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A B S T R A C T   

The impairment of articular cartilage due to traumatic incidents or osteoarthritis has posed significant challenges 
for healthcare practitioners, researchers, and individuals suffering from these conditions. Due to the absence of 
an approved treatment strategy for the complete restoration of cartilage defects to their native state, the tissue 
condition often deteriorates over time, leading to osteoarthritic (OA). However, recent advancements in the field 
of regenerative medicine have unveiled promising prospects through the utilization of injectable hydrogels. This 
versatile class of biomaterials, characterized by their ability to emulate the characteristics of native articular 
cartilage, offers the distinct advantage of minimally invasive administration directly to the site of damage. These 
hydrogels can also serve as ideal delivery vehicles for a diverse range of bioactive agents, including growth 
factors, anti-inflammatory drugs, steroids, and cells. The controlled release of such biologically active molecules 
from hydrogel scaffolds can accelerate cartilage healing, stimulate chondrogenesis, and modulate the inflam-
matory microenvironment to halt osteoarthritic progression. 

The present review aims to describe the methods used to design injectable hydrogels, expound upon their 
applications as delivery vehicles of biologically active molecules, and provide an update on recent advances in 
leveraging these delivery systems to foster articular cartilage regeneration.   

1. Introduction 

Knee osteoarthritis (OA) is the most prevalent degenerative joint 
disease, exerting a significant toll on adults through debilitating pain 
and impaired functionality. Cartilage degeneration is a characteristic of 
osteoarthritis but notably, trauma induced cartilage defects can expedite 
the onset of osteoarthritis [1]. The intrinsic properties of cartilage - 
sparse cell density, avascularity and absence of nerves and lymphatic 
tissue presents an inherent barrier for effective self-repair of articular 
cartilage. Consequently, cartilage defects have potential to cascade into 
joint deterioration, weakening its function as a load-bearing interface 
between the articulating femur and tibia [2]. 

Currently, clinical interventions for the repair of cartilage defects 
include microfracture (MF), chondroplasty and autologous chondrocyte 
implantation (ACI); however, these methods suffer from the require-
ment of highly invasive surgery and the formation of mechanically 

inferior fibrocartilage-like neotissue limiting their long-term success. 
The last resort for clinicians for patients with severe OA is whole joint 
replacement, an expensive solution which inflicts a substantial burden 
to the National Health Service (NHS) in the UK, costing nearly £ 2 billion 
annually (approximately 2% of the entire budget), therefore, under-
lining the urgent need for novel and more efficacious therapeutic mo-
dalities to redress this exigent clinical need [3]. 

In light of the inherent constrained regenerative capability of artic-
ular cartilage and the shortcomings of established clinical interventions, 
scientists have shifted their attention towards leveraging biomaterial 
scaffolds as a means to augment tissue restitution. These scaffolds 
fundamentally serve as architectural frameworks that facilitate tissue 
development, offering the potential for cell incorporation and/or the 
introduction of biologically active agents to supply biochemical cues to 
exogenous or endogenous cellular entities. A plethora of research has 
been carried out in the field of cartilage tissue engineering resulting in 
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scaffolds that utilise a variety of strategies for scaffold mediated repair 
resulting from various combinations of cell sources and biologically 
active molecules (Fig. 1A-C) [4]. 

Hydrogels are an extremely promising subset of biomaterials for 
their intrinsic features such as their biocompatibility, high water con-
tent, minimal cytotoxicity, and biodegradability. Most scaffolds require 
the removal of native tissue to facilitate implantation, followed by su-
turing or gluing to fix the scaffolds; but these traditional practices 
invariably curtail their efficacy due to poor lateral integration with the 
indigenous cartilaginous matrix [5]. Hydrogels can be designed such 
that they can be injected via minimally invasive arthroscopy, circum-
venting the need for invasive surgical procedures and results in a precise 
form-fitting scaffold, fully conforming with the cartilage defect without 
the need for fixation [6–8]. Injectable hydrogels serve the purpose of cell 
and biologic delivery whilst also functioning as a domain for the 
regeneration of the native extracellular matrix (ECM). The exploration 
of these systems has witnessed a substantial surge in research since the 
early 2000s as depicted in Fig. 1D [9,10]. 

Fabrication of injectable hydrogels can be carried out using various 
methods: 

(1) In situ gelation whereby a hydrogel solution can be injected fol-
lowed by solidification via crosslinking methods in situ [11].  

(2) Shear-thinning, self-healing hydrogels which can be solidified ex 
vivo followed by injection facilitated via shear thinning mecha-
nism followed by in situ structural recovery (self-healing) [12].  

(3) Injection of crosslinked hydrogel microparticles (MPs) with their 
size conforming injectability [13]. 

In this forthcoming review, our primary objective is to provide a 
comprehensive and informative overview of injectable hydrogels as a 
promising solution to the pervasive issue of osteoarthritis (OA). We 
commence by assessing the intricate structure, function, and the un-
derlying pathological mechanisms of articular cartilage before turning 
our attention toward the prevailing clinical interventions currently 
employed by clinicians, recognizing their intrinsic limitations and 

Fig. 1. Overview of recent progress in tissue engineering. A) General strategies for OC regeneration including the use of a biomaterial alone or combined with cells 
and/or biologics. B) Analysis of bioactive molecules used in biologics-based approaches. C) Cell types used for scaffold-based regeneration: chondrocytes (Chondro), 
mesenchymal stromal/stem cells (MSCs) or MSC-derived cells from the bone marrow (BM), adipose tissue (Adip), umbilical cord blood (UCB), synovial tissues 
(Synov) or other sources, as well as other cells or mixed cells. Reproduced from [4] under Creative Commons license. D) Number of publications listed on PubMed® 
using (“cartilage” and “injectable hydrogel”) as the search terms displaying the increase in publications on cartilage tissue engineering approaches involving 
injectable hydrogels. 
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challenges. The focal point then shifts towards injectable hydrogels, a 
captivating treatment modality for the repair of chondral defects with 
special emphasis on the three aforementioned methods of fabricating 
injectable hydrogels and their very recent progress in the field of carti-
lage tissue engineering. Simultaneously, we describe how these hydro-
gels interact with the physiological environment and investigate the 
mechanisms governing the loading and release of biologics, shedding 
light on their potential as dynamic carriers of therapeutic agents, 
enhancing their potential for chondrogenesis. Finally, a significant 
portion of the discussion is dedicated to assessing commercially avail-
able and clinically relevant injectable hydrogels that are currently being 
used to aid the regeneration of cartilage. 

2. Anatomy of articular cartilage 

Within the body there are three types of cartilage tissue present: 
elastic cartilage, fibrocartilage, and hyaline cartilage. Articular cartilage 
is a hyaline cartilage found on the articulating surface of bone in 

synovial joints and ranges from 1-5mm in thickness. The articular 
cartilage is to a large extent responsible for the load-bearing and near 
frictionless movement of the articulating surfaces [14,15]. Unlike most 
tissues, articular cartilage is devoid of blood vessels, nerves, and lym-
phatics. It is composed of a dense ECM with a sparse distribution of 
highly specialized resident cells called chondrocytes [16]. 

2.1. ECM composition 

The mechanical properties and subsequent function of the articular 
cartilage are dependent upon the composition of the matrix components. 
The ECM is made up of collagen, water proteoglycans, chondrocytes, 
lipids, and glycoproteins with each component providing an intrinsic 
function to the ECM. Water is the most abundant component of articular 
cartilage and contributes up to 80% of the wet weight. The high 
composition of water allows for the deformation of cartilage depending 
on the biomechanical load. Not only does water provide a medium for 
lubrication providing a low friction coefficient, but ions such as sodium, 

Fig. 2. Pathological changes of articular cartilage. A) Zonal composition of healthy articular cartilage vs osteoarthritic articular cartilage. The progression of 
osteoarthritis leads to the formation of cartilage lesions, surface fibrillations, chondrocyte clustering and hypertrophy, bone cyst formation and apoptosis of 
chondrocytes and osteocytes. B) Classifications of cartilage lesions because of trauma or resulting from osteoarthritis. Partial defects only penetrate a portion of the 
articular cartilage whereas full thickness and osteochondral defects extend through the entire cartilage with the latter extending through to the subchondral bone. 
(Created with BioRender.com). 
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calcium, chloride, and potassium are dissolved in the tissue water and 
the flow of water through the cartilage and across the articular surface 
aids the transport of nutrients to chondrocytes [16]. Collagen accounts 
for a major fraction of the dry weight in articular cartilage (50-80%). 
Type II collagen in the form of cross-linked microfibrils has been shown 
to form throughout the ECM. These fibrils make connections with other 
tissue-specific collagens of the cartilage, such as types IX and XI collagen 
among others (Type VI, X, XII and XIV) although the latter are sparse in 
abundance relative to Type II collagen [17]. These interconnected 
collagen fibrils possess high tensile strength, providing the ECM with the 
ability to withstand constant tension, even in the unloaded state due to 
the swelling pressure of the water/proteoglycan gel [18]. Proteoglycans 
are the second most abundant macromolecule in the articular cartilage 
ECM. A proteoglycan monomer consists of a core protein to which one or 
more glycosaminoglycan (GAG) chains are attached. The most promi-
nent proteoglycan in cartilage is aggrecan whilst the most common 
GAGs in articular cartilage are hyaluronan, chondroitin sulphate and 
keratin sulphate [12]. The GAG/proteoglycan aggregates form gels 
which occupy a large volume relative to their mass [18]. 

2.2. Zonal organisation 

Articular cartilage can be split into four distinct zones between the 
articular surface and the subchondral bone: superficial tangential zone, 
middle zone, deep zone and calcified zone (Fig. 2A). The zones are 
defined by the morphology of chondrocytes, orientation of the Type II 
collagen fibres and composition of proteoglycans which all differ across 
the zones. Chondrocytes originating from different zones also have 
distinct roles within cartilage. 

The superficial zone is the thinnest layer of articular cartilage mak-
ing up 10-20% of the total thickness [19]. Chondrocytes in this zone are 
high in density and are flattened. Type II collagen fibrils are oriented 
parallel to the articular surface providing protection to the deeper layer 
through its high tensile strength and resistance to shear forces during 
articulation. The zone is in contact with synovial fluid which aids with 
lubrication of the cartilage surface. The middle zone which is also 
known as the transitional zone contains round chondrocytes and 
collagen fibres are randomly orientated. The zone is also termed tran-
sitional zone as it serves as a transition between the superficial and deep 
zones with the collagen fibres increasing in thickness with cartilage 
depth [20]. The middle zone makes up 40-60% of the thickness of 
articular cartilage and contains the highest composition of pro-
teoglycans compared to other zones and is the first line of resistance 
against compressional forces. The deep zone makes up 30% of cartilage 
and is characterised by columns of ellipsoidal chondrocytes distributed 
between thick, perpendicularly arranged collagen fibres, coupled with 
the highest proteoglycan concentration allows it to contribute the 
highest compressive resistance out of all layers. The calcified zone is 
distinguished from the deep zone by the tide mark. The zone is the 
highly mineralised region of articular cartilage and provides attachment 
of cartilage to the subchondral bone by anchoring collagen fibrils of the 
deep zone to the bone. 

