and the training of the model had to be adjusted

to match the real experimental parameters, i.e.: (i) an acquisition rate of 2780fps; (ii) the

length of the input data to 2780, to be consistent with the analysis of 1sec trajectory; (iii) the

viscosity range has been narrowed to 10−3–10−2 Pa·s and their values were randomly sam-

pled from a log-uniform distribution; (iv) the values of the trap stiffness have been increased

to a range of 1–5µN/m and they were randomly sampled from a uniform distribution. As for

the simulated data described earlier, the ranges of viscosity and trap strength were slightly

greater than the target range to encompass the extremities. Notably, when the ML algorithm

was applied to real experimental data of 1 second duration, it returned an estimation of the

fluid viscosity of ηML = 0.986±0.028 mPa·s, which would result in an error as low as 1.1%

at best, when compared with the viscosity value of water obtained by means of bulk rheol-

ogy measurement, ηwater = 0.997 mPa·s (at T = 20oC). The effectiveness of the method is

further corroborated by the master curve drawn in the bottom-right inset of Figure 3.5, where

the NMSD curves have been plotted against a dimensionless lag-time τ∗ML = κτ/(6πaηML).

Therefore, we can argue that ML has the ability to enhance the accuracy of passive MOT

measurements by significantly reducing the measurement time from tens of minutes down

to 1s with a prediction error that is 5 times smaller than the conventional analytical method

applied to the same data. Additionally, the ML algorithm shown here is able to predict the

viscosity of a Newtonian fluid across 3 decades range and we expect that a less generalised

model, which is trained on a smaller span of viscosity values, could further improve the

performance of the ML approach.

3.6 Discussion

In this article we provide experimental evidence supporting the observation made by Tassieri

[80] in 2015, that conventional linear microrheology with optical tweezers may not be an

appropriate experimental methodology for studying the viscoelastic properties of living sys-

tems. In particular we have focused on the analysis of computer simulated trajectories of an
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optically trapped particle suspended within a set of Newtonian fluids having viscosity values

spanning three decades, i.e. from 10−3 to 1 Pa·s. The conventional statistical mechanics

analysis of these simulations has led to the following key findings: (i) we corroborate the

requirement for MOT studies to perform “sufficiently” long measurements when using con-

ventional analytical methods for data analysis and (ii) we provide, for the first time in litera-

ture, a means for estimating the required duration of the experiment to achieve an uncertainty

as low as 1%; (iii) we provide evidence explaining why conventional MOT measurements

commonly underestimate the materials’ viscoelastic properties, especially in the case of high

viscous fluids or soft-solids such as gels and cells. Moreover, we have developed a machine

learning algorithm that uses feature extraction on only ‘one second’ of trajectory data to

determine the viscosity of Newtonian fluids, yet capable of returning viscosity values carry-

ing an error as low as ∼ 0.3% at best, which is five times smaller than those obtained from

conventional analytical methods applied to the same data. Our results clearly indicate that

machine learning is a valid option to be exploited to perform fast and accurate microrheology

measurements with optical tweezers in Newtonian fluids and we believe that this is the first

step for its use in living systems, provided an adequate volume of data is available to train

such a model.
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4.1 Abstract

Flow-Induced Self-Assembly (FISA) is the phenomena of particle chaining in viscoelastic

fluids while experiencing shear flow. FISA has a large number of applications across many

fields including material science, food processing and biomedical engineering. Nonetheless,
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this phenomena is currently not fully understood and little has been done in literature so far

to investigate the possible effects of the shear-induced elastic instability. In this work, a be-

spoke cone and plate shear cell is used to provide new insights on the FISA dynamics. In

particular, we have fine tuned the applied shear rates to investigate the chaining phenomenon

of micron-sized spherical particles suspended into a viscoelastic fluid characterised by a dis-

tinct onset of elastic instability. This has allowed us to reveal three phenomena never reported

in literature before, i.e.: (I) the onset of the elastic instability is strongly correlated with an

enhancement of FISA; (II) particle chains break apart when a constant shear is applied for

‘sufficiently’ long-time (i.e. much longer than the fluids’ longest relaxation time). This latter

point correlates well with the outcomes of parallel superposition shear measurements, which

(III) reveal a fading of the elastic component of the suspending fluid during continuous shear

flows.

4.2 Introduction

Flow-Induced Self-Assembly (FISA) of single particles into long chains while subjected to

shear flow is a phenomenon that has been discussed at length since its first description in the

1977 paper by Michele et al.[110]. FISA phenomena occur frequently across a variety of

applications, e.g.: (i) in material science, it is well documented that the inclusion of micro

and nano particles in polymer melts can greatly enhance the final mechanical properties of

products [111]; (ii) in food processing, the addition of soft microspheres or microgel droplets

can be used to encapsulate phytonutrients for targeted delivery in the gut [112]; and (iii) in

microfluidics, particle alignment is often required to enhance processes such as counting,

analysis and separation [113–118].

Currently, the exact mechanism that causes micro-particles to align in simple shear flow

is unclear, and the focus of the debate between different schools of thought is mainly on

the relative contribution to the driving force governing the phenomena by the elastic and the

viscous forces generated during flow, due to the viscoelastic nature of complex fluids. It fol-

lows that, most of the arguments have been developed around the relative value assumed by

the Weissenberg number (Wi), which is a dimensionless parameter used in rheology studies

to describe the ratio between the elastic and the viscous forces. For a general overview of

the field, an up-to-date review has been masterly drawn by D’Avino and Maffettone [119],

whose highlights are summarised hereafter for the convenience of the reader. The afore-

mentioned work by Michele et al.[110] reported for the first time glass beads forming into
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long chains and aggregations in a viscoelastic media, under both oscillatory and pipe flows;

suggesting that (i) the alignment of particles could be related to the fluid’s normal stresses

(a measure of the fluid’s elastic character) and that (ii) a critical Weissenberg value of 10 is

necessary for the alignment to occur. Subsequent studies by Petit and Noetinger [120], and

Lyon et al. [121] further corroborated Michele’s observation in the case of string formation.

