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Abstract 

Background: Robotic Assisted Surgery (RAS) has seen a global rise in adoption. Despite this, 

there is not a standardised training curricula nor a standardised measure of performance. 

We performed a systematic review across the surgical-specialties in RAS and evaluated tools 

used to assess surgeon’s technical performance. 

 

Methods: Using the PRISMA 2020 guidelines, Pubmed, Embase and the Cochrane Library 

were searched systematically for full texts published on or after January 2020 - January 

2022. Observational studies and RCTs were included; review articles and systematic reviews 

were excluded. The papers’ quality and bias score were assessed using the Newcastle 

Ottawa Score for the observational studies and Cochrane Risk Tool for the RCTs. 

 

Results: The initial search yielded 1189 papers of which 72 fit the eligibility criteria. 27 

unique performance metrics were identified. Global assessments were the most common 

tool of assessment (n=13); the most used was GEARs (Global Evaluative Assessment of 

Robotic Skills). 11 metrics (42%) were objective tools of performance. Automated 

performance metrics (APMs) were the most widely used objective metrics whilst the 

remaining (n=15, 58%) were subjective.  

 

Conclusion: The results demonstrate variation in tools used to assess technical performance 

in RAS. A large proportion of the metrics are subjective measures which increases the risk of 

bias amongst users. A standardised objective metric which measures all domains of 

technical performance from global to cognitive is required. The metric should be applicable 

to all RAS procedures and easily implementable.  Automated performance metrics (APMs) 

have demonstrated promise in their wide use of accurate measures.  

 

Word Count:247 

 

Key terms: robotic surgery, metric, curriculum, performance, assessment, training 
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Introduction 
 
We would like to make all surgery as safe as possible for our patients. We know patients who 

are treated by surgeons judged to have a high level of technical skill have much better 

outcomes than those treated by surgeons judged to have a lower level of skill [1]. It should 

be a simple matter to ensure all surgeons are well trained and receive regular feedback on 

their performance in the operating theatre. Unfortunately, this is currently not the case and 

we continue to recognise wide variation in the quality of surgical care that patients receive 

[2]. To date, quality improvement initiatives have addressed key components of the care 

pathway that surround surgery, while conduct during the operation is relatively unexplored 

[3]. This is unfortunate as poor-quality surgery is not only ineffective but exposes patients to 

high risk of complications and even death. A recent prospective study recorded an average of 

20 technical errors and 8 adverse events per case [4]. These technical errors during surgery 

and associated adverse events consume valuable healthcare resources and may compromise 

patients’ quality of life [5]. 

Robotic assisted surgery (RAS) is at the forefront of surgical innovation and increasingly used 

to perform complex operations that pose greatest risk to patients. In 2022, approximately 

1,875,000 surgical procedures were performed using the da Vinci Surgical Systems (Intuitive 

Surgical, USA) [6]. Many competing platforms are emerging including Versius (CMR Surgical, 

UK) and HUGO (Medtronic Minneapolis, USA)[7, 8]. Compared to conventional laparoscopic 

techniques, RAS improves patient access to minimally invasive surgery (MIS) while surgical 

teams benefit from improved visualisation, functionality, and ergonomics. RAS has the 

capability to support development and implementation of proficiency-based training of 

novice surgeons and peer-coaching of credentialled surgeons to reduce variation in surgical 

care and improve patient outcomes [9]. 

RAS training programmes were developed, and often delivered, by robotic industry providers 

as opposed to surgical colleges and associations [10]. Despite increasing need [11], there are 

currently no formal mandatory curricula for robotic training in Europe for any surgical 

specialty [10, 12]. Higher RAS fellowships serve to complement existing specialty training 

pathways, however, there is no consensus on how to optimally evaluate and benchmark 

training outcomes to develop credentialling that incorporates RAS [13]. It is now appropriate 
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to consider how implementation of RAS training within the wider surgical curricula would be 

optimally evaluated.  

 

It is clear from the current evidence, training in RAS is currently in a state of disarray. RAS 

training needs to be standardised with quality assurance measures, benchmarking and clear 

procedural assessment. In order to do so, an appropriate validated metric to assess 

competency in RAS technical performance is required.  At present, the lack of consensus on 

the appropriate metric(s) with which to assess technical performance has led to a wide degree 

of variation in the application of these metrics by assessors, limiting comparison and 

transferrable accreditation.  Recent work reviewing clinically relevant performance metrics 

(CRPMs) in RAS highlighted their use in assessing trainee proficiency, but also found there are 

no studies at present which correlate metrics with patient outcomes[14]. Furthermore, this 

work did not assess performance metrics deemed not to be clinically relevant by the authors. 

An assessment of all metrics used to assess technical performance is needed to provide an 

accurate understanding of how proficiency is currently assessed and to facilitate with future 

RAS curriculum development.  

The aim of this systematic review is to identify and describe the tools currently established 

for the measurement of technical performance in RAS across all surgical specialties, and in 

doing so highlight new areas of technical innovation in the assessment of surgical training. 

This review will evaluate and compare the currently available metrics to identify the “ideal” 

metric of assessment. 

 
Methods 
 
Information Sources & Search 

This systematic review is reported in accordance with Preferred Reporting Items for 

Systematic Review and Meta-analysis (PRISMA) 2020 guidelines. PubMed, Embase and The 

Cochrane Library were searched systematically for full texts published in English from January 

2000 to January 2022 (inclusive) as robotic surgery became prevalent after the start of the 

millennium. The query (("robotic surgery" or "robotic assisted surgery") OR (robotic surgical 

procedures [MeSH Terms])) AND ("curriculum" OR " training" OR curriculum [MeSH Terms]) 

AND ((performance) OR (metric*) OR (clinical competence [MeSH Terms]) OR ("clinical 

competence”)) were used to complete the search.  To ensure literature saturation, reference 
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chaining of selected studies were reviewed to identify any missed papers. The review is 

registered on PROSPERO under ID number CRD42023453528. 