2.3. Function of articular cartilage 

The primary function of articular cartilage is to provide a smooth, 
lubricated surface that facilitates the transmission of biomechanical 
loads with a low coefficient of friction, thereby aiding distribution of 
loads between opposing bones in a synovial join [15]. The biomechan-
ical load predominantly consists of compression during basic movement 
in addition to shear forces during dynamic movement such as twisting, 
pivoting, and sliding motion. For the facilitation of this biomechanical 
loading articular cartilages possesses several intrinsic mechanisms for 
facilitation of biomechanical loading as a result of interstitial fluid flow 
and contribution from the collagen and proteoglycan and GAG network 
[16]. Keratin sulphate and chondroitin sulphate in articular cartilage 

carry a negative charge, creating a high affinity for water. This property 
helps the cartilage resist compressive loads by increasing osmotic 
pressure due to cation influx. During loading, the negatively charged 
sulphated GAGs are pushed closer together, leading to increased 
repulsive forces and higher compressive stiffness in cartilage. Further-
more, the flow of water through charged regions of the proteoglycan- 
rich matrix generates piezoelectric charges which modulates water 
flow and contributes to the viscoelastic nature of articular cartilage [18]. 

To understand the biomechanical behaviour of articular cartilage, it 
is best viewed as a biphasic medium, consisting of two phases: a fluid 
phase and a solid phase [15]. The solid phase comprises proteoglycans, 
collagens, and cells, while the fluid phase consists of interstitial fluid. 
Under impact loads, water flows through the solid permeable matrix 
which generates frictional drag on the matrix. The permeable nature of 
articular cartilage allows fluid to flow through the ECM. As a result, 
articular cartilage has an inherent self-protective feedback system which 
stiffens during loading exhibiting creep and stress-relaxation behaviour 
[16,21]. Overall, articular cartilage’s intricate structure and interplay 
between its solid and fluid phases allow it to efficiently distribute 
biomechanical loads, resist compression, and maintain its viscoelastic 
properties during different types of movement. 

2.4. Articular cartilage pathology 

As a result of the cartilage load-bearing function, the susceptibility to 
and incidence of cartilage damage is high, especially during highly 
physical activities. Osteoarthritis arises due to chondrocytes failing to 
maintain homeostasis between synthesis and degradation of its ECM 
components. Osteoarthritis can be classified as either primary (idio-
pathic) or secondary. The pathophysiology of OA is still yet to be 
completely understood but idiopathic OA from risk factors such as age, 
gender and weight are known to play a part [22]. With aging, the ca-
pacity of cells to synthesize proteoglycans, proliferate and their response 
to anabolic stimuli such as growth factors are all factors that deteriorate 
[20], thus leading to the degeneration of cartilage when exposed to 
biomechanical loading [23]. 

The relationship between obesity and OA has been well defined, and 
studies have shown there is a strong positive correlation between body 
mass index and prevalence of OA[24]. Whilst the correlation between 
obesity and OA is partially attributed to the excessive loading on the 
weight bearing portion of the cartilage, obesity is in part a metabolic 
syndrome and is thought to contribute to systemic inflammation 
through secretion of pro-inflammatory cytokines interleukin (IL)-1β, IL- 
6, IL-8, and tumour necrosis factor alpha (TNF-α) which may trigger the 
nuclear factor-κB signalling pathway to stimulate an articular chon-
drocyte catabolic process and lead to ECM degradation via matrix 
metalloproteinase (MMP) upregulation [1,25,26]. 

There is significant evidence demonstrating that females are far more 
at risk of OA compared to males with 18% of women over the age of 60 
affected by OA in comparison to 9.6% of men of the same age [27]. This 
may result from changes in hormone levels during menstruation as well 
as menopause [28,29], differences in the biomechanics and musculo-
skeletal system [30] and the increased incidence of obesity in women 
[31] contributing to this risk factor. 

Secondary OA can derive from other diseases associated with the 
diarthrodial joints, congenital defects, malalignment, and injury to the 
joint leading to post-traumatic osteoarthritis. Typically, injuries to the 
joint such as bone fractures, ligament tears, meniscus damage leading to 
joint misalignment cause disruption to normal joint mechanics and 
eventual breakdown of cartilage due to uneven loading. In both primary 
and secondary OA, degeneration of cartilage is prevalent and either 
leads to the onset or progression of osteoarthritis and is accompanied by 
cartilage softening, fibrillation of the superficial layers, fissuring and 
diminished cartilage thickness, serious tissue defects that induce pain, 
immobility, and eventual joint destruction (Fig. 2A) [32,33]. 

Defects are categorised based on the depth of the lesion as: partial 
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thickness, full thickness, or osteochondral (Fig. 2B). Full thickness and 
osteochondral defects extend to the subchondral bone and can poten-
tially be partially repaired by mesenchymal stem cells residing within 
the bone marrow, nonetheless self-repair is particularly limited owing to 
the formation of less functional fibrocartilage[34]. As a result, more 
rigorous treatment modalities are required and can be classified into 
three groups of symptomatic relief, reparative/replacement procedures, 
and regenerative methods. 

2.4.1. Symptomatic relief 
The end goal of symptomatic relief is to alleviate joint pain associ-

ated with osteoarthritis and provide the patient with increased mobility 

such that they can carry out simple everyday tasks. This is typically the 
first-stage strategy for clinicians when the patient is suffering from mild- 
severe pain (Fig. 3A). 

2.4.1.1. Intra-articular injection. Whilst there is currently no food and 
drug association (FDA) approved disease modifying OA drug, IA in-
jections as treatment strategies have widely been used. IA injection of 
non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids has 
been employed since the 1950s to relieve joint pain related to osteoar-
thritis [35]. Corticosteroid injections have been shown to decrease acute 
episodes of pain and increase joint mobility but at the same time, side- 
effects include reactive flares, gastrointestinal irritation, hypercortical 

Fig. 3. Treatment methods for the repair of articular cartilage lesions. A) Early joint pain and inflammation can be suppressed by the injection of NSAIDs, steroids, 
PRP or viscosupplements to temporarily restore joint function to the patient. B) Bone marrow stimulation via microfracture. An awl is used to create perforations 3-4 
mm apart and 2-4 mm in depth with the aim of recruiting stromal cells from the residing subchondral bone marrow. Reproduced from [61]. C) Osteochondral 
autograft/allograft – osteochondral plugs are taken from the healthy non-weight bearing portion of cartilage or from donors which are subsequently transplanted in a 
‘mosaic-like’ pattern. Reproduced from [62] with permission from Elsevier. D) Autologous chondrocyte implantation – autologous chondrocytes are isolated, 
expanded in vitro and subsequently implanted onto a periosteal flap or collagen membrane (MACI) [63] (Created with BioRender.com). 
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syndrome, and osteoporosis and there are also conflicting reports as to 
whether IA injection of corticosteroids can exacerbate joint destruction 
[36]. Furthermore, corticosteroids are only applicable for symptomatic 
pain and rarely effective for the treatment of inflammation [37]. 

Synovial fluid (SF) is a critical component to the function of healthy 
joints with approximately 2ml of SF in each knee joint. Hyaluronic acid 
(HA) is major component of SF with a concentration of 2.5-4.0 mg/mL 
and a molecular weight of 4-10 MDa which provides SF with viscoelastic 
properties essential for shock-absorbance and lubrication [38,39]. 
However, during OA both the concentration of HA and the molecular 
weight decreases, causing the reduction of SF viscoelasticity and its 
subsequent ability to protect cartilage [40]. The concept of viscosup-
plementation was developed by Balazs in the 1990s who hypothesized 
that the injection of exogenous HA could restore the viscoelastic prop-
erties of SF to the osteoarthritic knee joint [41]. Viscosupplementation 
has been recommended by several societies of rheumatology, ortho-
paedics and sports medicine and has since been used for >20 years with 
many commercially available viscosupplements, each with variations in 
polymer composition and molecular weight [42]. 

Platelet-rich plasma (PRP) is defined as an autologous blood product 
which contains an elevated concentration of platelets above that of 
whole blood. Preparation techniques vary but typically, one-step or two 
step centrifugation is carried out to separate red blood cells and the 
supernatant is composed of plasma with a high concentration of plate-
lets [43]. The resulting PRP contains a plethora of proteins, growth 
factors and anti-inflammatory cytokines and is injected into the knee 
joint to induce cellular proliferation, migration, and differentiation, 
making it a suitable therapeutic agent for cartilage tissue engineering 
[44,45]. However, the use of PRP is not recommended by several in-
stitutions owing to the lack of standardisation with the preparation 
protocol [46,47]. 

2.4.2. Reparative procedures 
Naturally, cartilage has very limited self-repair ability and recruits 

cells from the synovial membrane or from the subchondral bone 
depending on the extent of the trauma. In any case, the original state of 
the cartilage is never recovered, instead mechanically inferior fibro-
cartilage is formed [48]. 

2.4.2.1. Bone marrow stimulation techniques. The first bone marrow 
stimulation procedure was carried out by Pridie in 1959 where a drill 
was used to form subchondral perforations with the aim of releasing 
mesenchymal stem cells and growth factors to enhance the production of 
cartilaginous tissue [49,50]. However, the use of a motorised drill led to 
concerns regarding osteocyte thermal necrosis. To overcome this, 
Steadman carried out a procedure termed microfracture whereby per-
forations 3-4 mm apart and 2-4 mm in depth were created using an awl 
instead of a drill to alleviate thermal necrosis (Fig. 3B). The procedure is 
typically used for small lesions (>2 cm2) and has been shown to reduce 
pain and increase mobility for patients, however, the procedure has 
limited long-term success [51], likely due to the production of me-
chanically inferior fibrocartilage composed of type I collagen rather than 
Type II collagen that is native to articular cartilage. The weaker fibro-
cartilage consequently degrades after long term-exposure to biome-
chanical loading, typically 18-24 months post-surgery [52,53]. 

2.4.2.2. Osteochondral autograft (mosaicplasty) and allograft. The 
transplantation of donor tissue typically in the form of cylindrical plugs 
from the non-weight bearing portion of cartilage from either the patient 
(autograft also known as mosaicplasty [54]), or from another in-
dividual’s cartilage (allograft [55,56]) to replace defected cartilage has 
been carried out since 1970s (Fig. 3C). Whilst the procedure can fill 
small and even large defects effectively with native hyaline cartilage, it 
is limited by donor site morbidity and lack of lateral integration with the 
native cartilage eventually leading to cyst formation [57]. 

2.4.3. Regenerative approaches 

2.4.3.1. Autologous chondrocyte implantation. Inability of MF to suc-
cessfully treat large lesions led to the development of autologous 
chondrocyte implantation (ACI) [58]. ACI is a form of cell therapy, more 
commonly used to treat larger lesions (3-10 cm2). Essentially, it is a 
three-stage process which first entails harvesting a cartilage biopsy from 
the non-weight bearing portion of the patient’s articular cartilage, 
isolating the chondrocytes by means of enzymatic digestion of the sur-
rounding matrix, followed by expansion of the chondrocyte numbers by 
culturing in-vitro. The last stage is the implantation of the chondrocytes 
under open-knee surgery with a periosteal flap (Fig. 3D). Comparative 
studies of ACI with MF have shown MF is effective in repair of small 
lesions but ACI is more effective in treating larger lesions and produces a 
higher proportion of hyaline cartilage [59]. The use of ACI is associated 
with its own disadvantages including donor-site morbidity, limited 
availability, and de-differentiation during mono-layer expansion [60]. 
Later iterations of ACI saw the use of artificial matrices such as porcine 
collagen membranes or hyaluronic acid scaffolds instead of a periosteal 
flap with these procedures termed as matrix-assisted autologous chon-
drocyte implantation (MACI). Whilst MACI alleviated graft issues with 
the periosteal flap, the major limitation of any ACI procedure is the 
requirement for multiple operative procedures. Nevertheless, the 
reasonable success of ACI and MACI effectively pioneered tissue engi-
neering and the development of scaffolds for tissue engineering. 

