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A goal of evidence synthesis for trials of complex interventions is to inform the design or implementation
of novel versions of complex interventions by predicting expected outcomes with each intervention version.
Conventional aggregate data meta-analyses of studies comparing complex interventions have limited ability
to provide such information. We argue that evidence synthesis for trials of complex interventions should forgo
aspirations of estimating causal effects and instead model the response surface of study results to 1) summarize
the available evidence and 2) predict the average outcomes of future studies or in new settings. We illustrate
this modeling approach using data from a systematic review of diabetes quality improvement (QI) interventions
involving at least 1 of 12 QI strategy components. We specify a series of meta-regression models to assess the
association of specific components with the posttreatment outcome mean and compare the results to conventional
meta-analysis approaches. Compared with conventional approaches, modeling the response surface of study
results can better ref lect the associations between intervention components and study characteristics with the
posttreatment outcome mean. Modeling study results using a response surface approach offers a useful and
feasible goal for evidence synthesis of complex interventions that rely on aggregate data.

complex interventions; hierarchical models; meta-analysis; meta-regression; multicomponent interventions

Abbreviations: CrI, credible interval; HbA1c, hemoglobin A1c; ICC, intraclass correlation coefficient; QI, quality improvement.

Interventions designed to change health-care practice and
health policy are often “complex” in that they involve multi-
ple components delivered to multiple levels of health care
(e.g., patients, providers, clinics) and across multiple set-
tings (1, 2). Although researchers continue to refine the
definition of a complex intervention (1–5), most definitions
require 3 features: 1) complex interventions involve com-
binations of several more-elemental intervention “compo-
nents”; 2) there can be intricate interactions between the
components and/or any ancillary cointerventions; and 3) the
components may have effects that vary with study-specific
characteristics, such as health-care settings and patient popu-
lations—that is, the components may exhibit different treat-
ment effect heterogeneity patterns (6, 7).

The above way of thinking about complex interventions
is intuitive and not particularly restrictive. It can describe
interventions considered for a wide range of policy, health-
care delivery, and operations management problems, from

what behavioral measures to roll out in the beginning of the
coronavirus disease 2019 epidemic to managing patients
with diabetes (8), developing decision aids for patients
facing difficult decisions (9), or proposing combination
chemotherapy regimens to be evaluated in future trials (10).
It also suggests an obvious organizing scheme for describing
how a complex intervention works and theorizing about
which modifications might be improvements. Behavioral-
intervention theorists and implementation scientists often
employ similar modular approaches to designing their
interventions (11, 12).

A naturally arising need is to predict average outcomes
with different versions of a complex intervention in a target
setting. Prediction of average outcomes sets a lower bar
than estimation of causal effects. Except for narrow ques-
tions, results of evidence synthesis of aggregate data do
not have a clear causal interpretation. Causally interpretable
meta-analyses involve estimating the effects of well-defined
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interventions in a well-defined target population—a chal-
lenging task that requires strong structural assumptions and
rich individual participant data (13, 14).

Our emphasis on prediction of posttreatment average out-
comes with complex interventions differs from the stated
goals of other methodological (15, 16) and applied (17–23)
works that aim to estimate causal effects for each component
of a complex intervention by modeling the between-arm
differences in each trial. Other authors have proposed the
use of multivariable meta-regression models as an alterna-
tive synthesis approach for complex interventions (24, 25),
reframing the goal of synthesis away from estimation of any
single causal effect to the estimation of a response surface
(25) conditional on the individual intervention components
and on population and setting characteristics of interest. In
this paper, we adopt the latter view: We argue that in most
cases, particularly when using aggregate data from very
diverse studies, the goal of evidence synthesis should be not
to estimate a single causal effect but to estimate a function of
the different components and, potentially, their interactions
with population characteristics and contextual factors, that
can be used to predict the average outcomes of a complex
intervention of interest in a future setting or study.

We illustrate an application of the above in a system-
atic review and meta-analysis of complex interventions for
quality improvement (QI) of diabetes management. We first
introduce the application and discuss limitations of conven-
tional meta-analysis. We then develop and apply response-
surface meta-regression models and discuss estimation, pre-
diction, and ranking. We examine alternative model speci-
fications that allow interactions among intervention compo-
nents and with study-level covariates. We also discuss han-
dling of discrete outcomes and missing data, including miss-
ing estimates of the intraclass correlation coefficient (ICC),
to adjust variance data in cluster-randomized trials. Last, we
discuss the strengths and limitations of our approach.