 

Eligibility Criteria 

This review included studies which evaluated robotic surgical performance measures used to 

assess the surgeon’s surgical technique. The studies included addressed assessment methods 

in the operating theatre, laboratory, and virtual reality (VR) settings.  Eligible studies included 

case series, cohort and case control studies and randomised controlled studies (RCTs). Studies 

were excluded if they were not full text i.e., conference papers isolated abstracts and interim 

trials or studies which have been published prior to completion. We also excluded systematic 

reviews and review articles.  

 

Study Selection 

Titles and abstracts were screened by CE and AY. Those papers included for full paper review 

were independently reviewed by CE, AY, PL, JT and ZK. Any ambiguities in the selection 

process were resolved by the third reviewer, JB.  

 

Outcomes and Prioritisations: 

1. To identify and describe the range of metrics available across all surgical disciplines for 

assessment of technical performance in RAS. Metrics were grouped according to a previously 

described classification system: (i) global skills assessments, (ii) procedural based, (iii) task 

based and (iv) cognitive measures [15]. They were further subdivided as subjective or 

objective. Predefined descriptors included subspecialty training programme (if any), training 

environment (simulation, laboratory, operating room), type of study and participants were 

included.  

2. To summarise the perceived strengths and weaknesses of each metric. 

3. To specify characteristics of an “ideal” metric for RAS technical training assessment. 

 

 

 

Data Extraction 
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Data was compiled in a data extraction sheet in Google Docs. (Google, CA, USA). Extracted 

data included year of publication, type of study, surgical subspeciality the study was 

performed in, modality of robotic surgery, the metric used, number of participants and 

whether construct validity of the metric had been assessed. The quality of the observational 

studies was assessed using the Newcastle Ottawa Score and the Cochrane risk of bias tool 

was used to assess RCTs.  

 

Results 
The initial search yielded 1189 papers. After the limits ‘January 2020 to January 2022’ were 

applied, and after duplicates were removed, 876 results remained to be screened.  The 876 

abstracts for those references were compiled and screened leaving 98 papers for full review. 

The final analysis included 72 papers. The PRISMA 2020 flowchart below displays the 

methodology (Figure 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       
 
 
 
 
 
 
 

Records identified from: 
databases: 
• PubMed - n= 667 
• Embase - n=494 
• Cochrane Library - n= 28 

 

Records removed before 
screening: 

• Duplicate records 
removed: (n = 311) 

 

Records screened in abstract 
review: (n = 878) Records excluded: (n = 780) 

Full texts sought for retrieval: 
(n = 98) 

Reports not retrieved: (n = 2) 

Full texts assessed for eligibility: 
(n = 96) 

Reports excluded: 
• Conference papers only 

(n =11) 
• Non-English (n = 1) 
• Review articles (n= 3) 
• Not fit eligibility criteria 
       (n = 9) 
  

Studies included in review: 
(n = 72) 
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Figure 1: Flow chart of extraction process using PRISMA 2020 statement methodology 

Demographics of the studies 

On assessing the subspecialities of the papers, the majority of studies were in urology (n=33, 

46%) followed by general surgery (n=7, 9%) (Figure 2).   

 

 

Figure 2: Distribution of studies over time by subspeciality 

Twenty-seven unique metrics were identified in total (Table 1). The categorised metrics were 

subdivided into subjective and objective measures of performance based on the tools used 

to complete the assessment. Subjective metrics were the most prevalent (n=16, 59%). A 

description and evaluation of each metric with the referenced papers are included in Table 2.  
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Table 1: The metrics identified in the review. 

 Global Skills 
Assessment: Tools 
used to assess a 
surgeon’s general 
technique focusing 
on the basic robotic 
surgery 
performance 

Procedural Based:  
Specific metrics which 
provide surgical skill 
assessment in a step-by-
step approach unique to 
the procedure. 

Task specific: 
metrics specific 
to a task. 

Cognitive: metrics which assess the 
amount of effort being used in the 
working memory[15].   

 
 
 
 
 
Subjective Metrics 

• Global Evaluative 
Assessment of 
Robotic Skills 
(GEARS) 

• Objective 
Structured 
Assessment 
Tools (OSATs) 

• Operative 
Robotic Index 
(ORI) 

• Global Robotic 
Score (GRS) 

• Generic Error 
Rating Tool 
(GERT) 

• Robotic- 
Operative 
Structured 
Assessment Tool 
(R-OSAT) 

• Structured 
assessment of 
robotic 
microsurgical 
skills.  

• Assessment 
Robotic Console 
Score (ARCS) 

• Robotic 
Assessment of 
Radical 
Prostatectomy 
(RARP)  

• Robotic 
Hysterectomy 
Assessment 
Score (RHAS) 

• Cystectomy 
Assessment 
and surgical 
evaluation 
(CASE) 

• Prostatectomy 
assessment 
and 
competency 
evaluation 
(PACE) 

• Crowd 
sourcing 
assessment 
tools (C-SATS) 

 

• Robotic 
Anastomosis 
Competency 
Score (RACE) 

 
• assessment of 

Objective 
Structured 
Assessment 
Tools  
(aOSATS) 

• Nasa Task Load Index (NASA-TLX 
 

Objective Metrics • Mean Proficiency 
Index (MPI) 

• Robotic Skills 
Assessment 
Score (RSA) 
score 

• Time to 
completion 

• Clinically relevant 
objective metrics 
of simulators 
(CROMS) 

 

• Proficiency Based 
Progression (PBP) 

 

• Camera 
Metrics 

• Automated 
Performance 
Metrics 
(APMs) 

• Pupillary Measures 
• Numeric psychomotor test scores - 

NPMTS 
• Wisconsin Card Sorting Test (WCST)  
• Psychomotor Vigilance Task (PVT)  
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Global Skills assessment 

Global skills assessments are the most common domain of metric currently available. Global 

Evaluative Assessment of Robotic Skills (GEARS) was the most prevalent global skills used in 

the studies (n=22, 79%)[16-37]. Amongst the objective metrics, Clinically Relevant Objective 

Measures (CROMS) had the largest sample size, however, the metrics were used only in a 

simulated environment[38] (Table 2,3). 