2.4.3.2. Cell therapy. First identified in 1966, cells with potential to 
differentiate into any lineage are known as stem cells. There are two 
main classifications of stem cells: adult mesenchymal stromal cells 
(MSCs) and embryonic stem cells (ESCs). 

There is controversy around the labelling of MSCs as stem cells 
because they were first believed to have multi-lineage differentiation 
capacity and the ability to differentiate into tissue-forming cells, how-
ever we now understand that their therapeutic effect arises from 
secretion of bioactive factors such as extracellular vesicles [64,65]. 
Regardless of the controversy, MSCs have been used extensively as a cell 
source for cartilage regeneration [66]. Their high self-renewal ability 
and ability for multipotent differentiation to various relevant primary 
cells such as adipocytes, osteoblasts and chondrocytes make them an 
attractive cell source for tissue engineering applications [67,68]. Orig-
inally identified in bone marrow, MSCs or MSC-like cells are easily ob-
tained from many sources such as umbilical cord, adipose tissue, and 
synovium, and have been shown to differentiate to chondrocytes even 
after expansion [69]. Studies comparing the use of ACI with primary 
chondrocytes and MSCs (implanted with the same matrix) showed both 
groups significantly improved the patients’ quality of life with no sig-
nificant difference between the two groups. However, since MSCs can be 
obtained in a minimally invasive manner in contrast to the isolation of 
chondrocytes, added to the fact that MSCs proliferate faster than 
chondrocytes, the use MSCs is far more time and cost-effective [70,71]. 

Chondroprogenitors are a population of cells found in various tissue 
and possess primed for chondrogenic potential. They are isolated from 
cartilage biopsies enzymatically but the chondroprogenitor population 
are separated and sorted from chondrocytes as a result of their MSC 
surface markers CD105, CD9, CD90, CD166, and CD146 as well their 
ability to adhere to fibronectin [72,73]. Compared to chondrocytes 
which lose their potential to differentiate after several passages in cul-
ture, chondroprogenitors can be expanded in culture for many genera-
tions whilst retaining the ability to undergo chondrogenic 
differentiation. In vivo animal studies have shown chondroprogenitors 
show more promise at repairing cartilage defects as compared to 
chondrocytes and MSCs [74–76]. There is currently a phase II clinical 
trial utilising allogenic chondroprogenitors as a therapy which could 
prove promising if successful [77]. 

ESCs are pluripotent with unlimited self-renewal, which ultimately 
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makes them a promising cell source for cartilage regeneration. Studies 
have shown that ESCs undergo chondrogenic differentiation when 
activated by growth factors, can alleviate osteoarthritis through modu-
lation of homeostasis and form hyaline cartilage [78–80]. However, a 
significant drawback of ESCs which has limited their clinical application 
is their origin and the death of an embryo during isolation of ESCs which 
has consequently raised ethical issues with research utilising these cells 
in relation to the sanctity of life. 

iPSCs are somatic cells that are reprogrammed by delivery of tran-
scription factors to induce pluripotency. iPSCs share similar properties 
to ESCs such that they exhibit similar surface markers, morphological 
characteristics, and gene expression yet iPSCs do not have the same 
ethical concerns related to them as ESCs do [81]. iPSCs are a promising 
strategy in regenerative medicine; however, their novelty means there is 
a lack of understanding of their chondrogenic differentiation as well as 
poor standardisation of protocol for chondrogenesis [82]. 

3. Cartilage tissue engineering 

The promising nature of regenerative procedures such as ACI, as well 
as the advantages of using a scaffold to support cell-growth as shown in 
MACI have demonstrated promise. However, the burden of multiple 
surgical procedures and potential donor site morbidity, when contrasted 
with the relative success of MSC injections has led to researchers in the 
field of tissue engineering to focus on the development of injectable 
scaffolds to not only aid the regeneration of cartilage but also as delivery 
vehicles of cells as well as other therapeutics [6,8,83,84]. As a result, a 
comprehensive summary of recent advances in this field are discussed. 

The fundamental principles of tissue engineering scaffolds are to: (1) 
to provide a porous supporting structure to enhance proliferation of cells 
in the underlying cartilage or bone form new tissue, (2) to possess me-
chanical properties to withstand biomechanical loading applied to the 
scaffold in vivo, (3) to be biocompatible with local tissue as to reduce 
host response but maximise cell growth and tissue integration, (4) to be 
biodegradable such that the scaffold can initially support cell growth but 
degrade to allow for tissue growth and optionally (5) to act as a delivery 
vehicle and provide protection for cells, biologically active molecules or 
drugs that are loaded in vitro [85,86]. 

Materials such as bioceramics and metals have been employed as 
biomaterials for scaffolds, however these materials are far too stiff to be 
utilised in cartilage tissue engineering and are much more commonly 
applied in bone tissue engineering [87]. Removing cells and genetic 
material from the native ECM to form a scaffold composed of the 
natively complex microenvironment, histoarchitecture, with optimal 
composition of proteoglycans, GAGs and collagen which are all com-
ponents that are conducive to chondrogenic differentiation and prolif-
eration is an attractive prospect that has shown success in cartilage 
tissue engineering [88]. However, issues with standardisation and poor 
reproducibility of these scaffolds limits the clinical application of 
decellularized ECMs. 

For the past decade, polymers in the form of hydrogels have widely 
been considered the material of choice for soft tissue engineering ap-
plications. Hydrogels are a three-dimensional network of water-soluble 
polymers which are chemically or physically crosslinked [89]. Their 
hydrophilicity originates due to the presence of hydrophilic moieties 
such as carboxyl, amide, amino and hydroxyl groups which exist along 

Table 1 
Natural and synthetic hydrogels for cartilage tissue engineering with their respective advantages and disadvantages.  

Classification Material Advantages Disadvantages Ref. 

Natural 

Alginate  

• Natural polysaccharide  
• Fast gelation  
• Good viscoelastic properties  
• Biocompatible  
• Highly abundant and inexpensive  

• Poor mechanical strength  
• Poor adhesive properties  
• Lack of anchoring sites for cells 

[101–103] 

Chitosan  

• Native component of connective tissue  
• Complexation  
• Bacteriostatic  
• Absorbability  
• Anti-oxidation  
• Promotes cell proliferation  
• Good adhesion due to positive charge  

• Poor mechanical strength  
• Low solubility  
• Relatively expensive  
• Short retention time  
• Expensive to purify 

[104–106] 

Gelatin  

• Thermally reversible with transition close to physiological temperature  
• Promotes cell adhesion due to possession of RGD sequence  
• Relatively high mechanical strength  
• Low cost  

• Long gelation time  
• Viscous  
• Unstable at high temperatures 

[107–109] 

Hyaluronic Acid  

• Natural component of synovial fluid and ECM to mimic microenvironment  
• Good viscoelastic properties  
• Promotes cell proliferation  
• Lubrication properties, water solubility, low immunogenicity  

• Poor mechanical strength  
• Relatively expensive  
• Short retention time 

[110–112] 

Chondroitin Sulphate  

• Native component of cartilage tissue  
• Stimulates chondrocytes to produce ECM.  
• Water solubility  
• Inexpensive  

• Poor mechanical strength  
• Fast degradability 

[113–115] 

Collagen  
• Most abundant protein found in cartilage.  
• Excellent biocompatibility and biodegradability  

• Limited groups for functionalisation  
• Low mechanical strength  
• Potential for host immune response 

[116,117] 

Silk Fibroin  
• High mechanical strength  
• Similar in structure to collagen  • Low biodegradability [118] 

Synthetic 

PEG  
• Biocompatible  
• Easily functionalised and combined with other polymers  

• Poor cellular interaction [119,120] 

PVA  • Good viscoelasticity  
• Biocompatible  

• Non-degradable  
• Poor cellular interaction 

[121,122] 

PAAm  • Biocompatible  
• Poor mechanical strength  
• Poor cellular interaction [123] 

PNIPAM  • Thermosensitive with gelation occurring close to physiological temperature.  
• Low biodegradability  
• Poor mechanical strength  
• Low drug loading capacity 

[124,125]  
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the backbone of polymeric chains endowing hydrogels with the ability 
to absorb high amounts of water (typically 70 - 99%), thus making them 
physically similar to native articular cartilage [90]. 

The physiochemical properties of hydrogels are highly dependent on 
the base polymer(s) that are used to create the hydrogel network. These 
polymers can be classified into two main groups, natural and synthetic 
(Table 1). Natural polymers can be further sub-categorised into protein 
based (collagen, elastin, fibrin, gelatin, silk fibroin) and polysaccharide 
based (GAGs, alginate, and chitosan). Hydrogels composed from natural 
polymers frequently have many benefits such as excellent biocompati-
bility with minimal immune response, they also possess great 
biochemical signalling and the ability to mimic the native articular 
cartilage ECM with cell-controlled degradability [91–93]. However, 
naturally derived hydrogels suffer from poor mechanical strength, high 
rates of degradation, as well as being expensive to source and process. To 
overcome their poor mechanical properties, natural polymers can be 
chemically modified owing to the existence of various chemical groups 
(hydroxyl, carboxyl, amine, thiol) which are vastly abundant in natural 
polymers and can be conjugated to form esters, amides, ethers and 
carbamates and can thereafter form crosslinks with many other poly-
mers[94,95]. 

Hydrogels that derive from synthetic polymers such as poly(ethylene 
glycol) (PEG), Poly(acrylamide) PAAm, and poly(N-isopropyl acryl-
amide) PNIPAM often possess great mechanical properties that can be 
tuned by altering processing parameters. Although PEG, PAAm and PVA 
are approved by the FDA, cytotoxicity of these synthetic biomaterials 
must be monitored due to use of potentially toxic reactants in their 
synthesis, negatively impacting their biocompatibility [96]. In contrast 
to natural hydrogels, synthetic hydrogels possess poor biological prop-
erties owing to the lack of cell-matrix interactions such as cell-adhesion 
and cell-mediated biodegradation. In order to overcome this limitation, 
bioactive molecules can be incorporated into synthetic hydrogels; cell- 
adhesive peptides [97], natural polymers [98,99] and growth factors 
can be incorporated as we will later detail [100]. 

4. Fabrication of injectable hydrogels 

Whilst hydrogels in general are arguably the most promising types of 
scaffolds currently being developed, injectable hydrogels can offer the 
additional benefit of minimally invasive implementation via intra- 
articular injection, in contrast to preformed scaffolds. The number of 
arthroplasties required to be performed in the US annually by 2030 is 
projected to be a staggering ~3.5 million [126–128], as such, injectable 

hydrogels have the potential to drastically reduce this number. The 3D 
network of injectable hydrogels allows for the encapsulation of cargo 
such as cells, drugs and other therapeutics which can augment tradi-
tional therapies such as injection of corticosteroids, ACI/MACI and MSC 
therapy [129,130]. Furthermore, they can fill any shape or defect unlike 
pre-formed scaffolds which must be designed to a specific shape or 
require the removal of healthy tissue to facilitate the implantation of the 
scaffold. Injectable hydrogels can be broadly classified as: in situ gelling, 
shear-thinning hydrogels, and micro-/nano- hydrogel systems. 

4.1. In situ gelling hydrogels 

In situ gelling hydrogels can be described as systems that are injected 
as a polymer solution (typically referred to as a precursor solution), once 
the solution has been injected to the defect site, the hydrogel is formed 
after the characteristic sol-gel transition due to either physical or 
chemical crosslinking (Fig. 4). 