MOTIVATING EXAMPLE: QI INTERVENTIONS TO
IMPROVE DIABETES CARE

The International Diabetes Federation estimates that
415 million adults were living with diabetes in 2015 and
predicts that the prevalence will exceed 640 million by 2040
(26). People living with diabetes are at increased risk for
serious complications, such as cardiovascular events and
blindness. Despite evidence that clinical interventions such
as monitoring glycemic control, monitoring microvascular
complications, and managing vascular risk factors improve
patient outcomes and reduce costs (27, 28), many patients
with diabetes do not receive evidence-based care and have
suboptimal control of risk factors (29, 30). Diabetes QI
interventions seek to address these evidence-to-practice gaps
by targeting system, provider, or patient factors influencing
diabetes care (8). These QI interventions fit our definition
of complex interventions—their different versions are com-
binations of a subset of 12 more-elemental components (8).

As an example, we use data from a systematic review by
Tricco et al. (8) that examined evidence from 142 random-
ized trials of the effects of QI interventions (comprised of
component QI strategies) on a range of procedural (e.g.,

foot screening) and intermediate patient (e.g., glycemic
control) outcomes. The review codes QI interventions
using a taxonomy of 12 component strategies, adapted
from Cochrane’s Effective Practice and Organization of
Care 2002 taxonomy (Table 1) (8, 31, 32). Most included
trials evaluated intervention versions with a median of 3 QI
components (range, 1–8). For the main outcome, levels of
hemoglobin A1c (HbA1c; a measure of glycemic control),
the authors found that in 120 trials that compared using a QI
intervention with not using one, the average mean reduction
in HbA1c levels was 0.37% (95% confidence interval: 0.28,
0.45) in random-effects meta-analysis, but with evidence
of substantial heterogeneity (I2 statistic = 73%). Analyses
assessing the efficacy of QI interventions containing a
specific component of interest (e.g., case management), as
compared with QI interventions not containing that com-
ponent (e.g., no case management), found improvements
associated with most QI components but could not disen-
tangle the effects of co-occurring components. Finally, the
meta-analysis did not assess nonadditivity in the relationship
between intervention components and the posttreatment
outcome mean or examine modification of the association
between each intervention component and the posttreatment
outcome mean (also referred to as “moderation”) by study-
level covariates. Thus, despite the ostensibly large number
of studies, the authors of the review could not explain
the observed heterogeneity or predict the outcomes of
novel combinations of components in a new population or
setting.

PROBLEMS WITH CONVENTIONAL PAIRWISE
META-ANALYSIS

One important problem in meta-analyses of complex
interventions is that the empirical evidence is often sparse.
The number of possible versions of complex interventions
grows exponentially with the number of components.
Assuming we can meaningfully combine m components
without constraints, we can create 2m−1 nonempty versions
of a complex intervention. This number is 4,095 in our QI
example—an order of magnitude more than the total number
of available studies. Moreover, only a handful of the possible
versions are observed in the empirical data. For the HbA1c
outcome, only 83 unique interventions were observed (about
2% of the possible ones), and 59 of these were assessed in
only 1 trial (Figure 1).

Comparing any version of a QI intervention with doing
nothing in a pairwise meta-analysis may have some
descriptive value but has little practical usefulness (8).
Such a meta-analysis involves an ill-defined comparison:
The experimental arm involves doing something (from a
rather mixed bag of somethings) versus nothing—and the
target population is not precisely defined. This question
reduces a complicated problem to a simple one, at the cost of
obtaining uninformative results: A difference between doing
something and doing nothing tells us nothing about which
version of the complex intervention a policy-maker should
choose. Conversely, finding no difference on average does
not imply that all versions of the complex intervention are
ineffective.