Procedural Specific Metrics 

Of all the metrics identified in this review; the majority were specific to urology; the 

Prostatectomy Assessment Competency Evaluation (PACE) score, Robotic Assessment Radical 

Prostatectomy (RARP) score and the Cystectomy Assessment and Surgical Evaluation (CASE) 

score [39-41]. However, these metrics relied upon subjective measures of assessment. 

Proficiency Based Progression (PBP) was the only objective measure [42-44] and were the 

most widely used procedural-specific metric.  

Task Specific Metrics 

Robotic Anastomosis Competency Evaluation (RACE) was the most prevalent subjective task-

based skill used [24, 25, 45-47].  The score is specific to a vesicourethral anastomosis (VUA) 

only. Objective task-based metrics include both video derived metrics [48] and robotic 

systems data that describe key elements of intraoperative surgical behaviour including 

geometric and time-dependent variables of dominant and non-dominant instrument control 

to yield automated performance metrics (APMs) (42, 45, 48, 51, 54-84).  APMs were the most 

widely used metric in this review. They were used in both the simulated and live operating 

setting. 

Cognitive skills assessment 

NASA-TLX was the most common cognitive measure and used in several papers [49-51]. 

However, NASA-TLX is the only subjective cognitive measure found, as it relies upon self-

assessment. Amongst the five objective cognitive measures, pupillary metrics were the most 

widely used. 
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Table 2.  An evaluation of the metrics identified in the included studies. 

Metric Summary Number of 
participants 
within the 
review 

Advantages Disadvantages References 

Automated 
Performance Metrics 
(APMs) 

Computed from robotic 
instrument motion 
tracking, events data 
and surgical videos. 

1204 Objective 
measure of a 
surgeon’s 
performance. 

Generalisable to 
all RAS 
procedures. 

Demonstrates 
construct 
validity.  

Widely 
implementable  

Limited evidence 
regarding clinical 
correlation 
between APMs and 
clinical outcomes. 

Mainly assessed on 
simulation models.  

No assessment of 
cognitive/decision 
making. 

[26, 29, 32, 
35, 46, 48, 
49, 52-79] 

GEARS Five-point Likert scale 
across six domains: 
depth perception, 
bimanual dexterity, 
efficiency, force 
sensitivity, autonomy, 
and robotic control.   

1072 Widely 
recognised. 

Easy to use 
amongst users. 

Specific to 
robotics. 

 

Time consuming to 
complete. 

Dependent on 
Likert scales 
therefore subject 
to variation 
amongst users. 

No assessment of 
cognitive/decision 
making. 

[16-37] 

Crowd Sourcing 
Assessment Tool 
(CSATs) 

Use of an autonomous 
crowd to assess video 
recordings of a surgical 
procedure. 

476 Reduces 
subjectivity by 
using a large 
crowd of users. 

Fast assessment 
tool. 

Blinded. 

Reliant upon 
GEARs. 

Requires large 
numbers of 
assessors to reduce 
bias. 

[36] 

ROSATs Modified OSATs score 
specific to robotic 
surgery.  Four domains 
assessed: (1) depth 
perception/accuracy 
(2) force/tissue 
handling (3) dexterity 
(4) efficiency (5) 
robotic arm collisions. 
Each category is scored 
using a 5 point Likert 
scale 

151 Easy to use. 

Applicable to all 
robotic 
procedures. 

Demonstrates 
construct 
validity. 

Can be widely 
implemented 

Dependent on 
Likert scales 
therefore subject 
to variation 
amongst users. 

[80] 

NASA-TLX Six-item questionnaire 
measuring mental 
workload. Domains 
covered include (1) 

100 Able to assess 
subjective 
workload 
thereby 

Difficult for the 
respondent to self-

[49-51] 
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mental demand (2) 
physical demand (3) 
temporal demand (4) 
performance (5) effort 
and (6) frustration. 

characterising 
the nature of 
the mental 
process in task 
performance. 

Widely 
implemented. 

assess cognitive 
capacity. 

Limited evidence of 
its use in robotic 
training and clinical 
outcomes. 

Subjective 
workload may be 
influenced by the 
user’s biased 
judgement. 

Robotic Anastomosis 
Competency Score 
(RACE) 
 

Specifically designed 
for vesicourethral 
(VUA). The procedure 
is deconstructed into 
six key domains. Each 
domain is given a 3-
anchor description 
matched to a 5-point 
Likert scale. 

110 Demonstrates 
construct 
validity – 
however not 
statistically 
significant. 

Breaks down 
VUA into key 
procedural 
steps. 

Limited only to a 
VUA  therefore not 
applicable to other 
anastomosis 
techniques. 

Only tested on an 
inanimate model. 

Dependent on 
Likert scales 
therefore subject 
to variation 
amongst users. 

[25, 45, 47, 
81, 82] 

MScore Proficiency 
Index (MPI) 

Single reference 
number which 
averages all scores 
from exercises on the 
Mimic robotic VR 
simulator. 

77  Objective 
measurement 
focussing on 
measuring 
proficiency. 

Specific to the 
Mimic simulator. 

Specific to VR. 

No correlation with 
operative 
outcomes. 

[54] 

Robotic Hysterectomy 
Assessment Score 
(RHAS) 

Deconstructs RHAS into 
6 key domains- each 
assessed using a 5-
point Likert scale. 

52 Construct 
validity. 

Procedural 
specific. 

Developed using 
video recordings 
of RHAS. 

Assessed 7 novice 
surgeons therefore 
construct validity is 
questionable. 

[83] 

Clinically Relevant 
Objective Measures 
(CROMS) 

Clinically proficient 
metrics pertinent to 
clinical outcomes. 