4.1.1. Michael addition 
Michael addition reactions are the nucleophilic addition of a nucle-

ophile to an unsaturated carbonyl compound (Fig. 5A) [131]. Thiol-ene 
Michael additions are one of the most common reactions for the for-
mation of hydrogels taking place between polymers functionalised with 
thiol moieties and polymers with double bonds such as vinyl sulfones, 
maleimides, norbornenes, acrylates and allyl ethers. Several studies 
have designed promising hydrogels based on PEG and HA by thiol- 
Michael addition for cartilage tissue engineering purposes, with Li 
et al. using a PEG-HA hydrogel prepared by thiol-ene reaction as an 
injectable scaffold for chondroprogenitors exhibiting acceleration of 
ECM production and the ability to retain the phenotype and function of 
encapsulated chondroprogenitors [132–134]. A severe limitation of this 
mechanism is that the gelation time is relatively slow. Although tuning 
of the gelation time can be carried by changing precursor pH and con-
centration, Liu et al. reported an in-situ gelation time of 30 minutes 
[134], as a result the polymer solution has time to disperse from the 
defect site thus limiting the clinical application these systems. 

4.1.2. Thermosensitive 
Temperature responsive in situ gelling hydrogels have been exten-

sively researched in tissue engineering due to their ability to rapidly gel 
because of change from room temperature to physiological temperature 
(37

◦

C) inside the cartilage defect (Fig. 5B). The mechanism of these 
hydrogels is because of interactions between hydrophilic and 

Fig. 4. Schematic overview of in situ gelling mechanisms. The hydrogel pre-polymer is injected as a solution followed by gelation in situ as a result of one of the 
various crosslinking mechanisms discussed in this chapter (Created with Biorender.com). 
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Fig. 5. In situ gelling hydrogel systems. A) Schematic of thiol-ene Michael addition reaction between -thiol and -ene functionalised polymers. These systems are 
typically employed as a dual-barrel syringe, after extrusion the thiol moieties take part in a nucleophilic addition with the alkene modified polymer to from a 
crosslinked hydrogel. B Schematic of thermal gelling hydrogel. A pre-polymer solution is injected into the defect where the thermal transition occurs whether it is 
chain entanglement, Diels-Alder reaction or intermolecular physical interactions to form a structured hydrogel [133]. C) Schematic of enzymatic crosslinking 
mediated by HRP and H2O2. Phenolic conjugated polymers act as reducing agents in the presence of H2O2 and HRP. The reaction involves the transfer of electrons 
from the phenolic groups to the hydrogen peroxide, resulting in the oxidation of the phenol groups and the formation of radical species. The formed radical species 
react with neighbouring polymer chains and formation of covalent cross-links between polymer chains within the hydrogel. D) Schematic of photocrosslinking. 
Polymers functionalised with acrylate/methacrylate groups with the latter more common are mixed in solution with a photoinitiator typically Irgacure 2959 or LAP. 
The solution can be injected into the defect in vivo and exposed to a particular wavelength of UV light. Excitation of the photoinitiator leads to the formation of free 
radicals which attack the double-bond on the acrylate leading to chain reaction and forming a stable covalently crosslinked structure (Created with BioRender.com). 
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hydrophobic domains. Temperature increase yields the dehydration of 
polymer chains leading to the formation of hydrophobic domains and 
eventually transition of an aqueous liquid to a hydrogel network because 
of increase in entropy. Due to the absences of any potentially harmful 
chemical crosslinkers, thermosensitive hydrogels are extremely prom-
ising for tissue engineering purposes. 

Collagen hydrogels are arguably the most common thermores-
ponsive hydrogels for cartilage tissue engineering with collagen derived 
scaffolds being one of the early matrixes used in the very first MACI 
procedures [135]. Whilst the native cartilage is highly abundant in type 
II collagen, pure type II collagen hydrogels tend to be very weak. The 
most frequently used collagen scaffolds tend to be composed from type I 
and type III which are more mechanically robust than type II collagen. 
Recently, Kilmer et al. utilised a blend of type I and II collagen hydrogels 
which not only overcame limitations associated with mechanical sta-
bility but promoted chondrogenic differentiation of MSCs and recruited 
native chondrocytes to form repair tissue using an in vivo rabbit model 
[136]. In addition to their excellent biocompatibility and biodegrad-
ability, their ability to form a gel at physiological temperature makes 
them a suitable candidate for minimally invasive implementation 
[137–139]. Gelatin is a denatured form of collagen but retains the mo-
lecular characteristics present in collagen which are vital for cell adhe-
sion and signal transduction. These characteristics play a significant role 
in maintaining the chondrocyte phenotype. In comparison to collagen, 
at lower temperatures (~25

◦

C) gelatin molecules self-assemble to form 
triple helix structures therefore by itself gelatin would be inadequate to 
use a hydrogel for tissue engineering, therefore chemical modifications 
to functionalise gelatin for photocrosslinking or enzymatic crosslinking 
are necessary [140–142]. 

Chitosan (CS) is a naturally derived cationic polysaccharide pos-
sessing great biocompatibility and biodegradability and its positive 
charge gives it great adhesion to the negatively charged native pro-
teoglycans and is thus an attracting candidate for use in tissue- 
engineering applications. Chitosan can be mixed with β-glycer-
ophosphate (GP), as an ionic crosslinking agent, to create an in situ 
thermal-sensitive gelling system, whereby increasing GP concentration 
leads to a decrease in lower critical solution temperature (LCST) since 
GP modulates intermolecular forces involved in gel formation as a 
result, gelation temperature can be finely tuned [143]. The chitosan/GP 
system has been shown to support cell survival and proliferation of MSCs 
and differentiation towards cartilage-like tissue with its positive charge 
also allowing for electrostatic interaction with the negatively charged 
cartilage [144–146]. 

One of the most utilised thermo-responsive synthetic polymers is 
PNIPAM which can solidify in situ without the addition of cytotoxic 
crosslinkers, initiators, or catalyst molecules. Limitations of PNIPAM is 
its high level of syneresis resulting in a low equilibrium swelling ratio, 
instability at physiologic temperatures [147]. However, since the sol-gel 
transition occurs at temperatures around 32 

◦

C which is close to physi-
ological temperature (37 

◦

C), studies have shown that the temperature 
of the joint may decrease beyond this, thus affecting its suitability as a 
polymer for cartilage repair [148]. As a result, PNIPAM is often modified 
with natural polymers to alleviate its poor mechanical properties and 
limited biocompatibility. For example, HA [149], gelatin [150] and CS 
[151] have all been integrated with PNIPAM to form injectable ther-
mosensitive hydrogels with promising outcomes. Whilst PNIPAM is a 
promising biomaterial for cartilage tissue engineering, at the time of this 
review, a major limitation of PNIPAM is that it is still not FDA approved. 

Alternatively, Pluronic® F-127 is a triblock PEO–PPO–PEO co-
polymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) 
(PPO). The PEO block is hydrophilic and water soluble while the PPO 
block is hydrophobic and water insoluble. In an aqueous environment, 
these block copolymers self-assemble into micelles with a hydrophobic 
PPO centre core and a hydrophilic PEO outer shell that interfaces with 
water. Due to their amphiphilic nature, lipophilic molecules can be 
stored inside the hydrophobic core making Pluronic micelles effective 

thermosensitive drug transporters [152]. The sol-gel transition and 
resulting structural properties can be tuned by varying the concentration 
of Pluronic [153]. Pluronic F-127/ Poloxamer 407 is commonly used in 
biomedical applications due to its non-toxicity, biocompatibility, 
biodegradability, ability to support cell attachment and collagen for-
mation. Garcia-Couce et al. recently developed an injectable hydrogel 
composed of PF-127 grafted with the aforementioned chitosan to 
develop a hydrogel for dexamethasone delivery. Whilst the addition of 
chitosan led to decreased gelation time (~100s) at 37

◦

C, there was a 
more sustained release of dexamethasone upon coupling with PF-127 
[154]. The same combination of PF-127 and chitosan was employed 
as an injectable chondrocyte delivery vehicle which exhibited chon-
drocyte proliferation and ECM expression after 28 days [155]. 

Whilst the thermos-sensitivity of these hydrogels aid with inject-
ability at room temperature followed by gelation at the defect at phys-
iological temperature, the major limitation with thermosensitive 
hydrogels formed via physical interactions is that the nature of the 
physical bond is that they are inherently weak. Given that the defect is 
typically located in weight bearing portion of the cartilage, a semblance 
of mechanical strength is necessary for long term implant structural 
rigidity. 

To overcome the limitations of poor mechanical properties of phys-
ically crosslinked thermos-responsive hydrogels, the Diels-Alder (DA) 
reaction can be used to prepare hydrogel via stronger covalent bonds. 
The DA reaction is a thermoreversible “click” reaction between 
orthogonal molecules typically a diene and a dinucleophile with the 
reaction proceeding at 20-80

◦

C and is free from side reactions and by- 
products. Most commonly, polymers functionalised with furan and 
maleimide groups are typically used as the diene and dienophile 
respectively. Despite the reaction being accelerated in water, the DA 
reaction between furan and mal can take hours to days to proceed at 
physiological temperatures, as a result, many researchers utilise DA 
reaction as a secondary crosslinking method in situ whilst employing a 
faster, more stable primary crosslinking method first [156]. Alterna-
tively, fulvenes can be utilised instead of furan as the diene which 
exhibit 10 times faster crosslinking time compared to furan-mal 
hydrogels [157]. 

4.1.3. Enzymatic crosslinking 
Enzymatic crosslinking is a form of chemical crosslinking whereby 

the chemical reaction is mediated by the presence of enzymes. Several 
injectable hydrogels formed via enzymatic crosslinking for cartilage 
tissue repair have been reported utilising a variety of enzymes as cata-
lysts such as tyrosinase, transglutaminase, phosphates, thermolysin, 
oxidases and peroxidases [158,159]. The benefit of these crosslinking 
systems lies within the reaction taking place under mild conditions and 
does not generate toxic side products as compared to other chemical 
crosslinking reactions. However, these natural enzymes are costly, 
reportedly unstable and prone to deactivation when in solution [160]. 
Horse radish peroxidase (HRP) mediated systems are particularly ad-
vantageous and very commonly used as they can be used in conjunction 
with hydrogen peroxide (H2O2) to crosslink phenol-conjugated poly-
mers (Fig. 5C). This chemical crosslinking hydrogel system not only 
forms hydrogels under physiological conditions in a short period of time 
but also has excellent biocompatibility [161]. Whilst the mechanisms of 
release will be detailed further in this article, HRP systems are especially 
advantageous in drug delivery systems since crosslinking density, me-
chanical properties, gelation, and degradation kinetics can be tuned 
independently by variation of HRP and H2O2 concentrations [162]. 
These systems are typically administered with a double-barrelled sy-
ringe whereby the HRP and H2O2 reside in each respective chamber 
along with the polymer(s) being crosslinked. Upon injection, the two 
solutions mix and form a hydrogel post-administration. One such system 
is exhibited in (Fig. 5B) whereby a collagen type I-tyramine and hyal-
uronic acid-tyramine was fabricated as a bone marrow derived MSC- 
laden hydrogel system for cartilage regeneration displaying good in 
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vivo results [159]. Many researchers utilise tyramine due to its ease of 
functionalising via amidation to polymers such as collagen, dextran, 
PEG and commonly HA all of which have seen promising results for 
cartilage repair [161,163–169]. However, a major concern is the cyto-
toxicity and possible adverse immunological response to presence of 
H2O2 catalysing the crosslinking process with many studies reporting 
increasing concentration and exposure time of a variety of cells lead to 
increased cytotoxicity [170,171]. Due to this, injectable enzymatically 
crosslinked hydrogels utilizing HRP and H2O2 need to optimise the re-
action concentrations as to achieve a fast-crosslinking time but to avoid 
cytotoxicity. 