Conversely, a more recent study by Won and Kim [122] suggests that the shear-thinning

nature of the suspension fluid is the driving force for FISA, while normal stresses facilitate

migration. Furthermore, Scirocco et al. [123] found that a critical Weissenberg number (as

low as 1) is not solely responsible for string formation as they observed no alignment in

Boger fluids (i.e., a viscoelastic fluid with a constant viscosity value). Interestingly, by vary-

ing the gap distance between their parallel plate flow cell, Scirocco et al. [123] also found

that FISA is a phenomena that occurs within the bulk of the fluid, rather than being a wall

effect. However, in contrast to these findings, other studies [124, 125] observed single par-

ticles migration towards the walls, where they would assemble and form strings in the flow

direction, when suspended in weakly viscoelastic liquids (i.e., Wi << 1). Nonetheless, a re-

cent study by Pasquino et al. [126] has shown that FISA occurs in both the bulk of the fluid

and at the walls of the system; thus implying that such phenomenon is a convoluted function

of specific parameters of the system being analysed, such as fluids’ viscoelastic properties

and flow cell geometries.

Nevertheless, most of the works cited above, and in general in literature, have focused on

low Weissenberg numbers (i.e., Wi < 10) in simple flow cell geometries. Whereas, little has

been done to study FISA at relatively high Weissenberg numbers (i.e., Wi >> 10), where

the shear-induced elastic instability may develop. In this regard, it is worth to remind that

elastic turbulence, first proposed by Groisman and Steinberg [127], has been observed in

microchannel flow [128] and in core-floods [129], and it describes fluctuations in the flow

velocity across a broad range of spatial and temporal frequencies, up to a threshold shear rate,

where a sharp power-law transition occurs [129–131]. This transition is identified by a di-

mensionless parameter MNorm, as posited by Mckinley et al.[130, 131], and further explored

in this manuscript for the case of simple shear flow of a shear thinning fluid, which is made

of a water based solution of a high molecular weight Polyacrylamide. Interestingly, in a re-

cent study by Howe et al.[129], it has been shown that the onset of the shear-induced elastic

instability of Polyacrylamide solutions is very distinct and it is concentration independent,

but it scales with the square of the polymers’ molecular weight.

In this work, a bespoke, counter-rotating cone and plate shear cell has been used to anal-
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yse the effects that fluid’s viscoelasticity, and more specifically the shear-induced elastic

instability, has on FISA. This has been investigated by exploring shear rates that spanned

across the onset of elastic instability of a water based solution of Polyacrylamide (PAM),

whose frequency-dependent viscoelastic moduli have been determined by means of both

classical bulk rheology and microrheology measurements performed with optical tweezers.

In agreement with previous works in literature, we have observed that particle chains form

in the bulk of the fluid and in the flow direction. In particular, we show that FISA is signif-

icantly enhanced by the onset of the elastic instability; although, a significant alignment is

also observed at lower shear rates. Moreover, we report evidence of a spontaneous reduction

in particles’ chain length at relatively long times (i.e., much longer than the fluids’ longest

relaxation time), which is not associated with particle migration (e.g., sedimentation), but ac-

tually to a shear-induced change of the viscoelastic properties of the suspending fluid [132].

We speculate that these changes may be caused by a shear induced disentanglement of the

polymer chains constituting the viscoelastic fluid. This thesis is supported by the outcomes

of parallel superposition shear flow measurements, as described below.

4.3 Materials and Methods

Particle Suspension

A dilute solution of particle suspension was prepared by gently mixing 5.2µm diameter

polystyrene beads (Bangs Laboratories), at a final concentration of 0.02% w/v, in a water

based solution of Polyacrylamide (PAM – molecular weight 18M, Polysciences Inc.) at

a final concentration of 0.07% wt. This concentration is circa ten times higher than the

polymer’s entanglement concentration, which has been estimated to be (i) ∼ 0.008%wt as

obtained via viscometry measurements performed by Howe et al. [129] and (ii) ∼ 0.007%wt

as read from Figure 6-(D) of the work by Tassieri et al. [133] reporting a comparison between

the viscosity values measured by means of multiple rheological techniques. Additionally, a

97%wt glycerol/water mixture with beads concentration of 0.02% w/v was used as a control.

This ratio of glycerol/water mixture was chosen based on the fact that its Newtonian viscosity

of η = 0.765 Pa·s closely approximates the one of the PAM solution at low frequencies.
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Bulk rheology

Bulk rheology measurements were performed with a stress-controlled rheometer (Netzsch

Kinexus Ultra+), utilising a roughened cone and plate geometry (4o cone, 25mm radius

plate). All measurements were performed at 20oC, and prior to a rheological measurement,

the sample underwent a pre-shear at 10s−1 for 3min, to homogenise the sample and remove

any history dependant effects from the loading procedure. Partially hydrolysed polyacry-

lamide (Flopaam 3630S – molecular weight 18-20MDa, SNF) at a final concentration of

0.07%wt in deionised water, without polystyrene beads, was used for all measurements.

Parallel superposition measurements were conducted at constant shear rates of 0.49s−1 and

0.79s−1. As the instrument is stress controlled, these shear rates were converted to stress val-

ues utilising Carreau – Yasuda fitting parameters from flow curve data. An oscillation stress

amplitude of 0.1133Pa was selected from a dynamic amplitude sweep measurement, lying

within the linear viscoelastic region. The parallel superposition measurement was conducted

at a frequency of 0.4Hz, sampling over a duration of 2hr.

Optical tweezers rig

Microrheology measurements were performed by using an OT system based on a continuous

wave, diode pumped solid state (DPSS) laser (Ventus, Laser Quantum), which provided up

to 3 W at 1,064 nm. A nematic liquid crystal spatial light modulator (SLM) (BNS, XY

series 512×512) was used to create and arrange the desired optical trap. The laser entered

a custom-made inverted microscope that uses a microscope objective lens (Nikon, 100x, 1.3

NA) to both focus the trapping beam and to image the thermal fluctuations of a 4.74µm

diameter silica bead (Bangs Laboratories), at room temperature ∼ 20oC. The sample was

mounted on a motorized microscope stage (ASI, MS-2000). A complementary metal-oxide

semiconductor (CMOS) camera (Dalsa, Genie HM 1024 GigE) acquired high-speed images

of a reduced field-of-view. These images were processed in real-time at up to ∼ 1 kHz to

calculate the center of mass of the bead by using a particle tracking software developed in

LabVIEW (National Instruments), running on a standard desktop PC [90, 91].

A Theoretical Background of Microrheology with Optical Tweezers

Microrheology is an branch of Rheology (the study of the flow of matter), and it is focused on

the characterisation of the viscoelastic properties of complex fluids by using sample volumes

in the micro-litre range; thus making microrheological methods ideal candidates for measur-
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ing rare or precious samples, with a clear advantage over classical bulk rheology approaches

that require millilitres of sample volume. Microrheology techniques are categorised into ei-

ther “passive” or “active” depending on whether the tracer particle, suspended in the target

fluid, is driven by thermal fluctuations within the fluid, or by means of an external force,

respectively.