43 Demonstrates 
construct 
validity. 

Objective 
measures 
relative to a 
complex 
procedure. 

Challenging to 
determine which 
are clinically 
relevant metrics. 

Limited studies 
assessing validity.  

[19] 

Pupillary measures Measures of pupil 
dilatation and diameter 
in response to task 
demands. 

43 Highly objective 
measure of 
cognitive 
function and 
stress response. 

Not widely 
available- 
dependent on 
using eye tracking 
systems. 

[49, 84, 85] 
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Psychomotor vigilance 
task  

Measures reaction 
time to tasks presented 
as short random 
intervals 

40  Highly sensitive 
for measuring 
deficits in 
sustained 
attention. 

Uncertainty with 
regards relevance 
to RAS 
performance. 

[50] 

Wisconsin Card 
Sorting Test (WCST) 

Gold standard measure 
of executive function. 

40 Validated tool 
for measuring 
executive 
function. 

Uncertainty with 
regards relevance 
to RAS 
performance. 

[50] 

Proficiency Based 
Progression (PBP) 

Deconstruction of a 
surgical procedure to 
operational defined 
performance metrics. 

38 Demonstrated 
to reduce errors 
by 40% 

Demonstrates 
construct 
validity. 

 

Time consuming to 
develop the metric. 

Requires an expert 
group to develop 
the metrics- 
difficult to define. 

Requires dedicated 
time for the 
development of 
each procedural 
PBP 

[17, 44] 

Camera Metrics Comprised of 3 camera 
metrics: (1) camera 
movement frequency, 
(2) camera 
measurement duration 
and (3) camera 
movement interval. 

39 Demonstrates 
construct 
validity.  

Correlation with 
efficiency 
metrics across 
VR simulation 
exercises. 

Limited evidence 
for use. 

[48] 

Global Rating Score 
(GRS) 

Sum of all individual 
modified OSATs score. 

34 Easy to use and 
implement. 

Demonstrates 
construct 
validity. 

Dependent on 
Likert scales 
therefore subject 
to variation 
amongst users. 

[64, 69, 86] 

Operative Room Time 
(ORT) 

Measures time from 
skin incision to closure 

28 Easy to measure 
and implement. 

Applicable to all 
procedures 

Non-specific 
measure of 
performance 

 

[87, 88] 

Robotic Skills 
Assessment Score 
(RSA) score 
 

Developed using the 
Fundamentals of 
Robotic Surgery 
curriculum metrics. 
Composed of safety in 
operative field. 

27 Able to validate 
and integrate 
simulated scores 
into a scoring 
system to assess 
performance. 

Tested only on 
RoSS VR simulator 
and not in clinical 
settings. 

Tested on a small 
study sample size. 

 

[89] 

Prostatectomy 
assessment 
and 
competency 
evaluation 
(PACE) 

Deconstructed RARP 
videos into 7 key 
domains. Proficiency 
within each domain 
assessed.  

26 Modular training 
with specific 
descriptions of 
scores assigned 
to each stage 

Reliant on pre-
recorded videos; 
not real time 
surgery. 

[39] 



 14 

 Has not been 
widely tested 

aOSATs Modified version of 
OSATs used to assess 
surgical assistance 
performance. 

26 Unique global 
measure specific 
to assistant’s 
performance 

Reliant upon Likert 
scales. 

Not widely tested. 

[20] 

Objective Structured 
Assessment Tools 
(OSATs) 
 

5-point Likert scale 
assessing global 
measures of 
performance; (1) 
respect for tissues (2) 
time & motion (3) 
instrument handling (4) 
knowledge of 
instruments (5) use of 
assistants (6) flow of 
operation and forward 
planning (7) knowledge 
of specific procedure. 

22 Easy to use and 
widely 
implementable. 

Time consuming to 
complete. 

Dependent on 
Likert scales 
therefore subject 
to variation 
amongst users. 

[90] 

Numeric psychomotor 
test score (NPMTS) 

32-point psychomotor 
test score. 

21 Validated metric 
scoring system 
previously used 
for FRS 
curriculum. 

Time consuming to 
complete 

[91] 

Robotic Assessment 
of Radical 
Prostatectomy (RARP) 

RARP deconstructed 
into three phases: (1) 
preparation of 
operative field (2) 
dissection of bladder 
and (3) prostate 
anastomosis 

15  Non-time 
consuming to 
complete. 

Provides a 
modular training 
pathway for 
RARP. 

Demonstrates 
construct 
validity 

No assessment of 
non-technical skills. 

[40] 

Assessment of 
Robotic Console Skills 
(ARCS) 

Assesses 5 skill 
domains using a 5 
point Likert scale; (1) 
dexterity with multiple 
wristed instruments (2) 
optimising field of view 
(3) instrument 
visualisation 
(4)optimising master 
manipulator workspace 
(5) force sensitivity and 
control (6) basic energy 
pedal skills. 

15 Demonstrates 
constructs 
validity amongst 
5 out of 6 
domains. 

Console 
agnostic. 

Only assessed on 
an animal model. 

Requires views of 
the surgeons’ 
hands, feet and 
operative field 
therefore 3 
separate video 
recordings needed. 

[92] 

Structured 
assessment of robotic 
microsurgical skills 

Uses 3 parametres to 
assess microsurgical 
skills (1) dexterity (2) 
visuospatial ability (3) 
operational flow. 
Additional 5 

10 Metric designed 
specifically for 
robotic 
microsurgical 
skills. 

Dependent on 
Likert scales 
therefore subject 
to variation 
amongst users. 

Lacks construct 
validity. 

[93] 
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parametres to assess 
robotic skills. 

Operative Room 
Index (ORI) 

Significant kinematic 
variables from DV 
logger combined  

2 Used to model 
the learning 
curve for novice 
HPB surgeons. 

Small sample size. 

Uncertainty 
regarding wider 
use. 

[94] 

Generic Error Rating 
Tool (GERT) 
 

Records number of 
errors performed by 
the operating surgeon 
and bed side assistant 
throughout the 
procedure. 