4.1.4. Photopolymerization 
Hydrogels can be prepared through photo-crosslinking, giving them 

the unique ability to crosslink in response to light exposure. The pre-
cursor solution typically consists of polymer(s), therapeutic molecules, 
cells, and photoinitiator. Once injected into the cartilage defect, this 
system offers precise spatial and temporal control over gelation via 
exposure to UV light which can also be administered in a minimally 
invasive arthroscopic manner. The photoinitiator plays a crucial role in 
these systems, as it generates free radicals upon exposure to a specific 
range of wavelengths, thus initiating polymerization (Fig. 5D). Some 
common photoinitiators include 2-Hydroxy-4’-(2-hydroxyethoxy)-2- 
methylpropiophenone (Irgacure 2959) and Lithium phenyl-2,4,6- 
trimethylbenzoylphosphinate (LAP), however, at high concentrations, 
these can be cytotoxic and only emit free radicals when excited by UV 
light which is not only detrimental to cells encapsulated inside the 
hydrogels but also to native cells residing near the defect [172]. To 
overcome this, some systems are able to make use of hydrogels with 
photoinitiator that are excited by less detrimental visible light such as 
eosin-Y and ruthenium/sodium persulphate [173,174]. Many natural 
and synthetic polymers contain hydroxy and reactive amine groups 
which can undergo substitution with the acrylate/methacrylate groups 
rendering the polymer suitable for photocrosslinking. There is a plethora 
of polymers that have been functionalised for photocrosslinking for 
cartilage tissue engineering prospects such as PEG, collagen, gelatin, 
hyaluronic, silk fibroin and sericin just to name a few [175–179]. Wang 
et al. designed an injectable hydrogel HA-Furan and Maleimide-PEG 
which was first rapidly crosslinked in 30s by photopolymerization in 
situ, but then thermal-induced DA click chemistry further occurred at 
37

◦

C between furan groups and maleimide groups and the slow reaction 
gradually increased the mechanical properties of hydrogel with the 
hydrogel showing good viability with a chondrocyte cell line [156]. 

4.2. Shear-thinning and self-healing 

Unlike in situ hydrogels, a distinct class of pre-formed hydrogels can 
be injected and exhibit viscous flow under shear stress (shear-thinning) 
which can then subsequently recover post-injection when the applied 
shear-stress is removed (self-healing). As a result, shear-thinning, self- 
healing systems do not require the precise tuning of gelation time unlike 
in situ forming hydrogels which have the potential for premature gela-
tion and blockage of the syringe or dispersion of the precursor from the 
defect site prior to gelation. These hydrogels are formed from physical 
crosslinks (hydrogen bonds, guest-host and electrostatic interactions) as 
well as from dynamic covalent bonds (Schiff-base, oxime chemistry and 
disulfide bonds) [180]. 

4.2.1. Physical crosslinking 
Supramolecular chemistry is based on the noncovalent binding of 

molecular motifs through hydrogen bonding, host-guest interactions, π-π 
interactions, Van-der-Waals forces, metal chelation and hydrophobic 
interaction [181]. These reversible non-covalent interactions allow for 
the recapitulation of the dynamic and viscoelastic behaviour of the 
native ECM and are therefore interesting candidates for hydrogels in 
cartilage tissue engineering. 

4.2.1.1. Hydrogen bonding. Hydrogen bonding entails an interaction 
between hydrogen atoms and electronegative atoms (Nitrogen, Oxygen, 
Fluorine). Whilst hydrogen bonds are comparably weaker than covalent 
bonds, the formation of multiple hydrogen bonds contributes to 
improved bonding strength and gelation of polymer chains [182,183]. 
As such, Ureido-pyrimidione (UPy) is an important motif allowing the 
formation of four hydrogen bonds per unit and can be incorporated via 
immobilisation or functionalisation to polymer chains. Owing to the 
reversible nature of UPy dimerization, hydrogels possess excellent self- 
healing properties [184]. Hou et al. grafted UPy to dextran owing to 
the abundance hydroxyl groups present on the dextran backbone. The 
hydrogel effectively formed cartilage and bone constructs which had 
excellent integration with one another (Fig. 6A) [185]. Another study 
utilised dual self-healing mechanisms, Schiff-base and UPy dimerization 
to form an oxidised alginate, UPy functionalised gelatin hydrogel with 
excellent self-healing time (2 mins). To overcome the limitation of poor 
mechanical strength, poly(ethylene glycol)-poly(urethane)/cloisite 
nanohybrid (PEG-PU/C) was incorporated into the hydrogel resulting 
in a 20-fold increase in compressive strength as well as positive effects 
on cell proliferation (Fig. 6B) [186]. 

4.2.1.2. Host-guest. Hydrogels formed via host-guest are formed by the 
interaction between host molecules and guest molecules in a type of 
“lock and key” manner. Most host-guest interactions are typically 
mediated by cyclodextrin which has a lipophilic inner cavity and a hy-
drophilic outer surface but also fewer common molecules like cucurbi-
turils, calixarenes and crown ethers are also used. Guest molecules can 
fit into the binding site of the host whilst also possessing functional 
groups than can interact with the host molecule. As a result of the 
reversibility of this mechanism, hydrogels exhibit shear-thinning and 
self-healing properties to facilitate IA injection [187]. Jeong et al. was 
able to demonstrate this system whereby β-cyclodextrin modified hy-
aluronic acid as the host, and adamantane-modified hyaluronic was 
utilised as the guest to form an injectable supramolecular hydrogel 
exhibiting shear-thinning and self-healing properties with the hydrogel 
system exhibiting cytocompatibility and capability to induce chondro-
genic differentiation in a rat model [188]. Since the host-guest inter-
action lacks mehanical stability, Li et al. designed a self-healing 
hydrogel composed of β-cyclodextrin and methacryloyl modified PLGA 
as the host and chitosan modified with methacryloyl moieties and cholic 
acid as the guest polymer. There was a host-guest interaction between 
the β-cyclodextrin and cholic acid respectively, where after injection, 
photocrosslinking was carried out to covalently crosslink the two 
methacrylate modified polymers. Adipose derived MSCs were encapsu-
lated within the hydrogel which demonstrated excellent regeneration in 
a rat defect model (Fig. 7A) [189]. 

4.2.2. Dynamic covalent bonds 

4.2.2.1. Schiff-base reactions. Schiff-base reactions occur via nucleo-
philic addition of an amine group to aldehyde/ketone groups to form 
dynamic covalent imine bonds. They have been used extensively in the 
formation of hydrogels for cartilage tissue engineering owing to the 
crosslinking occurring at physiological conditions and non-toxic prod-
ucts thereafter [190,191]. Amine and aldehyde groups are vastly 
abundant in natural and synthetic polymers used to formulate hydrogels 
for cartilage tissue engineering. For example, several injectable hydrogel 
systems have used chitosan for Schiff-base reactions owing to the 
abundance of amino groups it possesses including with PEG, fibrin, 
dextran, HA, and chondroitin sulphate. HA and dextran are both 
commonly used in Schiff-base reactions since they can be chemically 
cleaved with sodium periodate to introduce aldehyde groups, not only 
does this allow for Schiff-base formation of hydrogels, but the aldehyde 
groups provide adhesion with the native articular cartilage tissue and 
allow for the delivery of amine-rich therapeutics such as platelet rich 
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plasma [192]. Recently, Li et al. have developed a shear-thinning, self- 
healing hydrogel based on (ADH)-modified poly(l-glutamic acid) 
(PLGA-ADH) and benzaldehyde-terminated poly(ethylene glycol) (PEG- 
CHO). PLGA-ADH and PEG-CHO precursor aqueous solutions could be 
injected via a dual-barrel syringe, resulting in the formation of PLGA/ 
PEG hydrogels with excellent self-healing capability through dynamic 
reversible Schiff-base linkage between amino/hydrazide group on PLGA 
and aldehyde group on PEG. After rupturing, the groups quickly react 
with each other to form the new Schiff base bond again (Fig. 7B) [193]. 

4.3. Injectable systems with targeted defect adhesion 

Typically, arthroscopies are carried out using air to distend the knee 
joint allowing for visualisation and surgical intervention. Unfortunately 
there have been some cases where the air has led to patients suffering 
from an embolism which have potential to be fatal [194,195]. As a 
result, some institutions have adopted water-filled arthroscopy which 
eliminates any risk of embolisms occurring. The importance of this is 
that many injectable hydrogel scaffolds are not able to be implemented 

under water filled arthroscopy as they will be washed away before 
gelation can even take place. Some recent efforts have focussed on 
developing hydrogels that can adhere to the cartilage surface to prevent 
being washed away as well as improving lateral integration with the 
native cartilage. 

Utilising the Schiff-base bond in conjunction with photocrosslinking 
is a commonly used strategy for the design of hydrogels to help over-
come the poor bonding strength of the Schiff-base bond by itself whilst 
also maintain the adhesion of the hydrogel to the defect for example 
Chen et al. functionalised HA with methacryloyl and aldehyde groups 
rendering it possible to crosslink via photopolymerisation and also form 
Schiff-base bands to the amine rich cartilage defect (Fig. 8A) [196]. An 
extremely promising system was recently designed by Hua et al. HAMA 
was used in combination with o-nitrobenzyl functionalised hyaluronic 
acid combined with gelatin (HANB/GL). After exposure to UV light, 
HAMA undergoes rapid photopolymerisation whilst simultaneously, 
HANB photogenerates aldehyde groups which form Schiff-base bonds 
with amino groups situated on gelatin and to the native cartilage 
interface. The hydrogel exhibited increased mechanical properties 

Fig. 6. Hydrogen bonding shear-thinning, self-healing mechanisms for cartilage tissue repair. A) Dextran-UPy system reproduced from [185] with permission from 
John Wiley and Sons. B) Oxidised Alginate-UPy, gelatin UPy system self-healed via dual mechanism Schiff base formation and UPy dimerization. Both hydrogels 
exhibit remarkable self-healing as shown by reintegration of separated hydrogels reproduced from [186] with permission from American Chemical Society. 
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relative to single networks composed of HAMA and HANB/GL alone 
whilst also possessing superior adhesive strength to fibrin glue: a clini-
cally used tissue sealant (Fig. 8B) [197]. Whilst the use of Schiff-base 
bonds to provide adhesion have proved popular in cartilage tissue en-
gineering, the bonds lack stability in aqueous environments and are 
prone to hemiacetal hydrolysis and glycoside-bond cleavage in acidic 

medium which is worrisome due to the presence of synovial fluid and its 
acidic pH in osteoarthritic joints [198,199]. 