Developed in the 1970s [134], optical tweezers (OT) utilise a monochromatic laser beam,

focused through a microscope objective with a high numerical aperture, to optically trap in

three dimensions a micron sized particle, suspended in a fluid; a schematic representation

is presented in Fig4.2-(A). Once trapped, the particle ‘feels’ a harmonic potential, therefore

the restoring force exerted on the particle is linearly proportional to the distance from the

center of the trap, provided the displacement is within the bead diameter, and it is of the

order of a few µN. In this work, passive microrheology with OT (MOT) has been used

to measure the viscoelastic properties of a PAM solution at a concentration of 0.07% wt.

The thermal fluctuations of an optically trapped particle were analysed by means of the

theoretical framework developed by Tassieri et al.[39, 133, 135], which is here summarised

for convenience of the reader.

The Brownian motion of an optically trapped particle can uncover the viscoelastic prop-

erties of the suspending fluid when its trajectory is analysed by means of a generalised

Langevin equation (Eqn.(4.1)) – as first established by Mason and Weitz [136] for the case

of a freely diffusing particle – which in this case reads:

ma⃗(t) = f⃗R(t)−
∫ t

0
ξ (t − τ )⃗v(τ)dτ − κ⃗r(t), (4.1)

where m is the mass of the particle, a⃗(t) is its acceleration, v⃗(t) is its velocity, r⃗(t) is its po-

sition, f⃗R(t) is the Gaussian white noise term used for modelling the stochastic forces acting

on the particle, and ξ (t) is the generalised time-dependent memory function accounting for

the viscoelastic nature of the fluid.

As described by Tassieri et al.[39, 133, 135, 137], Eqn.(4.1) can be solved for the fluid’s

complex modulus (G∗(ω)) via either the normalised mean squared displacement (NMSD)

Π(τ) = ⟨∆r2(τ)⟩/2
〈
r2〉 or the normalised position autocorrelation function (NPAF) A(τ) =

⟨⃗r(t )⃗r(t + τ)⟩/
〈
r2〉, which are simply related to each another as:

Π(τ) =
⟨∆r2(τ)⟩t0

2⟨r2⟩eq.
≡ ⟨[r(t0 + τ)− r(t0)]2⟩t0

2⟨r2⟩eq.
= 1−A(τ), (4.2)

where τ is the lag-time (t − t0) and the brackets ⟨...⟩t0 represent an average over all initial
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(C)

(B)(A)

(D)

Figure 4.1: (A) A picture of the bespoke shear cell mounted on a microscope stage with

two driving motors. (B) An exploded schematic representation of the shear cell showing

the transparent cone (grey area) and plate (blue area) geometries. (C) Calibration curve

comparing the rotational frequency of the cone and the plate (ωc/p) versus the rotational

frequency of the motors (ωM). The conversion factor for the cone and the plate was 0.263

and 0.205, respectively. (D) Example of a typical frame captured during experiments and the

same image post processing. In red are the single beads, dimers and one trimer identified by

using the particle tracking software developed in LabVIEW (National Instruments) for this

work, running on a standard desktop PC.

times t0. The fluid’s complex modulus can then be expressed as:

G∗(ω)
6πa
κ

=

(
1

iωΠ̂(ω)
−1
)
≡
(

1
iωÂ(ω)

−1
)−1

≡ Â(ω)

Π̂(ω)
(4.3)

where G∗(ω) is a complex number, whose real and imaginary parts define the elastic (G′(ω))

and the viscous (G′′(ω)) moduli of the fluid, respectively; a is the particle radius, κ is the

optical trap stiffness, Π̂(ω) and Â(ω) are the Fourier transforms of the NMSD and the NPAF,

respectively. To obtain Eqn.(4.3), the inertial term (mω2) present in the original works[138,

139] has been here neglected, because for micron-sized particles it only becomes significant

at frequencies of the order of MHz. From Eqn.(4.3) it is a trivial step to derive the complex

viscosity (η∗(ω)) of the fluid:

|η∗(ω)|=
√

G′2(ω)+G′′2(ω)

ω
. (4.4)
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Shear Cell

The shear cell used in this work had a bespoke cone and plate design, both of which were

transparent allowing the use of an optical microscope to capture images and the generation

of a uniform shear rate along the diameter of the shear cell. An image and an exploded

schematic representation of the setup is shown in Fig.4.1-(A,B). The shear cell is positioned

on top of a microscope stage and is composed of several individual parts including: the

3D printed base, the shear cell mount, the plate body, and the cone, which slot together

creating a chamber for the fluid being analysed. As shown in Fig.4.1-(B), the base of the

shear cell (black) is 3D printed that allows the setup to fit within the microscope stage and

hence accurately position the shear cell within the optical path of the microscope. The mount

for the shear cell is a ring that screws into the 3D printed base and houses a bearing around

its internal diameter. On this bearing sits the plate body allowing the plate to rotate freely.

The plate body also has a bearing on which the cone body sits. The fluid is applied between

the cone and the plate, which in Fig.4.1-(B) is schematically represented by the blue area.

The rotation of the cone and the plate was driven by two independent stepper motors via

two nitrile O-rings as shown in Fig.4.1-(A). Motor control was provided by two individual

Arduino boards, each driving an A4988 stepper motor controller, interfaced with a Labview

program that allowed us to control motor speed.

Prior to performing the measurements, a calibration of the relative speed between the two

electric motors and the related cone and plate geometries was performed. This consisted in

varying the rotational frequency of the motors and measuring those of the related geometries,

which was much lower because of the relatively high gear ratio. The rotational frequency

of the driven cone/plate (ωc/p) can be calculated using the Eqn.(4.5), which is based on the

diameter ratio between motor and the cone/plate, dm and dc/p respectively.

ωc/p =
dm

dc/p
ωM, (4.5)

where ωM is the rotational frequency of the motor shaft and the diameter of the cone and the

plate are 60 and 80mm respectively.

Calibration was measured in three configurations: (i) with either the cone or the plate

stationary, (ii) with both rotating in the same direction and (iii) with both rotating in opposite

directions. The purpose of measuring in each configuration was to make sure that the rotation

of the cone did not influence the rotation of the plate and vice versa. In each configuration

the time required for the cone and the plate to complete 10 revolutions was measured. The

rotational frequency of both the cone and the plate were graphed against the rotational fre-
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quency of the motors, shown in Fig.4.1-(C), and the gradient of the line is the inverse of the

gear ratio.