1 Global 
assessment of 
errors of both 
the surgeon and 
assistant. 

Some errors and 
events captured 
may be clinically 
insignificant- a 
broad definition of 
errors including 
near misses are 
included in the 
assessment. 

[30] 

Cystectomy 
Assessment 
and surgical 
evaluation 
(CASE) 
 

Critical steps of robotic 
assisted cystectomy 
deconstructed into 8 
key domains each 
assessed by a 5-point 
Likert scale. 

N/a Procedural 
specific 

Developed using 
real surgical 
performance. 

Designed 
specifically for male 
cystectomy. 

Lacked statistical 
significance in 
assessing construct 
validity 

[41] 

 

A description of the studies included in the review are listed in Table 3. The majority of the 

included studies were observational (n=67 93%). Only 5 (7%) studies involved a randomised 

controlled trial (RCT). 

On reviewing the modalities used for training amongst the included studies, simulation was 

the most utilised (n=50, 69%). VR simulation was the most common modality of simulation, 

(n=24, 44%) followed by dry lab simulation using bench top models (n=20, 40%).   

 

Quality assessment of the studies included. 

Using the Newcastle Ottawa Score, 34 studies (47%) were assessed as fair quality with an 

average risk of bias. 29 studies (40%) studies were assessed as good quality, n=5 (7%) as poor 

quality. Only 5 (7%) studies using randomised controlled trials were included. Using the 

Cochrane Risk Bias tool to assess the included RCT, s n=3 (60%) risk of bias was unclear, n=1 

(20%) was high risk for bias and n=1 (20%) had a low risk of bias. 
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Table 3: Description of included studies. 

 
Authors Year of  

Publication 
Study Type No. of Participants Skill assessed Performance measure Modality of  

Training 
Quality Assessment  
(Newcastle Ottawa 
for Observational  
studies and  
Cochrane Risk  
Bias tool for RCTs) 

Alrasheed T 
et al. 

2022 Observational 10 trainees (varying levels) Micro-surgical  
anastomosis 

Structured assessment 
 of robotic microsurgery skills. 

Dry lab 
Simulation 

Good 

Hung 
A. et al. 

2022 Observational 22: 7 trainees and 15 experts. Suturing APMs VR Simulated Fair 

Trinh et al. 2022 Observational 23 surgeons of varying expertise. Vesicourethral  
Anastomosis (VUA) & 
prostatectomy 

APMs and RACE Video-analysis Good 

Gomez- 
Ruis M.et al. 

2022 Observational 14 participants:  
9 senior surgeons, 5 novices. 

  

  
Robotic Low Anterior  
Resection (RA-LAR) 

  
GEARS, PBP 

  
Video analysis 

  
Good 

0BOğul et al.  

 

2022 Observational 12 trainees. Basic APMs VR simulation Poor 

Martin et al. 
 

2021 Observational 20 novice trainees. Basic skills GEARS VR simulation Fair 

Simmonds 
et al. 

2021 Observational 77 students (residents to practicing  
surgeons) 

Basic skills APMs, MScore Proficiency Index  
(MPI©) 

VR Simulation Fair 

Wu et al. 2021 Observational 7 novice trainees. Basic Skills APMs, Cognitive and 
Behavioural metrics including gaze  
entropy and NASA TLX. 

VR Simulation Good 

Cowan  
et al. 

2021 Observational 17 participants: 6 experts, 11 trainees. VUA APMs, pupillary data Simulation- 
Dry lab and  
VR 

Good 

Ghodoussipour  
et al. 

2021 Observational  27 participants: 10 experts, 17 
trainees 

Partial nephrectomy APMs Video recordings of 
RAPN 

Good 

Chen A et al. 2021 Observational N/a Prostatectomy APMs Video recordings of Fair 
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RAPN 
Chow A et al. 2021 Observational 12 residents. Partial Nephrectomy GEARS Simulation-  

Animal model  
Good 

Ghazi A et al. 2021 Observational 43 participants: 27 novices, 16  
Experts. 

Nephrectomy GEARS, Clinically Relevant  
Objective Metrics of Simulators) CROMS 

Simulation Fair 

Mottrie A et al. 2021 Observational 12 novices, 12 experts. Robotic Assisted Radical  
Prostatectomy (RARP) 

PBP Video recordings 
 of RARP 

Good 

Yu N et al. 2021 Observational  14 staff urologists, 22 bed-side 
assistants with variable experience. 

RARP GEARS, aOSATs. Live RARP 
procedures 

Fair 

Tou S et al. 2020 
  

Observational Metrics group-4 including 3 robotic 
colorectal surgeons and one behavioural  
scientist. 
Delphi group-18 colorectal surgeons. 

Robotic Low Anterior  
resection (RA-LAR) 

PBP Video recordings of 
LAR  

Good 

Lyman W et al. 2020 Observational 2 hepatobiliary fellows. Robotic  
hepaticojejunostomy 

Operative Robotic Index (ORI) Dry lab 
Simulation 

Fair 

Møller SG et al. 2020 RCT 22 novice trainees. Suturing OSATs Simulation Unclear 
Rice MK et al. 2020 Observational 28 surgical trainees -varying experience. Robotic  

Pancreaticoduodenectomy  
Operating Room Time (ORT) Live operating Good 

Lau E et al. 2020 RCT 40 surgical trainees: 16 senior residents 
and 14 junior residents. 

Basic Skills NASA- Task load index- subjective  
workload 
Wisconsin Card Sorting Test (WCST)- 
executive cognitive function 
Psychomotor Vigilance Task (PVT)-  
concentration 

Animal 
model 
simulation 

Unclear 

Brown KC et al 2020 Observational Surgical trainees 
(Trainees, experts and 
training specialists defined as non-surgeon 
expert users who were experienced in 
the trained exercises). 

Basic skills APMs Animal model 
simulation 

Good 

Nguyen JH et al  2020 Observational 26 participants-stratified by surgical  
experience. 