Therefore, researchers have drawn inspiration from sea creatures 
like mussels, known for their remarkable ability to adhere to rough and 
wet surfaces. Their mechanism is based on the presence dihydrox-
yphenylalanine (DOPA) which contains a catechol group capable of 

Fig. 7. Injectable shear thinning, self-healing hydrogel systems for cartilage repair displaying recovery after damage and removal of shear stress. A) A shear-thinning, 
self-healing injectable hydrogel system formed via host-guest interaction between cyclodextrin and cholic acid. The host material was composed of β-cyclodextrin 
and 2-hydroxyethyl methacrylate-modified poly(l-glutamic acid) (P(LGA-co-GM-co-GC)), while the guest material was chitosan modified by cholic acid, glycidyl 
methacrylate, and (2,3-epoxypropyl)trimethylammonium chloride. Reproduced from [189] with permission from American Chemical Society. B) A system composed 
of adipic dihydrazide (ADH)-modified poly(l-glutamic acid) (PLGA-ADH) and Dialdehyde functionalised poly(ethylene glycol) (PEG-CHO) via a Schiff base cross- 
linking reaction between amine and aldehyde groups on each respective polymer. Reproduced from [193] with permission from American Chemical Society. 
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binding to a variety of other molecules through physical and chemical 
interactions. Dopamine is an analogue of DOPA and capable of repli-
cating the adhesive properties found on mussels and the presence of 
amine group on dopamine allows it to be easily functionalised onto 
polymers such as alginate, gelatin, HA, and CS [200–203]. Thereafter, 
these functionalised polymers are able to adhere to the wet cartilage 
surface taking advantage of the amine and sulphated nature of cartilage 
resulting from the high density of collagens and GAGs present (Fig. 9A). 
For example, Zhang et al. designed an injectable hydrogel composed of 
dopamine functionalised alginate, chitosan and silk fibroin whilst 
simultaneously delivering exosomes for endogenous BMSC recruitment. 
The hydrogel not only possessed a high adhesive strength of 120 kPa, but 
hydrogel promoted BMSC migration, proliferation, and differentiation. 
Notably, the adhesive hydrogel helped repair cartilage defects in rat 
patellar grooves by recruiting endogenous BMSCs into the defect via 
chemokine signalling pathways and inducing differentiation of BMSCs 

into chondrocytes (Fig. 9B) [204]. 

4.4. Hydrogel microparticles 

An alternative solution to fabricate injectable hydrogels is to utilise 
pre-crosslinked micro and nano sized hydrogels as their size permits 
administration through a needle whilst also possessing shear-thinning 
behaviour. Typically, the size range of these particles is between 1- 
100 μm and are synthesised from a wide range of methods such as 
microfluidic emulsion, electrospraying, and mechanical fragmentation 
methods (Fig. 10) [13,205]. 

Once microparticles are injected into the defect, a secondary cross-
linking mechanism takes place which essentially forms an assembled 
hydrogel system. These jammed hydrogel MPs can encapsulate cells and 
be administered via intra-articular injection with these systems also 
exhibiting shear-thinning and self-healing properties to facilitate 

Fig. 8. Injectable hydrogels with targeted adhesion to the defect site by incorporation of chemical moieties. A) Aldehyde functionalised HAMA is photocrosslinked 
followed by Schiff-base bond in situ. Reproduced from [196] under Creative Commons license. B) A double network system composed of Norbornene functionalised 
HA (HANB), gelatin and HAMA. The system undergoes photocrosslinking whilst simultaneously aldehyde groups are photogenerated via NB therefore forming a 
Schiff-base bond to the amine rich defect. Reproduced from [197] under Creative Commons license. 
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injection [206]. Packing of the microgels into a defect forms a micro-
porous network owing to interstitial voids between molecules which 
allows for more diffusion, transport of nutrients and waste and perme-
ability (Fig. 11A) [13]. The porosity can be altered by tuning the size of 
the hydrogel MPs as well as the packing density which is independent of 
the matrix stiffness unlike bulk hydrogels, however if the size of the 
particle exceeds 10um, the hydrogels are considered colloidal rather 
than granular as their size permits influence from gravitational forces 
rather than thermal forces thus affecting their physiochemical proper-
ties [207]. Cells can move more freely through the porous structure, 
maximising cell interactions and enhancing synthesis of ECM [208,209]. 

Recent studies have shown granular hydrogel systems have been able to 
maintain chondrocyte phenotype and increase matrix synthesis in 
comparison to their bulk hydrogel system counterparts [210,211]. Zhu 
et al. designed a photo-annealed a granular hydrogel composed of hy-
aluronic acid, polyethylene glycol, and gelatin. Microparticles were 
formed and crosslinked by Diels-Alder reaction which could be mixed 
with chondrocytes and delivered to cartilage defects by injection, after 
which light was introduced to anneal the scaffold, leading to the for-
mation of a stable and microporous chondrocyte deploying scaffold 
facilitating hyaline-like cartilage regeneration in a rat full-thickness 
cartilage defect model (Fig. 11B) [210]. 

Fig. 9. A) Overview of mechanism of adhesiveness for dopamine functionalised hydrogel polymers (Created with Biorender.com). B) Alginate dopamine -Chitosan 
hydrogel provides mussel-inspired adhesion to the defect. Reproduced from [204] with permission from Elsevier. 

A. Atwal et al.                                                                                                                                                                                                                                   

http://Biorender.com


Advances in Colloid and Interface Science 321 (2023) 103030

16

5. Hydrogels for therapeutic delivery 

Whilst the scaffold material plays a significant role in the regenera-
tion of cartilage through the process of cell-ECM interaction, there are 
various other signalling pathways mediated by numerous bioactive 
growth factors that play a role in regulating the process of chondro-
genesis and hypertrophy. Therefore, encapsulation of these biologically 
active molecules inside hydrogels are very commonly used. 

5.1. Growth factors 

Growth factors are biologically active polypeptides produced 
natively and stimulate cellular division, growth, differentiation and 
regulation of articular cartilage homeostasis [212,213]. The trans-
forming growth factor beta (TGFb) family, insulin-like growth factor-1 
(IGF-1), fibroblast growth factor (FGF) family and platelet-derived 
growth factor (PDGF) family all play an essential role in 

chondrogenesis, and hypertrophy thus have been exploited in cartilage 
tissue engineering to regenerate damaged articular cartilage. Bone 
morphogenetic proteins (BMPs) are members of the TGFb superfamily 
and have the ability induce formation of bone and cartilage, in particular 
BMP-2 and BMP-7 have shown their ability to innately stimulate chon-
drogenesis and ECM deposition [212]. However, growth factors typi-
cally have short half-lives in the range of minutes and are only activated 
upon proteolytic cleavage or binding to the ECM [214]. Utilising 
hydrogels as a means of delivering growth factors to provide spatial- 
temporal control is a promising strategy. Growth factors are typically 
incorporated into hydrogel scaffolds by direct loading, encapsulation 
into micro/nano carriers which are entrapped in the hydrogel or by 
covalent tethering [215,216]. 

PRP is rich in the aforementioned growth factors and is considered to 
initiate and regulate cartilage healing by stimulating cell proliferation 
and inducing chondrogenesis [217]. Conventional PRP therapy of intra- 
articular injection has been combined with injectable scaffolds to 

Fig. 10. Hydrogel microparticle fabrication methods. A) Schematic of emulsion techniques to generate microparticles. Batch emulsion technique forms particles with 
large size variance since droplet size is uncontrolled. Microfluidic emulsion limits the size of the particle to the microchannel size. B) Schematic of electrospraying to 
form microparticles. C) Mechanical fragmentation produces random microgels which can then be filtered using a sieve to provide a desired size. (Created with BioR 
ender.com). 
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Fig. 11. A) Overview of granular hydrogels for cartilage repair. Pre-crosslinked microparticles are injected to defect followed by in situ annealing by secondary 
crosslinking. The resulting hydrogel possesses excellent mechanical properties while maintaining microporosity conducive for cells (Created with BioRender.com). B) 
Diels-alder formed microparticles annealed by photopolymerization possessing superior chondrogenesis compared to a conventional bulk hydrogel system composed 
of the same polymers, Reproduced from [210] with permission from American Chemical Society. 
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provide a more sustained release; however, these systems suffer from the 
need for surgical implantation. As a result, Liu et al. produced a 
photoinduced, imine crosslinked, hydrogel based on hyaluronic acid 
functionalised by o-nitrobenzyl alcohol. Under light irradiation, alde-
hyde groups are formed which can bond to amino groups on PRP as well 
as to the tissue surface; therefore, the in situ forming hydrogel had 
excellent adhesive properties and was shown to provide a controlled 
release of growth factors in vivo [218]. A similar product to PRP is 
platelet lysate. Compared to PRP which consists of blood platelets con-
taining growth factors necessary for chondrogenesis, instead, platelet 
lysate contains the lysate formed via repetitive freeze-thaw cycles of PRP 
and further centrifugations providing a high concentration of growth 
factors making it another commonly used molecule for cartilage tissue 
engineering hydrogels. Injectable hydrogels loaded with growth factors 
or platelet products are detailed in Table 2. 

5.2. Kartogenin 

Kartogenin (KGN) is a small bioactive molecule reported to enhance 
the differentiation of MSCs into chondrocytes. First identified by John-
son et al. KGN not only maintained the chondrogenic phenotype but also 
possesses chondroprotective abilities by inhibiting matrix breakdown by 
MMPs and is therefore promising for slowing the progression of OA 

[235,236]. Kartogenin has seen promising results ex vivo and on in vivo 
animal models by promoting Type II collagen and aggrecan synthesis 
and regulating catabolic activity and inflammation [237,238]. Recently, 
Johnson et al. have developed an analogue of Kartogenin (KA34) which 
underwent a phase I clinical trial which reported KA34 as a safe OA drug 
candidate with disease modifying, cartilage regenerative and pain 
modulating activities [239]. Nonetheless, KGNs size and low water 
solubility limits the therapeutic application of KGN. As a result, utilising 
KGN with hydrogel carriers has alleviated concerns with fast clearance 
of the small molecule from the synovial joint [218–220]. 

5.3. NSAIDs and corticosteroids 

Although rheumatoid arthritis (RA) and OA are inherently different 
diseases, inflammation is still a characteristic of early OA and an 
inherent source of pain, thus methods for anti-inflammatory drug de-
livery in RA can be translated to OA. Conventional intra-articular in-
jection of NSAIDs and steroids are limited by fast clearance by synovial 
fluid whereby drugs only reside in the joint for a few hours post IA in-
jection [240,241]. To overcome this short release time, combining these 
therapeutics with injectable hydrogels is hypothesised to sustain the 
release time. Table 3 summarizes hydrogel drug delivery systems that 
have been coupled with NSAIDs or steroids [224]. 

Table 2 
Recent progress in delivery of growth factors with injectable hydrogels.  

Growth 
Factors 

Method of injectability / 
Crosslinking 

Hydrogel material Loading mechanism Release rate Ref. 