The shear cell was counter rotated, and the shear rates explored during the measurements

are those reported in Table4.1, which shows also the rotational frequency of the cone driv-

ing motor (ωcM) and the plate driving motor (ωpM) required to achieve an equal rotational

frequency of the cone and the plate (ωc/p) for each of the shear rate examined:

γ̇ =
(ωc +ωp)

tan(α)
≃

(ωc +ωp)

α
, (4.6)

where γ̇ is the shear rate and α is the angle of the cone (i.e.4.20◦± 0.25◦) [140, 141].

The truncation gap of the cone was 125µm, which is significantly larger than the polystyrene

beads used in the suspension (diameter of 5.2µm) and therefore gap effects are negligi-

ble [123].

γ̇ [s−1] ωc [rad · s−1] ωp [rad · s−1] ωcM [rad · s−1] ωpM [rad · s−1]

27.682 1.025 1.005 3.896 4.901

43.479 1.603 1.584 6.095 7.728

68.403 2.528 2.486 9.613 12.127

107.745 3.983 3.916 15.143 19.101

169.028 6.246 6.144 23.750 29.971

265.690 9.816 9.660 37.322 47.124

Table 4.1: Table of shear rates and rotational frequencies explored in this work.

The sample, 750µl of 0.07%wt PAM-bead solution, was inserted between the cone and

the glass coverslip (plate) and then a constant shear rate was applied for 30 minutes. Im-

ages were acquired using a Teledyne Dalsa Genie camera at 960fps with an exposure time

of 400µs. The high frame rate was achieved by reducing the region of interest of the camera

from 1400× 1024 pixels to 752× 100 pixels. The window was aligned in the direction of

flow, so that chaining could be observed through the major axis of the window and the focal

plane was positioned in the center of the shear flow, which was kept constant for each exper-

iment. A Labview program has been developed to allow us to run the camera at 960fps, but

capture images at set intervals in milliseconds, thus improving significantly the performance

of the image acquisition and reducing the time taken for analysis. The acquisition rate of the

Labview program was set to 1.2s for all experiments, thus returning 1500 frames for each

measurement; which were performed in triplicates. Fig.4.1-(D) shows a typical image frame
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captured both before and after image processing.

Image analysis was carried out by using custom code, developed using National Instru-

ments Labview, to automatically process the acquired images. Each frame was analysed

by first removing the background of the image, as shown in Fig.1-(D), and then each parti-

cle/chain was identified automatically using functions from the National Instruments, Vision

Development Module, which can discriminate different objects via their (i) area (as each

additional bead in a given chain increases the object area linearly) and (ii) elongation value

(which regulated the counting of only chains rather than artifacts such as particles’ agglom-

erates); thus, allowing us to classify whether an identified object belonged to a specific chain

length (i.e., single bead, dimer, trimer, tetra or penta). Once classified, the total number of

each chain length per frame was exported into a spreadsheet.

4.4 Results and Discussion

Rheological characterization of a Polyacrylamide solution

The rheological properties of a PAM solution at a concentration of 0.07%wt were measured

by means of both microrheology measurements performed with optical tweezers and conven-

tional rotational shear rheology, as summarised in Fig.4.2-(D). In the case of microrheology,

the trajectory of an optically trapped particle was captured at circa 1kHz for an extended

measurement duration of circa 27 minutes, in compliance to the arguments described in de-

tail by Smith et al.[70] to achieve statistically valid outcomes. The NPAF of the particle

trajectory was analysed by using i-Rheo MOT [142], an algorithm based on the analytical

method developed by Evans et al.[61] for evaluating the Fourier transform of any generic

function, sampled over a finite time window, without the need for Laplace transforms or fit-

ting functions. For more detail about the principles underpinning i-Rheo MOT, the reader is

advised to read these references [20, 133, 137, 143].

The first and the second normal stress differences (N1 and N2, respectively) for the

0.07%wt PAM solution are shown in Fig.4.2-(C). They are in good agreement with the theo-

retical predictions of uniform shear flow of inelastic hard spheres in dilute regime, for which

N1 is expected to be positive and monotonically increasing for higher shear rates; while, N2

is expected to be negative and monotonically decreasing for higher shear rates. Additionally,

in the inset of Fig.4.2-(C), we report the ratio between N1 and the applied shear stress (σ ),

which shows a plateauing behaviour at shear rates close to the onset of the shear induced

elastic instability.
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Figure 4.2: (A) A schematic representation of an optically trapped bead within a harmonic

potential, E (⃗r), where κ is the trap stiffness and r⃗(t) is the bead position from the trap centre.

(B) The normalised position autocorrelation function (NPAF) versus lag-time (τ) calculated

using the x coordinate of the trajectory of an optically trapped bead suspended in a 0.07%wt

PAM solution shown in the inset. (C) The first and the second normal stress differences

(N1 and N2, respectively) obtained using a cone and plate and parallel plate configurations

respectively versus the shear rate. The inset displays the ratio between N1 and the shear stress

(σ ) versus the shear rate. These measurements have been corrected for inertia which did not

exceed 10% of the signal. (D) The viscoelastic moduli (red lines, G′(ω),G′′(ω)) and the

complex viscosity (green diamond, |η∗(ω)|MOT ) as obtained from the analysis of the NPAF

shown in (B). In the same figure the shear viscosity (blue symbols, η) and its fit by means of

Carreau-Yasuda model (black line, C-Y) are reported; η and |η∗(ω)|MOT are plotted versus

shear rate (γ̇) and angular frequency (ω), respectively; in compliance to the Cox-Merz rule.

The vertical dotted lines represent the shear rates explored in the shear cell experiments (see

table 4.1).