Basis skills APMs,  
Task-evoked pupillary 
response (TEPR) 

Dry lab 
simulation 

Fair 

Dilley J et al. 2020 Observational 21 surgical trainees-novice and 
Experts. 

Basic skills GEARS,  
Numeric psychomotor 
test score (NPMTS) 

Animal simulation  
model 

Good 
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Lefor A et al. 2020 Observational 8 surgical trainees: 4 novices, 2  
intermediates and 2 experts. 

Basic skills APMs VR simulation Good 

Timberlake M 
et al. 

2020 Observational 25 participants-urology residents 
5 faculty surgeons, 6 fellows,  
14 residents 

Pyeloplasty GEARS Dry lab 
simulation-  
3D models 

Good 

Ebbing J et al 2020 Observational 51 participants:18 experts, 16  
intermediates, 17 novices 

Radical Prostatectomy APMs VR Simulation Fair 

Sánchez R et al. 2019 Observational 15 participants divided into novice, 
intermediate and expert. 

Suturing GEARS Dry lab 
simulation 

Fair 

Witthaus M et  
al. 

2020 Observational 14 participants: 9 novices, 5 experts. Radical prostatectomy GEARS, RACE Dry lab 
simulation 

Good 

Khan H et al. 2019 Observational 6 surgical trainees. Vesicourethral 
anastomosis (VUA) in  
RARP. 

RACE Live RARP Fair 

Peng W et al. 2018 Observational 14 participants: 4 experts, 10  
novices. 

Basic skills APMs VR Simulation Good 

Liu M et al 2018 Observational 15 surgical trainees-  
divided into senior, 
intermediate and  
novice 

Basic skills Assessment of  
Robotic Console 
Skills (ARCS) 

Animal model 
simulation 

Fair 

Knab L et al. 2018 Observational 28 surgical trainees Pancreatico- 
duodenectomy 

APMs Training  
pathway for 
pancreatico- 
duodenectomy 

Fair 

Hoogenes et al. 2018 RCT 39 surgical trainees- 23 juniors and  
16 seniors. 

Vesicourethral   
anastomosis (VUA) 

GEARS,  
RACE (Robotic Anastomosis 
Competency Evaluation) score 

Dry lab 
simulation- 3D 
printed model 

Low 

Dubin A et al. 2018 Observational 65 surgical trainees. Basic skills APMs, GEARS VR Simulation Good 
Zia A et al. 2018 Observational 8 surgical trainees of 

varying experience. 
Suturing APMs,  

modified OSATs and 
Global Rating Score 

Dry lab  
simulation 

Fair 

Wang Z et al. 2018 Observational 10 surgical trainees  
(divided as novice,  
intermediate and  
expert). 

Basic skills APMs Dry lab 
simulation 

Good 

Guni et al. 2018 Observational 39 novices. Suturing GEARS Dry lab  
Simulation of a  
VUA 

Good 
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Watkinson et  
al. 

2018 Observational 123: 84 novice,6 beginners intermediates, 
9 advanced intermediates and  
4 experts. 

Basic Skills APMs VR Simulation Good 

Altok et al. 2018 Observational 100 participants: 
94- trainees (43 fellows, 51 residents)  
and 6 faculty surgeons. 

RARP Time to completion Video recordings 
of RARP 

Fair 

Hussein A et al. 2018 Observational No of trainees and trainers not stipulated Robotic assisted  
radical cystectomy 

CASE score Video recording 
of RARC 

Fair 

Shim J et al. 2018 Observational 3 trainees. VUA anastomosis Mean completion times. VR Simulation Fair 
Chen J et al. 2018 Observational 18 participants: 9 novices and  

9 experts. 
VUA APMs Video  

recordings of 
RARP 

Good 

Hung A et al. 2018 Observational 9 faculty surgeons. RARP APMs Recorded RARP Poor 
Dubin A et al 2017 RCT 65 surgical trainees. Basic skills APMs, GEARS VR Simulation Unclear 
Sessa A et al. 2018 Observational 21 surgical trainees– 12 beginners, 9  

experts. 
Basis skills NASA- Task load index VR Simulation Fair 

Mills J et al. 2017 Observational 10 attending robotic surgeons. Basic skills GEARS DaVinci 
simulator 
and intraoperative 
video clips. 

Fair 

Fard M et al. 2017 Observational 8 surgical trainees divided into seniors 
and novices. 

Basic skills APMs,  
Global Rating Score 

Dry lab  
Simulation 

Fair 

Lee G et al. 2017 Observational 32 surgical trainees. Basic skills APMs, NASA-TLX 
  

VR Simulation Poor 

Raison N et al. 2016 Observational 223 participants ranging from novice to  
expert surgeons. 

Basic skills APMs VR Simulation Good 

Hussein A et al. 2017 Observational 26 participants: 23 experts, 3 fellows. Prostatectomy Prostatectomy Assessment and  
Competence Evaluation (PACE) 

Video recording 
of RARP 

Fair 

Hung A et al. 2018 Observational 20 trainees: 10 experts and  
10 trainees. 

RARP APMs, GEARS Video  
recordings of  
RARP  

Good 

Goldenberg M 
et al. 

2017 Observational 1 consultant urologist. RARP GEARS, GERT Video  
recordings of  
RARP 

Poor 

Hung A et al. 2017 Observational 21 trainees  
(11 residents and 10 fellows) 

Prostatectomy and  
nephrectomy 

GEARS, proficiency score Video recordings 
of RARP and  
RPN 

Fair 
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Jarc AM et al. 2017 Observational  
  
  
  

39 trainees- divided into groups by RAS 
experience (new, intermediate and 
novice)   

Basic skills APMs,  
camera metrics 

VR Simulation Fair 
  

Frederick P et  
al. 