TGF-b1 In situ gelling/ 
thermosensitive 

Silk fibroin blended with polylysine modified 
chitosan/GP 

Adsorption ~20-50% after 28 days [219] 

In situ gelling/ 
thermosensitive 

Thiolated chitosan and carboxymethyl 
cellulose hydrogel 

Adsorption 19-81% after 21 days [220] 

Enzymatic crosslinking Collagen-TA, HA-TA Adsorption Not reported [159] 
In situ gelling / 
thermosensitive 

Collagen hydrogel – PLGA microparticle 
composite 

TGF-b1 loaded PLGA 
microparticles encapsulated into 
bulk hydrogel 

~100% release after 21 days [221] 

Dual crosslinked in situ 
gelling:   

1. Thermosensitive  
2. Photocrosslinking 

Glycidyl methacrylate-modified 
hydroxypropyl chitin 

Adsorption ~70% release after 72 hours [222] 

TGF-b3 In situ gelling / 
thermosensitive 

Growth factor loaded PLGA MPs encapsulated 
in methoxy 
poly(ethylene glycol)-poly(alanine) 

Tgf-b3 loaded into PLGA MPs 
encapsulated into bulk hydrogel 

~60% after 2 months [223] 

Photocrosslinking Encapsulation in photocrosslinkable 
aldehyde-methacrylate functionalised 
alginate and amino-gelatin. 

adsorption Not directly reported, ~100% 
release of BSA after 30 days 

[224,225] 

Michael addition POSS-PEEP-thiolated HA hydrogel Adsorption 86.1% after 15 days [226] 
Granular hydrogel 
(microislands), 
1. Photocrosslinking 
2. Annealed by enzymatic 
crosslinking 

HAMA and sulphated HAMA Electrostatic interaction between 
-ve SHAMA and +ve TGFb3 and 
PDGF 

20% TGF-b3 released after 2 weeks 
2% PDGF release after 2 weeks 

[205] PDGF 

Microparticle-Hydrogel 
composite 

Alginate micropsheres then loaded into a silk- 
chitosan hydrogel 

Core-shell microparticle: 
KGN loaded into core. PDGF 
loaded into shell 

70-90% after 7 days [227] 

BMP-2 Thermosensitive BMP-loaded PLGA microspheres 
encapsulated withing P127 hydrogel 

BMP loaded into MPs 
encapsulated within bulk 
hydrogel 

~90-95% released after 10 days [228] 

IGF Photocrosslinking GelMA loaded with IGF-mimicking 
nanofibers 

IGF-mimicking nanofibers 
loaded into bulk hydrogel 

Not reported (in vivo study) [229,230] 

PRP Ionic crosslinking Alginate crosslinked by calcium ions released 
from CaCO3 -GDL 

Adsorption Not reported [231] 

Schiff-base PRP loaded HA-ALH, HA-ADH hydrogel and 
MnO2 nanoparticles loaded with BSA 

Adsorption ~70% proteins release after 3 days 
and ~125pg/ml of TGF-b. pH 
dependent 

[192] 

Platelet 
lysate 

Enzymatic crosslinking HA-TA Adsorption Not reported [232] 
In situ gelling, 
thermosensitive 

PDLLA-PEG-PDLLA Adsorption Total protein release varied from 
~50-90% after 40 days based on 
degrading enzyme 

[233] 

Electrostatic interactions Chitosan – chondroitin sulphate hydrogel NPs PL loaded NPs 61% and 71% released after 7 days 
for Tgf-b1 and PDGF respectively 

[234]  
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As discussed, hydrogels possess excellent capabilities to perform as 
scaffolds, facilitating essential ECM-cell interactions. At the same time, 
they can concurrently serve as delivery vehicles for cells, drugs, and 
therapeutics. Conventional intra-articular (IA) injections offer tempo-
rary relief and symptomatic treatment but are limited by the short half- 
life of therapeutic agents and lack of targeted delivery, which hinders 
their overall efficacy [254]. In contrast, injectable hydrogels can func-
tion as drug-delivering scaffolds, enabling sustained and localized drug 
release through various encapsulation methods. Therapeutics can be 
easily encapsulated within the crosslinked network formed by hydro-
philic polymer chains commonly known as the mesh. The release of 
physically encapsulated cargo is mediated by rate of diffusion which is 
dependent on the mesh size, degradation rate, swelling ratio, and drug 
size (Fig. 12A) [255–257]. As the mesh size and drug size converge, the 
biological molecule becomes further entrapped until the point of 
immobilisation. Immobilisation may also be achieved by having 
hydrogel-cargo interaction i.e. physical or chemical crosslinking of the 
therapeutic to hydrogel polymeric chains (Fig. 12B). To release immo-
bilised cargo, the hydrogel requires disruption to the matrix via swelling 
or release mediated by external stimuli, in addition to enzymatic/hy-
drolytic degradation of the matrix to release the therapeutic from the 
hydrogel [258–260]. Micro/nanoparticles may also be employed for 
cargo delivery but their small surface area to volume ratio means they 
are also limited by fast diffusivity of their cargo [261]. To overcome this, 
micro/nanoparticles can be combined with bulk hydrogels in a com-
posite system, thereby requiring the degradation of two hydrogel ma-
trixes for release to occur, thereby providing further sustainment. By 
capitalizing on these mechanisms, injectable hydrogels hold tremendous 
potential for enhancing cartilage repair compared to conventional IA 
therapies [262]. 

The mechanism of loading drugs into the hydrogel plays a major role 
in the release mechanism of the therapeutic agent. To encapsulate drugs 
within the hydrogel network, the drug solution can be mixed with the 
precursor hydrogel solution and upon polymerisation, the drug mole-
cules become physically trapped within the matrix. The diffusivity is 
altered by polymeric chains in the hydrogel network with open spaces 
between the chains known as mesh [264]. The mesh size as well as the 
molecular size of the drug determines diffusivity (D) through a hydrogel 

owing to steric interactions between the drug and polymeric network. If 
the mesh size, η , is relatively larger than the size of a drug molecule, 
rdrug, then the dominant mechanism of release is diffusion and can be 
quantified by Stokes-Einstein equation [257]. 

D =
RT

6 π η rdrug
(1) 

Where R is the gas constant and T is the absolute temperature. As the 
size of the drug increases relative to the size of the mesh, the rate of 
diffusion decreases until the drug is fully entrapped and immobilized 
within the matrix. Subsequently, swelling, mechanical deformation, or 
mechanical degradation of the network is required to facilitate the 
release of entrapped drugs. 

As an alternative to direct encapsulation, the hydrogel may be spe-
cifically designed such that it has an affinity with the therapeutic 
molecule, either by covalent linkage or physical interactions (electro-
static, hydrophobic). Compared to direct encapsulation, the release of 
drugs when these drug-hydrogel interactions are involved are inde-
pendent of the mesh size and drug molecule size and are only released 
after covalent linkages have been cleaved or degradation of the hydrogel 
network. For example, TGFb was thiolated and covalently incorporated 
into PEG diacrylate (PEGDA) hydrogels which was shown to promote 
chondrogenesis and differentiation of MSCs [265,266]. Covalent 
conjugation of TGF-b1 to the hydrogels provide a more favourable 
microenvironment to induce chondrogenesis when compared to 
hydrogels with TGF-b1 incorporated via adsorption [267]. Furthermore, 
KGN possesses carboxyl moieties allowing for covalent conjugation to 
polymeric networks which can further sustain the release profile of this 
small molecule. For example, the amino group in chitosan is able to 
covalently bind with the carboxyl group of KGN showing an exceptional 
increase in release rate of up to seven weeks compared to just three 
weeks without covalent binding [225,268,269]. Bedouet et al. designed 
PEG microspheres which exhibited extremely slow release of ibuprofen 
as a result of hydrolysis of a drug-hydrogel ester linkage [249]. Puiggali- 
Jou et al. took advantage of positively charged growth factors TGF-3 and 
PDGF and loaded them into HAMA which was sulphated thereby giving 
the hydrogel a negative charge to generate electrostatic interaction be-
tween the growth factors and the hydrogel. The hydrogel was then 

Table 3 
Injectable hydrogel systems used to deliver NSAIDs or steroids for symptomatic joint pain relief.  

Classification of 
Drug 

Drug Hydrogel Mechanism of delivery Release time Ref. 

NSAIDs Celecoxib Thermo-responsive 
acetylated PCLA-PEG-PCLA 

Erosion of hydrogel ~4 weeks [242,243] 

Naproxen Schiff base (dextran (Dextran-ox), gelatin and 
hyaluronic acid) 

Diffusion and degradation of 
hydrogel 

240 mins [244] 

Meloxicam Drug loaded NPs encapsulated inside 
carboxymethyl chitosan, methylcellulose, 
pluronic and zinc chloride hydrogel 

Bulk and surface erosion of NPs 
followed by diffusion of drug from 
hydrogel matrix 

37 Days [245] 

Diclofenac Thermoresponsive HA - Poloxamer 407 Diffusion 40% release after 4 days [246] 
GelMA microspheres coated with (DMA-MPC) Degradation of hydrogel network ~12-20% in 2 days [247] 

Piroxicam Thermoresponsive HA – Poloxamer 407 Diffusion mediated by highly packed 
super-molecular structure of 
poloxamer 407 

10 days [248] 

Ibuprofen PEG microspheres Hydrolysis of the ester link between 
the drug and microsphere 

~2% after 3 months [249] 

Steroids Triamcinolone 
acetonide 

Thermo-sensitive poly(organophosphazene) 
microspheres 

Degradation of the hydrogel network 
to overcome hydrophobic interaction 
between hydrogel and drug 

6 weeks [250] 

Drug loaded PLA/PEG-PDL MPs loaded into 
thermoresponsive poly(PEGMA) hydrogel 

Erosion/relaxation of hydrogel 
network and diffusion 

~60% release in 24 hours [251] 

Dexamethasone Schiff base (dextran (Dex-ox), gelatin and 
hyaluronic acid) 

Diffusion and degradation of the 
hydrogel 

~22% after 5 days [244] 

Drug-loaded PLGA MPs encapsulated in 
chondrocyte laden agarose hydrogel 

Diffusion and degradation of 
hydrogel 

~33% after 28 days [252] 

Drug loaded PLGA NPs encapsulated in four- 
arm maleimide-functionalised PEG 

Cleavage of MMP degradable 
crosslinks 

Not reported (release varied 
depending on concentration of 
collagenase used) 

[253]  
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fragmented into “microislands” to form a granular hydrogel annealed 
via enzymatic crosslinking in situ with the system showing increased 
matrix deposition and cartilage tissue maturation when compared to 
bulk or homogeneous granular hydrogels whilst the sustained release of 
growth factors provided biochemical cues for guiding cell migration and 
differentiation into cartilage [211]. 

In the native cartilage ECM, cells are responsible for mediating tissue 
development, enabling tissue composition and structure to evolve dur-
ing growth and development [270]. The native ECM is degraded by 
MMPs and a disintegrin and metalloproteinase with thrombospondin 
motifs (ADAMTS) which are secreted by chondrocytes. Hydrogels with 
enzyme-sensitive peptide crosslinks can undergo cell-mediated degra-
dation and therefore degradation rate of the scaffold can be tuned finely 
with ECM synthesis, but this network degradation may also permit the 
release of therapeutics that are tethered to the hydrogel by enzyme- 
degradable crosslinks [266,271,272]. MMP-13 is particularly related 
to the degradation of articular cartilage in OA by aggressive breakdown 
of Type II collagen and it has been shown that patients who have suf-
fered AC defects have upregulation of MMP-13 [273]. Recently, Tia-
nyuan et al. took advantage of this biochemical cue by designing a PEG 
hydrogel with MMP-13 degradable peptides via Michael addition, when 
loaded with KGN and exosomes in vitro and in vivo studies show that the 
hydrogel possessed good injectability, on-demand anti-inflammation, 

and immunomodulation capabilities [274]. A four-arm maleimide- 
functionalized polyethylene glycol (PEG-4MAL) encapsulated PLGA NPs 
loaded with dexamethasone. Not only did the system possess excellent 
mechanical properties but the hydrogel was synthesised with crosslinks 
formed commonly expressed during OA. As a result, the hydrogel system 
degraded in coherence with the progression of OA and subsequently 
released dexamethasone on-demand [253]. 