In Fig.4.2-(D), we report the viscoelastic moduli (G′(ω), G′′(ω)) and the complex vis-

cosity (|η∗(ω)|MOT ) as obtained by means of MOT measurements together with the rota-

tional shear viscosity (ηBulk) obtained by using a stress-controlled rheometer. Strikingly,

despite the substantial difference in the nature of the two rheological techniques employed

here, the outcomes of these experimental approaches are in very good agreement over a

range of shear rates/frequencies spanning ∼ 5 decades. Moreover, it is important to high-

light that, while at high shear rates (i.e., γ̇> 107.75s−1), bulk rheology measurements reveal

the onset of the elastic instability as inferred by the blue symbols departing from the Carreau-
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Yasuda fit (black line) of the flow curve in a shear thickening behaviour; this phenomenon is

not revealed by the complex viscosity curve because of the quiescent nature of MOT mea-

surements. Nonetheless, the viscoelastic moduli reveal the existence of two characteristic

crossover frequencies occurring at (I) circa 0.3rad/s and (II) circa 200rad/s. The inverse of

these frequencies provide a measure of two of the material’s characteristic relaxation times,

i.e.: the reptation time τrep and the entanglement time τe, respectively. These measurable

parameters can be used to educe the material’s Rouse time (τR) [144]:

τR = τe

(
τrep

6τe

)2/3

∼= 0.12 sec, (4.7)

which, as we shall demonstrate hereafter, correlates very closely with the instability

time [129] derived from bulk rheology measurements.

The vertical lines in Fig.4.2-(D) are the experimental shear rates investigated by using

the cone and plate shear cell (see table 4.1). These shear rates span the range of the shear

induced elastic instability and cover its onset, with the aim to provide new insights into FISA

under this condition. At this point it is important to remind that, the onset of elastic instability

has been described by means of a dimensionless parameter M, first introduced by McKinley

et al.[130, 131], which is related to both the Weissenberg and the Deborah numbers of the

system under investigation:

M =
√

Wi ·De. (4.8)

This equation has been made explicit in the case of a cone and plate geometry[129], and here

further modified for a counter rotating configuration:

MNorm =
M

Mcrit
=

λPM(ωc +ωp)√
θ

.
1

Mcrit
, (4.9)

where λPM is a characteristic relaxation time of the viscoelastic fluid, for which we have

adopted the suffix PM for Pakdel-Mckinley [130] to distinguish this time as already done

by Howe et al.[129], and Mcrit is the critical value of M when the flow becomes unstable.

Interestingly, a linear-stability analysis [129, 130, 145] of a cone and plate geometry has

shown that flow instability initiates at M ≥ 21.17. Thus, by using this inequality and the

onset of shear induced instability in Fig.4.2-(D) at 126.5s−1, it is possible to determine a

characteristic relaxation time λPM of 0.14s, which can be associated to the material’s Rouse

time as described by Howe et al. [129] and here further corroborated by the value obtained

from microrheology measurements with optical tweezers via Equation (4.7).
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Accumulation of Particles

FISA phenomenon can be analysed by calculating the accumulation of chains, of a given

length, over each successive image frame. The analysis can be thought of as a series of

‘bins’ into which different chain lengths are added. The number of chains in each bin can

easily be summed over time to produce information on the long time effect of shear rate on

the chaining occurring within the sample. As mentioned earlier, the image analysis software

separated the particles/chains identified in each image frame into five different ‘bins’, i.e.:

singles, dimers, trimers, tetras and pentas. The curves shown in Fig.4.3-(A) are the total

number of single particles accumulated throughout the experiment for each imposed shear

rate. Whereas, in Fig.4.3-(B) we report the accumulation of each chain length for the two

extreme shear rates explored in this work.

From Fig.4.3-(A-B) it is clear and expected that the accumulation of particles increases

with time. However, it is interesting to notice that the curves settle into clear “bands” de-

pending on the relative value of MNorm. Indeed, from Fig.4.3-(A) it is apparent that the ac-

cumulation curves overlay on each other at relatively low shear rates (i.e., for γ̇ ≤ 107.75s−1

or equivalently for MNorm < 1), but they branch off at higher ones (i.e., for γ̇ ≥ 169.03s−1

or equivalently for MNorm > 1). The differences between the curves representing the accu-

mulation of particles is most apparent for the dark blue symbols in Fig.4.3-(B), which are

representative of the pentas at the smallest and the largest explored shear rates, i.e. 27.68s−1

and 265.69s−1, respectively. Here, the curve at the largest shear rate (denoted by triangular

symbols) has a significantly greater accumulation of particles than the one at lowest shear

rate (circle symbols); thus, implying a shear induced enhancement of the generation of pen-

tas. Interestingly, this phenomenon is better explicated by the mean rate of accumulation

(MROA) of the curves as reported in Fig.4.3-(C); which has been determined by normalis-

ing the mean value of the time derivative of the accumulation curves by its maximum value.

In Fig.4.3-(C) the MROA is reported against MNorm, and it can be observed that for single

particles the MROA decreases with increasing MNorm; whereas, for dimers it stays relatively

constant across the same range of explored MNorm. In contrast, the MROA of the longer

chain particles has a relatively low and constant value for MNorm < 1, with a sharp increase

for MNorm > 1. At this point it is important to remind that, in these experiments the to-

tal number of individual polystyrene beads is constant, and therefore as chains of different

length start to form, the number of single particles decreases. It follows that, at low MNorm,

particles are not able to form long chains and the MROA value of single particles is high.

Whereas, as the shear rate increases to a point where the MNorm is greater than 1, the elastic
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(A)

(B)

(C)

Figure 4.3: (A) Accumulation of particles for a chain length of 1 versus time for shear rates

ranging from 27.68s−1 to 265.69s−1. Each curve has been down-sampled for easier identi-

fication and the dashed black line indicates a linear growth. (B) Accumulation of particles

for each chain length versus time for shear rates of 27.68s−1 and 265.69s−1. As in (A) each

curve has been down-sampled for easier identification and the dashed black line indicates a

linear growth. (C) Mean rate of accumulation (MROA), normalised by the maximum MROA

for each particle chain length versus MNorm. The colours associated with each curve repre-

sent a particle chain length as for by the outline of the single, dimer, trimer, tetra and penta

images on the right side. The outputs shown in this figure were obtained in triplicates.

instability of the PAM solution enhances the chaining, which results in a significant drop of

the MROA value for the single particles, while the MROA of the trimers, tetras and pentas

increases rapidly.
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Relative Population of Chains

A complementary method to analyse the progression of FISA within the sample at different

shear rates, is by identifying the relative population of each chain length in the image frame.

To achieve this, the percentage of particles was calculated by taking the ratio between each

chain length and the total number of particles identified in each frame, as shown in Fig.4.4.