2016 Observational 52- 25 expert surgeons, 
20 advanced beginners, 7 novice trainees. 

Robotic Hysterectomy Robotic Hysterectomy 
Assessment Score 
(RHAS) 

Video 
assessment of 
live procedures 

Good 

Vedula S. et al. 2016 Observational 18 participants: 4 consultant surgeons 
(experts), 14 (novice) trainees. 

Suturing APMs, Global Rating Score Dry lab 
simulation 

Fair 

Siddiqui N et al. 2016 Observational 46 participants: 34 novice and  
22 senior trainees.  

Basic Skills R-OSATs Dry lab 
simulation 

Fair 

Aghazadeh A  
et al. 

2016 Observational 21 participants:  17 trainees, 4 experts. RARP APMs, GEARS VR Simulation- 
APMs. 
Live operating- 
GEARs 

Good 

Lovegrove et 
al. 
 

2016 Observational 15 fellows and trainees. RARP RARP-score Video recordings 
Of live RARP 

Fair 

White L et al. 2015 Observational 49 surgeons. Basic skills GEARS Dry lab 
Simulation 

Fair 

Tanaka A et al. 2015 Observational 105: novice-37, intermediate-31, 
 and expert-37 

Basic skills APMs VR Simulation Poor 

Aghazadeh M 
et al. 

2015 Observational 47 surgical trainees: experts- 9, 
Intermediates- 14, novices- 24 

Suturing GEARS Animal model 
Simulation 

Fair 

Whitehurst S 
et al. 
 

2015 RCT 23 participants: 20 novices and  
3 experts. 

Cystostomy closure 
on an animal model 

APMs, GEARS Animal model 
Simulation 

High 

Raza S et al. 2015 Observational 28 participants: 8 experts, 10 advanced 
beginners, 10 novice surgeons.  

VUA RACE Dry lab 
simulation 

Good 

Siddiqui N. et  
al. 

2014 Observational 105: 83 residents,  
9 fellows and  
13 faculty surgical 
trainees of varying 
levels 

Basic skills R-OSATs Dry lab 
Simulation 

Good 

Chen C et al. 2014 Observational 476 participants Suturing GEARs, C-SATs Dry lab 
simulation 

Fair 

Chowriappa A  
et al. 

2013 Observational 27 participants: 15 novice and 
12 expert surgeons 

Basic robotic skills RSA-score Simulation-VR Fair 
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Perrenot C et al  2012 Observational 75- divided by robotic experience Basic skills APMs VR Simulation Fair 
Goh A et al. 2012 Observational 29 participants: 25 trainees, 4 experts. Radical prostatectomy GEARS Live operating 

RAS 
Fair 

Kumar R et al. 2012 Observational 8 participants:6 trainees, 2 expert 
surgeons. 

Basic skills APMs Dry lab 
simulation 

Good 

McDonough P 
 et al. 

2011 Observational 20 participants: 10 trainees(novice), 
10 consultants(experts) 

Basic skills APMs Dry lab 
simulation 

Fair 

Judgkins T et al. 2008 Observational 1 consultant surgeon-expert. Suturing APMs Live operating- 
human cases 

Fair 



 22 

Discussion 

We have systematically reviewed the metrics currently used for assessing technical 

performance in RAS. This is the first review to assess metrics used to evaluate technical 

performance across all surgical specialties. Twenty-seven metrics were identified and 

categorised into four groups; global skills assessment; procedural-based assessment; task 

based and cognitive assessment. This review has highlighted the wide diversity in metrics 

available but emphasises the predominant use of global assessments owing to their broad 

application. 

 

Global-based assessment 

GEARS was the first global assessment tool designed specifically for RAS[37] and has the 

advantage of being widely implementable across RAS procedures. GEARS demonstrated 

construct validity and was later found to demonstrate a significant relationship between 

simulated robotic performance and robotic clinical performance[32].  

This  review found GEARS has superseded OSATs [95] due to its granular assessment of RAS 

skills.  Adaptations of OSATs have been developed which are specific to RAS surgery including 

aOSATs and ROSATs however both were confined to single studies[20, 80]. The Global Rating 

Score (GRS) [64, 69, 72] is a mean of the calculated OSATs scores and therefore confers the 

same advantages and disadvantages of OSATs (Table 3). 

Assessment of Robotic Console Skills (ARCS) relies upon a similar assessment to GEARS and 

has the advantage of being console agnostic, however, within the review it was only tested 

on an animal model and a limited number of participants (n=15).  

Other subjective metrics were found in the review including the operative room index (ORI) 

[94] and the Global Error Rating Tool (GERT) [30], however both were used in small studies 

(<5 participants). 

CROMs were the most frequently used however they were only assessed in a simulated 

environment[38]. Operative Room Time (ORT) were used in two studies [87, 88], but the tool 

is a non-specific measure of performance and is therefore unable to demonstrate construct 

validity. The MScore Proficiency Index score (MPI) was tested only in one paper[54] and is 
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limited to the Mimic VR simulator therefore, it is unclear if the metric can be applied in the 

clinical setting.  

Procedural-Based Assessments 

The RARP score[40] and the Prostatectomy Assessment and Competency Evaluation (PACE) 

[39] both deconstruct a RARP procedure into key stages. Both scores had content validity, 

however, although there were fewer participants in the RARP score study it was used across 

a larger number of RARP videos (n=428).  Both scores provide a modular training pathway for 

RARP, however, neither assessed non-technical skills such as communication skills. 

The Cystectomy Assessment and Surgical Evaluation score (CASE) was specific to a robotic 

cystectomy. The metric however is limited to male cystectomies. 

The Robotic Hysterectomy Assessment Score[83] was specific only to a robotic hysterectomy. 

It demonstrated construct validity; however, the number of novice surgeons were small 

therefore the validity is questionable. Crowd-Sourced Assessment Tools (C-SATs)[36] is a 

unique procedural metric which can be applied to any procedure. It is a quick assessment tool 

to use but is reliant upon GEARS assessment.   