Am J Epidemiol. 2023;00(00):1–16

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ad184/7264861 by The R
ow

ett R
esearch Institute user on 16 January 2024



Evidence Synthesis for Complex Interventions 3

Figure 1. Frequency of evaluations of quality improvement (QI) interventions comprised of component QI strategies.AF, audit and feedback;CE,
clinician education; CM, case management; CR, clinician reminder; EPR, electronic patient registry; FR, facilitated relay; PE, patient education;
PR, patient reminders; PSM, promotion of self-management; TC, team changes.
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4 Konnyu et al.

Table 1. Taxonomy of Quality Improvement Strategies Adapted from Cochrane’s Effective Practice and Organization of Care 2002 Taxonomy
That Were Used to Code Quality Improvement Interventions

QI Strategy Definition

Audit and feedback Summary of clinical performance of health care delivered by an individual clinician or
clinic over a specified period, transmitted back to the clinician

Case management Any system for coordinating diagnosis, treatment, or routine management of patients by
a person or multidisciplinary team in collaboration with, or supplementary to, the
primary-care clinician

Team changes Changes to the structure or organization of the primary health-care team, including
adding a team member or shared care, use of multidisciplinary teams, or expansion or
revision of professional roles

Electronic patient registry General electronic medical record system or electronic tracking system for patients with
the condition

Clinician education Interventions designed to promote increased understanding of principles guiding clinical
care or awareness of specific recommendations for a target disorder or population of
patients

Clinician reminders Paper-based or electronic systems intended to prompt a health professional to recall
patient-specific information

Facilitated relay of clinical information Clinical information collected from patients and transmitted to clinicians by means other
than the existing medical record

Patient education Interventions designed to promote greater understanding of a target disorder or to teach
specific prevention or treatment strategies, or specific in-person education

Promotion of self- management Provision of equipment or access to resources to promote self-management

Patient reminders Any effort to remind patients about upcoming appointments or important aspects of
self-care

Continuous quality improvement Interventions explicitly identified as involving the techniques of continuous QI, total
quality management, or plan-do-study-act, or any iterative process for assessing
quality problems, developing solutions to those problems, testing their effects, and then
reassessing the need for further action

Financial incentives Interventions with positive or negative financial incentives directed at providers or
patients or systemwide changes in reimbursement

Abbreviation: QI, quality improvement.

An additional problem with commonly used meta-
analytical approaches is that they do not use all available
information. Some trials of complex interventions have 3
or more arms (3, 33), of which 2 are typically selected
for a meta-analysis. For example, when comparing any
active intervention with nothing, analysts often use only
2 arms from each study (i.e., complex interventions with
the greatest number of components vs. the least number of
components). This further complicates the interpretability
of the findings, because the most intensive complex inter-
vention in one study can be the least intensive intervention
in another. Additional problems involve missing estimates
of the sampling variance or missing estimates of the
ICC in cluster-randomized trials that are needed to adjust
unadjusted estimates of the sampling variance.

To obtain useful information about any version of the
complex intervention, we must extrapolate, through statisti-
cal modeling, from the observed versions to the unobserved
ones, using all available information. From the point of
view of learning a response surface described above (i.e.,
that maps combinations of components and settings to aver-
age outcomes), using all available information amounts to

modeling outcomes of all arms in all studies, as described
below.

SPECIFICATION OF THE BASIC RESPONSE SURFACE
META-REGRESSION MODEL AND OF PRIOR
DISTRIBUTIONS AND INFERENCE

Specification of the response surface model

We model the associations of intervention components
and study- or arm-level modifiers with the posttreatment
outcome means using a random-effects regression with het-
eroskedastic errors (a hierarchical meta-regression model)
(24, 25, 34, 35).

Let Yij be the posttreatment mean in the jth arm of the ith
study, distributed as

Yij ∼ N
(
μij, θ

2
ij

)
, i = 1, . . . , n; j = 1, . . . ni, (1)

where μij is the arm-specific true mean and θ2
ij is the con-

ditional (sampling) variance. Given the large number of
components and potential interactions between them, we
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Evidence Synthesis for Complex Interventions 5

will usually have to assume a parsimonious model for μij.
We begin by considering a linear additive model in terms of
the m components:

μij = β0i +
m∑

k=1

βkiXijk, (2)

where Xijk denotes the value of the kth component (coded
as 0 if absent or 1 if present) in the jth arm of the ith
study. Henceforth, we refer to the coefficients βki as “mean
differences” because they express the difference in the post-
treatment mean when component Xijk is present but make no
causality claims. The intercept, β0i, represents the posttreat-
ment mean in the absence of intervention (36). β0i and βki
are treated as study-specific nuisance parameters in the esti-
mation. We assume that they are realizations of underlying
random variables, each with a normal distribution

βki ∼ N
(
βk, τ2

k

)
, k = 1, . . . , m (3)

whose mean βk and variance τ2
k will be estimated from

the model. Study intercepts, β0i, are also assumed to be
random variables with a normal distribution with mean β0
and variance τ2

0,

β0i ∼ N
(
β0, τ2

0

)
. (4)

Equation 3 assumes exchangeable arm-specific parameters.
We believe that this is justified in meta-analyses of trials
of complex interventions where studies commonly evalu-
ate active arms, the distinction between intervention and
control arms is often unclear, and it is common for some
intervention components to be assessed in each arm. In
addition, for simplicity, equation 3 uses independent nor-
mal distributions. We believe that this is justified for our
application because intervention components often operate
at different levels (e.g., health system, provider, patient), and
it is likely that their distribution would not involve strong
correlation. If such correlations were in evidence in the data,
they would be revealed in the estimated joint distribution of
the β’s. Alternatively, note that equation 3 is equivalent to
an m-variate normal distribution with a diagonal covariance
matrix, and, if desired, one could assume correlated β’s with
various structures for the covariance matrix (e.g., unstruc-
tured, compound-symmetrical, or other, depending on topic-
specific information).

Specification of prior distributions

Some features of our approach, such as incorporating
external information and handling of missing data (see
“Application to the Diabetes QI Example”), are most
naturally achieved in the Bayesian framework (37, 38).
Furthermore, Bayesian hierarchical modeling more fully
reflects parameter uncertainty and is appealing for evidence
synthesis because the study similarity judgments that
systematic reviewers make are conceptually related to
Bayesian exchangeability assumptions (39). For these
reasons, we opted to use a Bayesian approach to estimate

model parameters. Specifically, we used the minimally
informative normal distributions for β0 and βk and uniform
distributions for τk and τ0 (see the Discussion section).
Systematic reviewers can often rely on other meta-analyses
or expert opinion to specify prior distributions to improve
estimation with sparse data (37). Use of informative prior
distributions is particularly useful for the heterogeneity
parameters, τ2

k , which are often poorly estimated (40, 41).

Inference

We can use the model in “Specification of the response
surface model” to 1) estimate the posterior distribution of
the mean difference for each intervention component and
make inferences from that posterior distribution; 2) rank the
components by the magnitude of the mean differences—
that is, estimate the probability that the mean difference for
a component has the greatest mean difference, the second
greatest, and so on among the components included in
the model (42); and 3) predict the posttreatment mean in
future studies, possibly using combinations of components
that have not been previously assessed in trials (43). For
example, predictive inference can be obtained by examining
the posterior predictive distribution for the posttreatment
mean for any combination of components

μnew = β0,new +
m∑

k=1

βk,newXk,new (5)

and

βk,new ∼ N
(
βk, τ2

βk

)
, k = 0, . . . , m, (6)

where Xk,new denotes the kth component in the new study.
The posterior predictive distribution of μnew can be used
when designing a new study, because planning decisions
can be based on the posterior predictive distribution for a
particular study,

Ynew ∼ N
(
μnew, θ2

new

)
, (7)

where θ2
new denotes the sampling variance of the new study,

which depends on the planned sample size.

Model extensions

Web Appendix 1 (available at https://doi.org/10.1093/aje/
kwad184) extends the model to include pairwise product
terms among components and between components and
study-level covariates, handle discrete outcomes and miss-
ing data, and impute missing estimates of the ICC to adjust
variance data in cluster-randomized trials.

APPLICATION TO THE DIABETES QI EXAMPLE

We implemented a series of response surface models
to describe the associations of each QI component with
average outcomes and compared them to estimates from the
conventional meta-analysis model. We used data from 114
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6 Konnyu et al.