       
 

  

  

  

  

   
                

  

       
 

  

  

  

  

   
                 

  

       
 

  

  

  

  

   
          

  

       
 

  

  

  

  

   
          

  

       
 

  

  

  

  

   
          

  

       
 

  

  

  

  

   
           

  

       
 

  

  

  

  

   
           

  

       
 

  

  

  

  

   
           

  

           

 
 
  
  
 
 
  
 
 
 
  
  
 
 
  
  
 
 
  
  
  
 
  
 
 

Figure 4.4: Relative population of particle chains (singles, dimers, trimers, tetras and pentas)

versus time. (A and B) Particle suspension in glycerol/water mixture at a shear rates of

27.68s−1 and 265.69s−1, respectively. (C-H) PAM solutions at shear rates spanning from

27.68s−1 to 265.69s−1, with related values reported in table 4.1, respectively. The shaded

areas are the standard deviation associated with the experimental triplicates and each curve

has been smoothed by using a moving average window of 30s.

In particular, in Fig.4.4-(A-B) are reported the relative population of particle chains for

suspensions made with glycerol/water mixture and measured at the two extremes of the

range of explored shear rates (i.e., 27.68s−1 and 265.69s−1). From these diagrams it is

apparent that no significant changes occur and that the mean percentage of single particles

identified in the image frames stays well above 80%; whereas, for all the other particle

chain sizes, it remains well below 20%. Thus confirming that chaining does not occur in

Newtonian fluids. Interestingly, this is not the case of particle suspensions in the viscoelastic

solution employed in this work. Indeed, as shown in Fig.4.4-(C-F), there is an initial fall of

the mean percentage of single particles whose magnitude increases with the applied shear

rate. This is followed by a corresponding rise in the mean percentage of longer chains, all

within the first 5 minutes from the start of the experiments. Then the percentage of single
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particles begins to climb back to an almost steady value for the duration of the experiment,

which is higher than 80% for MNorm < 1 and lower than 80% for MNorm > 1. A similar, but

opposite behaviour is seen for the longer particle chains, where an initial increase of their

population is observed over the same time scale (i.e., 5min), followed by a decrease towards

a steady value. One could argue that, a possible explanation of such dynamic process could

be related to the migration of single particles and chains from/into the focal plane; however,

the complementarity of these processes between the single particles and the chains (i.e.,

the decrease/increase in single particles is complemented by the increase/decrease in the

percentage of dimers, trimers, tetras and pentas) implies (i) that the total number of particles

is constant during the measurement and (ii) that longer chain particles are breaking down

back to single particles.

Alignment Factor

An additional method to analyse the progression of FISA is by means of the alignment factor

(A f ), as described by Pasquino et al. [125], which is defined as:

A f =
∑

Lmax
L=1 NLL2

∑
Lmax
L=1 NLL

, (4.10)

where L is the chain length and NL is the number of chains of a given length L in an image

frame. As suggested by its name, A f is a measure of bead alignment in a given image frame

and will always have a value ≥ 1, where A f = 1 is achievable if and only if there were solely

single beads in the image frame. As stated by Pasquino et al. [125], A f bares a resemblance

to the weight average molecular weight of polymer chains and as such chains of longer length

have greater impact on A f .

In Fig.4.5-(A) we report the alignment factor for the same set of experiments analysed

earlier in Fig.4.3 and 4.4. From Fig.4.5-(A) it can be seen that at relatively short times, all

curves show an increase of A f up to a maximum value, whose amplitude increases propor-

tionally to the shear rate, while its abscissa is inversely proportional to γ̇ for MNorm< 1 and

remains almost constant for MNorm> 1. After reaching a maximum, all the curves tend to

exponentially decrease towards a steady-state value at long times. This is the first time in

literature that such behaviour of A f is reported, as it was expected that A f would have in-

creased monotonically until a plateau value at long times, as described by Pasquino et al.

[125, 126]. However, it must be said that, their focal plane was positioned at the wall of the

shear cell and therefore particle migration[124, 125] towards the plate continued to supply

the area with new beads. In this work, the focal plane was placed at the centre of the fluid
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Figure 4.5: (A) Alignment factor curves (averaged over triplicates) for the explored shear

rates, including the two set of measurements performed on the 97% glycerol/water mixture

(Gly) as control (dotted lines). The red dashed lines represent Eq.(4.11) as fitting function.

Notice that, each curve has been smoothed by using a moving average window of 60s width.

(B) The resulting fitting parameters y0 and A of Eq.(4.11) versus MNorm. (C) The result-

ing fitting parameters xc (left axis), w2 and w3 (right axis) of Eq.(4.11) versus MNorm. The

standard deviation of the fitting function is depicted as error bars in (B) and (C). (D) The

normalised number of particles versus time, used to analyse the migration of particles away

from the focal plane. Here, each curve has been smoothed by using a moving average win-

dow of 30s width.

chamber and therefore we again posit that the decrease of A f at long-times may be due to

either (i) particle migration away from the centre of the channel (this being a possible ex-

planation that is not supported by the experimental evidence reported in this work), or (ii)

longer chain particles breaking down to single particles (which is the thesis we support).

To better understand the temporal behaviour of A f , we performed a best fit of the curves

by means of the following asymmetric double sigmoid function[146] (also known as piece-

wise logistic function):

y = y0 +A
1

1+ e−
x−xc+w1/2

w2

(
1− 1

1+ e−
x−xc−w1/2

w3

)
, (4.11)

where y0 is the steady state value, A is the amplitude, xc is the peak center, w1 is the curve

width, w2 and w3 are shape parameters. For the fitting curves shown in Fig.4.5-(A), it was

found that w1 = 0 for all fits; whereas, the remaining parameters were different from zero

and they are plotted against MNorm in Fig.4.5-(B) and (C). From these figures, it can be seen
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that y0 is almost constant for MNorm< 1, with a significant increase for MNorm> 1. Whereas,

the amplitude A shows a progressive increase with MNorm; although, it could be argued

that there is an initial shallow increase for MNorm< 1 and then a relatively sharp increase

for MNorm> 1. From Fig.4.5-(C) one will notice that xc (the peak centre) behaves rather

erratically when plotted against MNorm. Indeed, it initially decreases for MNorm< 1 (which

corresponds to a reduction in time for the peak to occur in Fig.4.5-(A)); however, as MNorm

exceeds 1, there is first a sharp increase in xc and then it starts decreasing again. Interestingly,

a similar behaviour is shown by w2. Finally, w3 is the ‘shape parameter’ for the curve after its

peak, and an increase in its value would suggest an increase of the characteristic “relaxation

time” of A f . Thus suggesting that the degradation of the particle chains is controlled by a

different physical process than the one governing the generation of particle chains.