Proficiency Based Progression (PBP) was the only objective measure [42-44] and the most 

widely used procedural-specific metric. The PBP methodology focuses on training towards 

proficiency and reduction of technical error rates.  It was used in several studies and 

demonstrated construct validity [17, 44]. The PBP methodology focusses on proficiency 

training and has demonstrated a reduction in errors by up to 40% [96]. However, the process 

to develop the metrics is lengthy and is reliant upon a Delphi process involving an expert 

group. This will impact implementation on a wider scale and therefore questions its feasibility 

in curriculum development.  

Task-Based assessments 

RACE was the most prevalent subjective task-based assessment used. It demonstrated 

construct validity, however was specific to measuring one specific urological task only and 

therefore is not widely applicable across RAS assessments.   
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aOSATs[20]  specifically assesses the assistant’s performance during a procedure, however, it 

was only assessed in one study. 

APMs were the most common objective task-based metric. APMs summarise key elements of 

intraoperative surgical behaviour, particularly geometric and time-dependent variables of 

instrument and surgical console control, providing a complex and comprehensive data record 

for each operation. Early studies have shown that APM may predict progression in surgical 

training, and also predict when expertise is gained [97]. APMs have also been able to 

differentiate between novice and expert surgeon (i.e., demonstrate construct validity) in live 

prostate surgery and video recordings of a vesicourethral anastomosis (VUA)[98]. In addition, 

APMs can predict important clinical outcomes including length of stay and urinary continence 

following RARP [56, 57] [68]. In the simulation setting, APMs can be recorded in VR scenarios 

thereby aiding a trainee’s learning and providing valuable feedback against bench markers. 

However, at present their use is largely limited to measuring task-based measures. 

Furthermore, the APMs used in clinical settings were inclusive to Intuitive Surgical only and 

therefore it is unclear if the APMs are platform agnostic which questions their wider 

application. 

Cognitive Metrics 

NASA-TLX was the only subjective metric found which specifically tailors to the surgical 

environment.  Pupillary metrics were the most prevalent object cognitive metric however 

they are dependent upon prohibitively expensive eye tracking glasses which will be 

challenging to implement alongside current training methods.  

The remaining cognitive measures, Numeric Psychomotor Test Score (NPMTS) and Wisconsin Card  

Sorting Test (WCST) were limited to single studies. Their implications in a wider setting are therefore  

unclear. Despite the limited use of cognitive measures in this review, they were used and 

were able to assess the importance in assessing a of a surgeon’s mental workload on 

performance[50]. These measures could possibly help a trainee self-monitor their 

progression.  

It is clear from the variation in metrics defined and their various uses in different settings and 

surgical subspecialities, an ideal metric is needed to standardise RAS assessment thereby 
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widening its applications across procedures. This will facilitate both surgical trainers and 

trainees with the accuracy and interpretation of RAS assessment. 

The “Ideal” Metric for RAS technical assessment 

There is increasing evidence a surgeon’s technical skill can affect postoperative outcomes 

[57]. The method chosen to train surgeons and provide feedback has previously been shown 

to result in efficient surgical training[58]. On developing the ideal metric for assessment, it 

should have components of global, procedural, task-based, and cognitive performance 

measures to provide an accurate assessment of the trainee’s performance. 

An ideal metric would be difficult to define and even harder to develop. It could utilise the 

versatility of automated performance metrics (APMs), allowing wide application and accuracy 

in assessing and recording performance measures.  However, it could also use the principles 

of PBP to assess proficiency of an index procedure at a granular level. PBP has demonstrated 

reliability however lacks feasibility for wider implementation secondary to the lengthy 

process to develop the metric. As APMs advance, they may be used to develop proficiency-

based metrics similar to PBPs thereby having the ability to assess procedural based skills at a 

granular level. Automation will inevitably accelerate the process of development and will 

facilitate with wider applications across surgical specialties.  This novel metric which is an 

objective measure, will allow for efficient and reliable measures of technical performance in 

RAS.  

This review has identified limitations in the development of metric assessment for technical 

performance which are discussed below with suggestions for improvement.  

Standardisation of validity assessment 

To assess the validity of the metric included in this review, the ability to demonstrate 

construct validity was evaluated. Construct validity is described as the extent to which 

measurements used can actually test the hypothesis or theory it is measuring[99]. Construct 

validity is commonly used within robotic literature as a comparison between experienced and 

novice surgeons, however, there are variations amongst the studies regarding the definitions 

of novice and expert surgeons. Novices varied in their experience of RAS from none to 

minimal to some. [59, 91]. The discrepancy in definition results in the construct validity of the 
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metric being questioned. A standardised definition of both the novice and expert with defined 

levels of technical experience is required to generate a valid assessment of the construct 

validity of the metric. 

Assessment of non-technical skills for surgeons (NOTSS) 

NOTSS assessment was not included in this review, however, they are an essential component 

of RAS training. The recently published report by the Royal College of Surgeons Edinburgh  

“Development of new robotic surgical services- A guide to good practice” provides generic 

recommendations covering areas of training and clinical governance to all surgical 

specialties[100]. The report recommends training should focus on the non-technical skills of 

the robotic surgical team’s performance as the dynamics in the surgical team are different 

from conventional surgery. A validated non-technical skills framework should be employed 

to standardise training in interpersonal communication, teamwork and situational awareness 

thereby safeguarding communication in robotic-assisted cases.  

Conclusion  

The end goal of the assessment metric should be to measure and assist in achievement of 

proficiency in RAS procedural training. On reviewing the metrics that are currently available 

we suggest that there is a need to develop a robust method that is able to accurately assess 

technical performance in RAS.  We believe a novel automated metric which incorporates 

components of the categorised metrics already identified should be considered for further 

development.  By incorporating the benefits shown by the categorised metrics, it will provide 

a granular assessment of a surgeon’s skills performance from task-based assessment to 

cognitive. Automated metrics have shown promise in their wide use and ease to assess 

objective performance. However, further work is needed to assess their use in measuring 

clinical outcome. 
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