Table 2. Summary of Results Comparing Analysis of Diabetes Quality Improvement Components Using Conventional and Response Surface
Meta-Regression Models

Analysis and Model

Analysis I Conventional MAa Analysis II Meta-Regressiona,b Analysis III Meta-Regressionb,c
QI Strategy

MD, % HbA1c 95% CI MD, % HbA1c 95% CrI MD, % HbA1c 95% CrI

CM −0.42 −0.55, −0.29 0.03 −0.13, 0.18 0.03 −0.12, 0.17

TC −0.53 −0.69, −0.37 −0.37 −0.55, −0.19 −0.36 −0.54, −0.18

EPR −0.37 −0.53, −0.22 −0.16 −0.40, 0.08 −0.15 −0.38, 0.07

CE −0.23 −0.37, −0.09 −0.18 −0.47, 0.09 −0.17 −0.44, 0.08

FR −0.40 −0.54, −0.26 −0.23 −0.42, −0.03 −0.24 −0.43, −0.06

PE −0.44 −0.56, −0.32 −0.05 −0.24, 0.15 −0.10 −0.28, 0.08

PSM −0.41 −0.52, −0.30 −0.21 −0.41, −0.01 −0.17 −0.37, 0.01

PR −0.33 −0.53, −0.14 0.03 −0.21, 0.28 −0.00 −0.23, 0.22

Otherd −0.19 −0.31, −0.06 −0.01 −0.25, 0.21 0.02 −0.20, 0.18

Abbreviations: CE, clinician education; CI, confidence interval; CM, case management; CrI, credible interval; EPR, electronic patient registry;
FR, facilitated relay; HbA1c, hemoglobin A1c; MA, meta-analysis; MD, mean difference; PE, patient education; PR, patient reminders; PSM,
promotion of self-management; QI, quality improvement; TC, team changes.

a Analyses used only the most intensive arms of multiple-arm trials versus the least intensive arms.
b The following priors were used in the Bayesian analyses to estimate parameters in analyses I and II: β0 ∼ N (8, 100); τ̃0 = U (0, 2);

βk ∼ N (0, 4); and τβk = U (0, 2).
c Analyses used all arms from all trials.
d “Other” represents a combined category for infrequently evaluated components, including audit and feedback, clinician reminders,

continuous quality improvement, and financial incentives.

trials (241 arms, 48,969 patients) that reported mean HbA1c
levels at baseline and postintervention obtained from the
2012 version of the review (8), which is in the process of
being updated (44). While updating the original review, we
revised some data extraction algorithms, which resulted in
small changes to the data (44). Because of these changes,
our results are similar but not identical to those reported in
2012. We imputed missing information on standard errors of
posttreatment arm means in individually randomized trials
and missing intracluster correlation coefficients in cluster-
randomized trials as per Web Appendix 2. To facilitate
modeling, and with content-expert input, we combined QI
components that were observed infrequently (present in less
than 10% of arms) into an “other” category. This category
included the QI components for clinician reminders (9.5%),
audit and feedback (8.7% of arms), financial incentives
(0.8%), and continuous QI (0.4%).

The conventional meta-analysis model was fitted in R
(overall and subgroup analyses for each QI component)
using the “meta” package in R (45); estimates are reported
as mean changes and 95% confidence intervals. Hierarchical
models were fitted using Markov chain Monte Carlo meth-
ods with the software JAGS (46) called from R, with 100,000
iterations for burn-in and 100,000 iterations to obtain the
posterior distribution of parameters of interest. We assigned
normal prior distributions for the coefficients βk ∼ N (0, 4)
and the baseline intercept β0 ∼ N (8, 100) and uniform prior
distributions for the between-studies standard deviations
τ0, τk ∼ U (0, 2). Estimates are reported as median changes

and 95% credible intervals (CrIs), representing the mean
difference associated with the presence of the component
relative to the component’s not being present. We used
the Brooks-Gelman-Rubin diagnostic to assess parameter
convergence (47, 48).

Comparison of meta-regression and conventional
synthesis models

We compared parameter estimates from 3 analyses:

• Analysis I imitated commonly used analyses in reviews
of complex interventions in using only 2 arms from
each trial, selecting the most and least intensive ones in
multiarm trials (228 arms; 44,375 individuals). It com-
prised 1 random-effects meta-regression per QI compo-
nent, where the sole predictor was the presence or absence
of the QI component in the experimental arm. The model
for the kth component did not adjust for the remaining
components.