Overall, the above analysis of the fitting parameters indicates a clear change in behaviour

of the particle chaining phenomena as MNorm exceeds 1; with a sharp enhancement of the

chaining that correlates well with the onset of the elastic instability of the fluid.

Flow induced particle chains break down

Both the analysis of the relative chain length population and the A f have raised the same

question: is the decrease in FISA at long-times due to the migration of longer chain particles

away from the focal plane or is it due to the break down of these same particle chains back

to single particles?

To address this question, we have followed the approach introduced by Mirsepassi et al.

[147], whereby one could reveal the existence of migration during flow by normalising the

change in the number of particles in each frame (independently on whether they are single

or belonging to chains of different length) to the average number of particles in each image

determined over the entire measurement duration. In Fig.4.5-(D) we report the results of such

analysis with a moving average window of 30s width. Despite the existence of significant

fluctuations, all curves fluctuates around a constant value equal to 1, which suggests that

the average number of particles in the bulk of the PAM solution does not change during the

(30mins) measurements; hence, it is unlikely that the migration of particles out of the focal

plane can fully justify the decrease in A f , although it cannot be fully discarded. Additionally,

the sedimentation time of the particles was considered, due to the decrease in the 27.68s−1

PAM curve after ∼ 20mins, but no agglomerates were observed at the bottom of the shear cell

after the experiments, suggesting its influence is insignificant and therefore the decrease seen

in this curve is caused by a yet unknown phenomenon. These results further corroborate our
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hypothesis that the reduction in FISA at long-times is likely to be due to the longer particle

chains breaking down back into shorter chain lengths.

This poses a further question: what would cause the particles chains to break down? A

possible cause would involve the flow induced disentanglement of the polymer chains, as de-

scribed by Vasquez et al. [148]. This phenomenon would occur on time scales much longer

than the characteristic relaxation time (λ ) and would produce a drop in the viscoelastic prop-

erties of PAM solutions during shear; thus dimming the elastic character of the fluid and

therefore potentially reversing the particle chaining (as in Fig.4.5-(A)) by shifting the MNorm

towards values lower than one. Interestingly, this thesis is supported by the experimental ev-

idences reported in a recent study by Tran and Clarke [132], where they performed parallel-

superposition shear measurements to reveal (i.e., see Figure 2 of their study) a significant

reduction of the longest characteristic relaxation time of high molecular weight PAM solu-

tions as function of the imposed shear rate. These results unveil a shift of the low-frequency

crossover of the viscoelastic moduli towards higher frequencies, which would imply a re-

duction of the fluid’s longest characteristic relaxation time. However, the results reported by

Tran and Clarke [132] were recorded at steady state and therefore they do not inform on the

dynamics of the above phenomenon, which one would expect to be potentially correlated to

the characteristic time-scales shown in Fig.4.5.

In Fig.4.6 we report, for the first time in literature, an experimental evidence revealing

the time scale of the phenomenon described above. In particular, Fig.4.6 shows the normal-

ized viscoelastic moduli versus time of a PAM solution at concentration of 0.07%wt as ob-

tained by two parallel superposition shear measurements performed at shear rates of 0.49s−1

and 0.79s−1, respectively. The measurements were performed at a constant frequency of

0.4Hz and the moduli normalized by their value at time equal to 10s (i.e., G′
||/G′

|||t=10 and

G′′
||/G′′

|||t=10). The two lines indicate the values of 1± standard deviation of the viscoelas-

tic moduli versus time of the same solution as above, but measured at zero shear (i.e., as

obtained from a time-sweep of a small amplitude oscillatory measurement); in this case the

moduli were normalized by their mean values, respectively.

From Fig.4.6 it is possible to argue that: (i) there is a significant reduction over the time

of the elastic component of the polymer solution (i.e., G′
||∝ t−1/15), when the fluid is sub-

jected to a continuous shear rate (thus supporting the thesis of polymers disentanglement);

(ii) the viscous modulus is significantly less affected than the elastic component (because the

polymer concentration and its molecular conformation are almost constant during the mea-

surement); (iii) most of the significant changes of the viscoelastic properties of the solution
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Figure 4.6: (Symbols) The normalized viscoelastic moduli versus time of a PAM solution at

concentration of 0.07%wt as measured by means of two parallel superposition shear mea-

surements performed at shear rates of 0.49s−1 and 0.79s−1, respectively. The moduli were

measured at a constant frequency of 0.4Hz and normalized by their value at time 10s. The

two dashed lines indicate the values of 1± standard deviation of the viscoelastic moduli

(measured at a constant frequency of 0.4Hz) versus time of the same solution as above, but

at zero shear (i.e., as obtained from a time-sweep of a small amplitude oscillatory measure-

ment); in this case the moduli were normalized by their mean values, respectively. The inset

shows the averaged ratio of the viscous modulus to that of the elastic modulus minus one for

the two set of measurements shown in the main. Author Declaration: The results in this fig-

ure were collected by Anand Raghavan c and Andrew Clarke c and, the figure was designed

by Manlio Tassieri a.

occur within the first ∼ 20 minutes of the measurement (as revealed by the data shown in the

inset), which is in very good agreement with the time-scales of the alignment factor shown

in Fig.4.5, especially for those measurements having the same shear rates.
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4.5 Conclusions

In this work we have studied the flow-induced self-assembly (FISA) of particles suspended

into both Newtonian and viscoelastic fluids. This has been achieved by means of a bespoke

shear cell that has allowed us to monitor the dynamics of the particle chain ‘generation’

and for the first time in literature ‘degradation’. In particular, the adoption of a viscoelas-

tic fluid characterised by a clear transition between a shear thinning behaviour (i.e., with a

decreasing viscosity) at relatively low frequencies (or equivalently at low shear rates) and

a shear-thickening character (onset of elastic instability) at relatively high frequencies (or

shear rates) and the fine tuning of the applied shear rates, have allowed us to investigate the

particle chaining phenomenon across a MNorm of 1. In particular, this study has led to the

following key findings: (i) we have corroborated that particles suspended into Newtonian

fluids do not show FISA enhancement at different shear rates; (ii) FISA within viscoelastic

fluids is significantly greater than in Newtonian fluids, when compared over the same range

of shear rates; (iii) for MNorm higher than 1, the onset of the elastic turbulence of the vis-

coelastic fluid correlates strongly with the enhancement of FISA; (iv) particle chains break

apart when a constant shear is applied for sufficiently long-time (i.e. much longer than the

fluids’ longest relaxation time). (v) We provide for the first time in literature experimental

evidence of a significant reduction of the fluid’s elastic character when a continuous flow

is applied for sufficiently long time. Points (iv) and (v) have been corroborated (via private

communication) by means of computational fluid dynamics simulations kindly performed by

Pier Luca Maffettone and Gaetano D’Avino (data not reported here), whose outcomes will

be published in a separate publication.