• Analysis II used the same 2 arms from each trial as
analysis I in a single random-effects meta-regression that
fitted the response surface model in equations 1–4.

• Analysis III used all arms in all trials in a meta-regression
according to the model in equations 1–4 (241 arms;
48,969 individuals).

In analysis I, we imputed missing standard deviations
and ICCs with fixed values (2.22 for standard deviations,
the 99th percentile in observed data; and 0.027 for ICCs,
obtained from a single study), as was done in the original
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review (49). We used ICCs to correct standard errors
from cluster-randomized trials in which results were
not appropriately adjusted for the clustering effect (49).
Sensitivity analyses using a less conservative standard
deviation (median, 1.34) and the higher ICC used in the
2012 review (8) (ICC = 0.07) did not change the overall
mean and precision of the random-effects meta-analysis
appreciably. Missing data in analyses II and III were imputed
in the hierarchical meta-regression model as described in
Web Appendices 1 and 2. Web Appendix 3 (including
Web Tables 1 and 2) describes the different missing data
patterns observed in the data set. Software code for all
analyses is presented in Web Appendices 4 and 5 and
on the authors’ GitHub page (https://github.com/kkonnyu/
evsynthmetaregression).

Table 2 summarizes the results. Compared with analysis I,
the estimated coefficients for each component were smaller
in analysis II and had a wider variation in magnitude. If the
models in analyses II and III are approximately correctly
specified, the smaller (and more varied) magnitude of the
estimates from analyses II and III as compared with the
estimates from analysis I may indicate better isolation of
the expected posttreatment mean reduction associated with
unique QI components, accounting for co-occurring compo-
nents. In other words, analysis I, and thus conventional meta-
analysis, would overestimate the associations of a single QI
component with differences in outcomes. Point estimates of
parameters from analysis II, which used only the most and
least intensive arms from each trial, were similar to those
of analysis III, which used all arms in all trials. However,
estimates were more precise in analysis III.

Ranking of coefficients for intervention components

An example rankogram that can be produced from esti-
mates of a meta-regression model is presented in Figure 2.
Using the output of analysis III above, the rankogram
indicates the probability of each component’s being the best,
second best, and so on among the modeled components with
respect to postintervention mean difference. For example,
based on this example, the “team changes” component
had a higher probability of ranking as one of the top 3 QI
components, while “case management” appeared to rank in
the bottom 3.

Assessing nonadditivity

Web Appendix 1 (equation 8) extends the model in equa-
tions 1 and 2 to include pairwise product terms (i.e., allowing
for nonadditive associations) among QI components. A
series of models were fitted that each included product
terms for a single QI strategy, r, with all remaining QI
strategies, l ∈ {1, . . . , m} \r, corresponding to 8 additional
parameters estimated in each of the 9 additional models
(Web Appendix 6). We present results from these models in
Figure 3. The CrIs of the coefficients of the product terms
all crossed 0, consistent with the absence of nonadditive
associations between the QI strategies. We therefore present
results only from the more parsimonious models in the main
paper.

Assessing modification of associations by covariates

The original QI review identified the study average of
HbA1c levels at baseline as a potential effect modifier. Thus,
we explored the addition of product terms between baseline
HbA1c (coded as both a binary and a continuous covariate)
and each of the QI components as per equation 10 (Web
Appendix 1). In the binary model, we used glycemic control
of 8.0% to delineate between trials with patient popula-
tions that were “controlled” and “uncontrolled” at baseline.
In the continuous model, we calculated a mean-centered
HbA1c covariate. Both baseline HbA1c models included
an additional 10 parameters (i.e., the coefficient of base-
line HbA1c plus 9 coefficients for product terms between
baseline HbA1c and QI strategies; see Web Appendices 7
and 8). Although estimates were not grossly incompatible
with the absence of modification by HbA1c, there was some
evidence that baseline HbA1c level modified the association
between some QI strategies and the posttreatment mean out-
come (Figure 4) and improved model predictions, particu-
larly when treated as a continuous variable (see “Assessment
of convergence, model evaluation, and robustness” section
below). For example, the association between case manage-
ment and the posttreatment mean outcome appeared to be
greater when delivered in populations with higher baseline
risk (Table 3). 12 However, the coefficients of the product
terms were imprecisely estimated. In the end, because our
results did not suggest systematic differences in posttreat-
ment mean outcomes for different QI components over
baseline HbA1c control, we continued to prefer our base
model.