Finally, we envisage that, in future works the adoption of imaging systems with a wider

field of view capable of capturing images of the whole shear cell at higher resolution and

acquisition rate, would allow a deeper understanding of the dynamics of both FISA and

chain breakdown phenomena. Moreover, further investigation of the rheological properties

of PAM solutions by means of parallel superposition shear measurements, may elucidate the

newly discovered phenomenon of the reduction of the fluid’s viscoelastic properties when

subjected to a continuous flow for sufficiently long time.
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Chapter 5

Conclusions and Future Work

This thesis has compiled a series of original works on various areas within the field of mi-

crorheology. This chapter will summarise the main findings of each of those works, the

future work that could be performed to advance the specific area and, where applicable, how

the work has impacted the wider community.

Chapter 2 presented an open-access MATLAB code called “i-RheoFT” that is able to

evaluate the Fourier transform of any time-dependent generic function which vanishes for

negative times, with a finite number of data points which do not need to be equally spaced,

and sampled over a finite range. The effectiveness of the MATLAB code was investigated

by evaluating the Fourier transform of two functions; a single exponential decay describing

the dynamics of a Maxwell fluid and a function that resembles the mean squared displace-

ment of a weakly trapped particle suspended in a non-Newtonian fluid. The density of initial

experimental data points and signal-to-noise ratio was varied for each function and the in-

terpolation function used in virtual oversampling was examined to determine i-RheoFT’s

efficacy for different experimental conditions. The main findings of this study were that if

the density of initial data points and the signal-to-noise ratio were high, the three interpola-

tion functions used in oversampling, “Spline”, “Makima” and “PCHIP”, all performed well

with the spline function showing the best performance. Additionally, there exists a thresh-

old value, for both the density of initial points and signal-to-noise ratio, at which all three

interpolation functions performed poorly with the spline function performing the worst.

One of the main goals of i-RheoFT was to provide researchers with the means of evalu-

ating the Fourier transform of their discrete time-dependent signals, and if necessary calcu-

late the LVE properties of materials. Work carried out after the publication of this chapter

involved the development of two open-source applications that are able to compute the com-

plex shear modulus. The first evaluates the Fourier transform of the time-dependent step
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stress or strain measurement from bulk rheology [1] and the second evaluates the Fourier

transform of the force and indentation data from atomic force microscopy measurements

[2]. The work presented in chapter 2 has been utilised in a study by Mendonca et al. [3]

to characterise hydrogels using their new “OptoRheo” instrument which has been developed

to explore drug transport through complex cell culture matrices and optimise the design of

new disease models. Additionally, i-RheoFT was used in a study by Matheson et al. [4]

aimed at providing a new analytical framework for 3D trajectories, produced from passive

MOT, to help minimise the characterisation error associated with anisotropic optical traps.

Furthermore, the work presented in chapter 2 has been cited in a study by Hardiman et al.

[5], who used the OptoRheo instrument to perform passive microrheology experiments on

living cells, by chemically binding the particle to the cell’s surface, in order to measure cell

stiffness over the course of hours.

Chapter 3 is an original work and has been published in AIP Advances [70]. This work

investigates the effect experimental measurement time has on the accuracy of conventional

passive MOT measurements through the simulation of 2D optically trapped particle trajec-

tories, suspended in a Newtonian fluid, across a three-decade range of viscosities. Addition-

ally, using these trajectories, a machine learning algorithm was developed and subsequently

trained to extract features from only one second of trajectory and provide a prediction of

the viscosity. This work displays how conventional passive MOT, with its requirement to

have sufficiently long measurement times with many individual readings, is unsuitable for

use with living systems. Furthermore, chapter 3, provides a way of estimating the experi-

mental duration required to reduce the uncertainty of the measurement to 1%. Moreover, this

work presents a viable enhancement to passive MOT through the use of machine learning,

which can reduce the measurement time from tens of minutes to one second while returning

a measurement uncertainty that is 5 times smaller than conventional passive MOT for the

same conditions. Interestingly, this machine learning algorithm performed well even on real

data and was able to predict the viscosity to a high accuracy. This combination of machine

learning and conventional MOT has been shown to work well with Newtonian fluids and it

is believed that it will open the door for accurate microrheology studies of living systems,

provided there is substantial data available to train the model. The next steps would be to

increase the scope of the machine learning algorithm to include viscoelastic fluids, which

would more closely resemble living systems of interest, and use the algorithm to predict the

frequency dependent LVE properties rather than just the viscosity.

Chapter 4, published in Physics of Fluids [109], investigates the flow-induced self-

Chapter 5 82 Matthew G. Smith



Broadband computational rheology for material characterisation

assembly of particles, suspended in a shear thinning 0.07%wt Polyacrylamide solution,

while experiencing simple shear flow provided by a bespoke shear cell. In particular, this

study was targeted at the transition of the viscoelastic fluid from a shear thinning (at rela-

tively low frequencies) to a shear-thickening character (at relatively high frequencies) caused

by the onset of elastic instability. This study has led to a number of key findings: (i) we have

corroborated that particles suspended into Newtonian fluids do not show FISA enhancement

at different shear rates; (ii) FISA within viscoelastic fluids is significantly greater than in

Newtonian fluids, when compared over the same range of shear rates; (iii) for MNorm higher

than 1, the onset of the elastic turbulence of the viscoelastic fluid correlates strongly with

the enhancement of FISA; (iv) particle chains break apart when a constant shear is applied

for sufficiently long-time (i.e. much longer than the fluids’ longest relaxation time). (v) We

provide for the first time in literature experimental evidence of a significant reduction of the

fluid’s elastic character when a continuous flow is applied for sufficiently long time. Future

work could include the adoption of imaging systems with a wider field of view capable of

capturing images of the whole shear cell at higher resolution and acquisition rate, would al-

low a deeper understanding of the dynamics of both FISA and chain breakdown phenomena.

Moreover, further investigation of the rheological properties of PAM solutions by means of

parallel superposition shear measurements, may elucidate the newly discovered phenomenon

of the reduction of the fluid’s viscoelastic properties when subjected to a continuous flow for

sufficiently long time.
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