Predicting outcomes for a novel combination of QI
components

Assumingthat our response surface models are approx-
imately correctly specified, we predict the distribution of
the posttreatment mean for a specific combination of QI
components in a new setting or trial (43). Table 4 presents
the posterior predictive distribution of the outcome mean for
novel combinations of components that were not observed
in the included trials. For example, the QI components of
“team changes,” “facilitated relay,” and “electronic patient
registry” had relatively strong negative associations with the
posttreatment outcome mean in analysis III and would be
reasonable to combine in a novel intervention according to
our content experts. The posterior and predictive distribu-
tions of the posttreatment mean (% HbA1c) in a new study
with no QI components were estimated to be 8.14 (95%
CrI: 7.96, 8.32) and 8.14 (95% CrI: 6.46, 9.81), respectively.
We estimated that the new complex intervention would be
associated with a substantially lower posttreatment mean.
Using the posterior distribution, the posttreatment mean
was 7.38% (95% CrI: 7.04, 7.72), and the mean difference
as compared with no intervention was −0.75 (95% CrI:
–1.05, −0.45). Using the posterior predictive distribution,
the posttreatment mean was 7.38% (95% CrI: 5.56, 9.20),
and the mean difference compared with no intervention was
−0.75 (95% CrI: –1.51, −0.03).
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Figure 4. Modification of the association between quality improvement (QI) components and the posttreatment outcome mean by baseline
hemoglobin A1c (HbA1c) level. A) Case management; B) team changes; C) electronic patient registry; D) clinician education; E) facilitated
relay; F) patient education; G) promotion of self-management; H) patient reminders; I) all components combined. Baseline HbA1c values
were centered. The red line shows the estimated posttreatment outcome mean without the QI strategy. The black line shows the estimated
posttreatment outcome mean with the QI strategy. The following priors were used in the Bayesian analyses to estimate parameters in the
association modification models: β0 ∼ N (8, 100); βk ∼ N (0, 4); φ ∼ N (0, 4); ψk ∼ N (0, 4); and all τ = U (0, 2).

Assessment of convergence, model evaluation, and
robustness

The upper limit of the 95% CrI for the Brooks-Gelman-
Rubin statistic was less than 1.1 for 96% of all parameters
monitored (and less than 1.2 for all parameters monitored).

We used mixed posterior predictive checks (50) to com-
pare the predicted outcome means from the models of new

studies with the same combination of components as those
observed in our sample against the observed outcome means.
As illustrated in Figure 5, the meta-regression model per-
forms reasonably well in terms of its probability of returning
the observed means from parameter estimates. Other stan-
dard methods, such as the deviance information criterion,
can also be used to evaluate model performance (50, 51).
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Table 4. Estimated Median Values of the Posterior and Posterior Predictive Distributions of Average Outcomes for Untested Combinations of
Quality Improvement Strategies

Posterior Distribution of
the Posttreatment Mean

Difference From Baseline
Posterior Predictive
Distribution of the

Posttreatment Mean
Difference From Baseline

Untested
Combination

Median,
% HbA1c 95% CrI

Median,
% HbA1c 95% CrI

Median,
% HbA1c 95% CrI

Median,
% HbA1c 95% CrI

CM + EPR + FR 7.77 7.45, 8.09 −0.36 −0.64, −0.09 7.77 6.01, 9.53 −0.36 −0.94, 0.19

TC + FR + PSM 7.36 7.06, 7.66 −0.77 −1.03, −0.52 7.36 5.54, 9.18 −0.78 −1.50, −0.04

TC + FR + EPR 7.38 7.04, 7.72 −0.75 −1.05, −0.45 7.38 5.56, 9.20 −0.75 −1.51, −0.03

Abbreviations: CM, case management; CrI, credible interval; EPR, electronic patient registry; FR, facilitated relay; HbA1c, glycated
hemoglobin; PSM, promotion of self-management; QI, quality improvement; TC, team changes.

In general, the assessment approach should be chosen to
reflect the goals of the modeling. We favor posterior pre-
dictive checks in our application because our primary goal
is prediction. Because Bayesian posterior probabilities can
be influenced by the specified priors (52), we performed
sensitivity tests on our chosen priors and found that our
findings were robust to these alterations.

Finally, we compared our analyses with meta-regressions
that model differences in outcomes between study arms
(53) rather than outcomes for each arm, and found similar
estimates of differences in posttreatment mean outcomes
for different QI components. Data for these analyses were
sparser because the coefficients of components that are
common in 2 or more arms of the same study “cancel” out,
and thus the analyses took longer to converge (Web Table 3).

DISCUSSION

We believe that predicting the average outcomes of novel
complex interventions in new settings or future studies is a
key goal when synthesizing evidence from trials of complex
interventions. While any prediction model is unlikely to
be correctly specified, examining a collection of models
may offer useful insights for decision-making or planning
future research: Patterns across evidence may be unearthed,
and the diversity of the large data sets can be used as a
strength rather than a limitation. Our experience is that
decision-makers find these insights more useful than those
afforded by conventional meta-analysis methods. The lat-
ter ask very abstract questions (e.g., doing something vs.
nothing; including a component vs. not including it), do
not adjust for combinations of components or study-level
characteristics, and do not address data complications (e.g.,
missing data, differences in study designs).

Our approach includes all data from all studies and esti-
mates the average posttreatment mean associated with each
component. Our response surface models extrapolate to
unobserved combinations of components and different set-
tings by employing simplifying additivity assumptions. The
assumptions are explicit and can be debated by substantive
experts, examined statistically, and relaxed by using more
flexible models if the data permit. Natural model extensions

can handle missing data or other complications that arise in
evidence synthesis of trials of complex interventions. We
focused on models that use arm-level data, though models
based on differences are also possible and led to similar
results in our example.

We have no hope of observing empirical data on all 4,095
nonempty combinations of 12 components; we must extrap-
olate from the few observed combinations, about 2% of the
total, to the remaining 98% of unobserved ones through a
model which we argue lends itself to a response surface
approach. The models in equations 1–4 enable these extrap-
olations while reducing the parameter space from order 2m,
in a fully saturated nonparametric model, to an order m, in
a model of main effects only. This 3-orders-of-magnitude
reduction in the number of parameters assumes that the
information modeled by the omitted parameters is negligi-
ble. However, making such assumptions and testing some
of them in alternative models (e.g., models that add pair-
wise interactions between components) allows us to acquire
working predictions that can be used by policy-makers and
researchers who plan future research. Working predictions
are useful: Policy-makers must make decisions even without
data—and in many cases, their initial decisions are tentative,
dynamically monitored, and subject to revision. Researchers
who plan novel interventions will eventually put them to the
test in randomized experiments or through observation. This
viewpoint builds on a conceptual proposal that meta-analysis
is best viewed as response surface estimation (25), and is
most similar to the application of evidence synthesis in social
science (24).

All predictions are, of course, conditional on the model,
and the “true” model is ultimately unknown. Substantial het-
erogeneity in results will often remain in applications of our
approach, because the representation of a complex interven-
tion as a vector of components does not capture everything
about an intervention (54–56); the measured study level
attributes do not capture everything about populations and
settings; and important covariates are poorly measured or
missing. These difficulties limit the potential usefulness of
predictive modeling based on aggregate data (57, 58) and are
perhaps even more limiting for analyses aspiring to produce
results that have causal interpretations.
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In conclusion, predicting the average outcomes of com-
plex interventions in a new setting or study is a key goal
for evidence synthesis of trials comparing complex inter-
ventions. Collections of meta-regression models can be used
to estimate the response surface relating study outcomes to
intervention components and study characteristics, to isolate
component-specific associations with outcomes, and to pre-
dict the outcomes of complex interventions (including those
not previously evaluated) in new populations or settings,
while addressing common data complications.
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