Alternatively, the release of therapeutics through network degrada-
tion can be facilitated through external stimuli to provide on-demand 
release [275]. Magnetic fields can cause encapsulated magnetic nano-
particles to deform the hydrogel matrix, sonication with an ultrasound 
transducer to cause network degradation as well as UV light triggered 
degradation via photolysis [276,277]. Cogan et al. utilised an alginate 
hydrogel loaded with phospholipid vesicles which had thermos- 
responsive crosslinks to magnetic nanoparticles. Upon exposure to an 
electromagnetic field, vesicle content was released inducing a cellular 
response leading to the increased expression of collagen secreted by 
chondrocytes after 14 days relative to hydrogels without electromag-
netic stimulation. (Fig. 13A) [278]. Yuan et al. prepared an injectable 
chitosan-chondroitin sulphate hydrogel via Schiff base reaction and 
PLGA MPs which were loaded with KGN and embedded within the 
hydrogel. Results showed that the MPs increased the compressive 
modulus of the hydrogel but also, following sonication with an 

Fig. 12. A) Mechanism of release for altered size of drug and/or mesh size. As drug size increases or mesh size decreases leading to increased degree of drug 
entrapment rate of diffusion slows down. In the case of immobilisation (drug size > mesh size) there is a requirement for degradation, deformation or swelling of the 
hydrogel mesh is required to release entrapped drugs. B) Depending on the hydrogel and therapeutic being utilised, specific interactions between the drug and 
hydrogel can be engineered which has the benefit of further sustaining the release of the therapeutic. Redrawn from [263] (Created with Biorender.com). 
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ultrasound transducer, the burst release of KGN could be controlled 
(Fig. 13B) [277]. One significant drawback of external mechanical 
stimulation for drug release is that the hydrogel network may undesir-
ably degrade during transduction. To overcome this, the use of self- 
healing hydrogels for these drug delivery systems is preferential. 

A major challenge for therapeutic delivery to cartilage is the minis-
cule pore size (~6-14 nm) of the ECM [16,279]. As a result, only very 

small drugs are even able to penetrate the cartilage matrix but again this 
is limited by the fast clearance of these drugs from the synovial joint. As 
a result, smart hydrogel micro-/nanocarriers have the potential to 
overcome the obstacles posed by the dense structure of the cartilage 
matrix. Micro-/nano-carriers possess the innate ability to have their 
surface modified by physical and chemical interactions to not only in-
crease their adhesion to the defect site but to also increase their 

Fig. 13. External stimulation of hydrogels to release encapsulated therapeutics. A) Cells and magnetic nanoparticle-vesicles (MNPVs) are co-immobilized within an 
alginate hydrogel (yellow). MNPVs are self-assembled nanocarriers composed of magnetic nanoparticles coated with N-biotinoyl dopamine 1 (1-MNP) and DPPC 
vesicles containing biotin-DHPE 2 (2-DPPC), which are linked together by avidin. Biologically active molecules, such as drugs (blue), can be non-invasively released 
by an alternating magnetic field (AMF), and these released therapeutics in turn induce responses from cultured cells upregulation collagen expression in chon-
drocytes. Reproduced from [278] with permission from John Wiley and Sons. B) Chitosan-chondroitin sulphate microspheres encapsulating KGN exhibited release 
which was mediated by ultrasound transduction. Reproduced under Creative Commons license. [277]. 
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lubrication, a property that is so often neglected during the design of 
injectable hydrogels [280]. Lei et al. designed HAMA microcarriers 
functionalised with cationic liposomes loaded with rapamycin with the 
for specific cartilage targeting via electrostatic interaction whilst syn-
ergistically providing enhanced lubrication properties due to self- 
renewable hydration layers (Fig. 14A) [281]. Han et al. utilised a 
dopamine and 2-methacryloyloxyethyl phosphorylcholine coating 
which gave the microspheres cartilage adhesive and lubricating prop-
erties respectively [247]. In a similar manner, Lin et al. utilised dopa-
mine modified HAMA microspheres to adhere to the cartilage surface 
but were also encapsulated with gallic acid-loaded liposomes as a sec-
ondary structure which was positively charged allowing for enhanced 
diffusion through the dense cartilage matrix (Fig. 14B) [282]. Yu et al. 
took advantage of the cartilage ECM by utilising a nanoparticle encap-
sulating KGN and Dex whilst also incorporating a Type II collagen tar-
geting peptide for specific targeting of cartilage [283]. All of which are 
promising system to provide solutions for overcoming the poor pene-
tration of therapeutics through the cartilage matrix. 

6. Clinical translation of hydrogels for cartilage repair 

Advances in the field of cartilage tissue engineering have led to the 
development of many hydrogel systems, many of which are described in 
this paper. However, only a few injectable hydrogels are commercially 
available due to the lengthy and costly regulatory approval re-
quirements. Since there are only a few commercially available injectable 
hydrogels scaffolds are available for the purpose of cartilage tissue en-
gineering, hydrogels that are currently in clinical trials are also included 
(Table 4). These injectable hydrogels can be categorised as hydrogels 
used as augmentation for microfracture procedures (e.g. JointRep®, 
BST-CarGel®, GelrinC™, ChonDux and CARTISTEM®) augmentation 
for ACI procedure (e.g. NOVOCART® Inject plus) and hydrogels for the 
repair and symptomatic treatment of cartilage lesions (Hy2Care®, 
Arthrosamid®). 

The injectable hydrogels used as augmentation strategies for 
microfracture are effectively iterations of the AMIC procedure first 
introduced by Behrens whereby a collagen I/III matrix protects the 
blood clot and enhances chondrogenesis [304]. The use of injectable 
hydrogels such as JointRep®, BST-CarGel®, Gelrin C™, ChonDux and 
CARTISTEM® provides increased ease of implementation as compared 
to the traditional collagen matrices. JointRep® is a thermosensitive 
hydrogel composed of deacylated chitosan which is cationic providing it 
with excellent adhesive ability. A clinical study showed admirable re-
sults when used in conjunction with microfracture whereby the WOMAC 
score decreased by 88% at 6 months and 93% at 12 month follow up 
stages and post-op study group showed Type II collagen and hyaline-like 
cartilage in the regenerated tissue [286]. Similarly, BST-CarGel® is also 
a themosensitive chitosan-based hydrogel but requires mixing with the 
patient’s whole blood before surgery which has the benefit of reinforc-
ing the clot during coagulation and impeding its retraction [305]. Gelrin 
C™ is based on PEGDA and denatured fibrinogen and is injected in 
liquid form to the defect directly after the microfracture procedure. 
Following 90 seconds of exposure to UVA light, the defect is filled with 
the formed hydrogel. A 24-month follow up of GelrinC™ applied to 56 
patients showed the significant increase of MOCART score, likely 
transformation of repair tissue to hyaline cartilage and effectively sup-
ports the potential of GelrinC™ as a treatment type for chondral and 
osteochondral lesions [306]. Similar to GelrinC™, ChonDux is also 
based on PEGDA but incorporates HA and CS to develop a fast-gelling 
bioadhesive. Data from a clinical trial is supporting the CE approval of 
the product although a 2-year follow up showed ChonDux promotes 
stable restoration of full thickness articular cartilage defects [301]. 
CARTISTEM® utilises a HA hydrogel at 4% but is the only hydrogel 
system utilising an allogenous cell source (human umbilical cord 
derived MSCs at 5 million cells/ml of hydrogel). A 7-year follow up of 
the phase I/II trial showed CARTISTEM® to be a safe and efficacious 

treatment modality for patients with OA related chondral defects. The 
phase III trial compared the system with conventional microfracture, 
with the follow up across 5-years showing CARTISTEM® to have 
significantly improved cartilage repair compared to conventional 
microfracture [302,303]. 

NOVOCART® Inject plus is an augmentation strategy for ACI. Like 
traditional ACI, chondrocytes are harvested arthroscopically, expanded, 
and combined with NOVOCART® Inject plus which is composed of 
several components namely expanded chondrocytes, albumin and hy-
aluronic acid. A dual-chamber syringe with the cell suspension and 
hydrogel components in one chamber and the hydrogel crosslinker in 
the other chamber is used to completely cover the defect. The hydrogel 
is currently in phase III study with a 5-year follow-up time to treat 100 
patients with chondral or osteochondral defects, a recent analysis at a 2- 
year time point has shown 93% of patients had at-least a 10% increase 
on their KOOS score compared to pre-operative level and MRI analysis 
showed increased maturation, reorganisation, and integration of repair 
tissue [307]. 

Hy2Care® and Arthrosamid® are both standalone hydrogels that are 
not part of any augmentation strategy for microfracture or ACI. 
Hy2Care® is an enzymatically crosslinked hydrogel based on hyaluronic 
acid and dextran. A dual chamber syringe system is utilised where 
dextran and hyaluronic acid which are situated in their own chamber 
mix as they exit the syringe and form a hydrogel in situ within 30-40 
seconds. Whilst the hydrogel can be administered via IA injection, the 
first clinical study will be performed in a mini-open procedure, and it is 
hoped that the data obtained from the clinical trial will aid the CE 
application of this product [292,293]. Arthrosamid® is described as a 
non-biodegradable hydrogel composed of polyacrylamide (2.5%) and 
non-pyrogenic water (97.5%) providing symptomatic treatment for knee 
osteoarthritis. The hydrogel is injected into the joint cavity which 
cushions the joint to reduce pain, decrease stiffness and aid movement. 
Whilst the hydrogel is expected to increase viscosity of synovial fluid 
and improve lubrication, the product separates itself from other visco-
supplementation injections since it becomes part of the soft synovial 
tissue in the joint capsule. A limitation of Arthrosamid® is that the 
polyacrylamide material reportedly has some cause for controversy. A 
polyacrylamide viscosupplement from Noltrex®, Russia caused host 
tissue reaction in the form of foreign body granuloma, edema, inflam-
mation, and redness induration [308]. Although the case was reported 
as a unique adverse event and the cause unclear, the use of poly-
acrylamide warrants careful consideration. 

7. Conclusions and future perspectives 

In this comprehensive review, we explored the recent strides made in 
the design and development of injectable hydrogels for minimally 
invasive cartilage repair. Compared to conventional procedures, the use 
of injectable hydrogels offers numerous advantages, including reduced 
surgical invasiveness, the ability to fill large and irregular defects, and 
simplified implementation compared to the complex suturing and gluing 
required for pre-formed matrices. Moreover, these hydrogels hold 
immense potential as delivery vehicles for biologically active molecules, 
such as cells, growth factors, steroids, and NSAIDs, addressing the lim-
itations of standalone therapeutic injections with fast release, repetitive 
administration, and clearance. 

Despite the promising potential of injectable hydrogel-based carti-
lage repair, several challenges persist, hindering their widespread clin-
ical application. Among these challenges is the need to achieve 
mechanical properties in hydrogels that closely match those of native 
cartilage. Given the complex nature of cartilage as a load-bearing tissue 
with unique viscoelastic properties, hydrogels often fall short in terms of 
stiffness and resilience, especially in defects that are likely to be situated 
on weight-bearing portions of the cartilage, leading to sub-optimal 
regeneration and potential compromise of overall joint function. 

Long-term stability is another crucial concern, as certain hydrogels 
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Fig. 14. Use of micro-/nanocarriers for the delivery of biologically active molecules for the repair of cartilage and suppression of OA. A) Design of Rapamycin loaded 
liposomes inside HAMA microspheres for treating osteoarthritis based on combining hydration lubrication and ball-bearing lubrication and maintaining cellular 
homeostasis. Reproduced from [281] under open access. B) Design of charge-guided micro-/nano-hydrogel microspheres for treating OA based on penetrating 
cartilage, ROS-responsive drug release and inhibiting chondrocyte apoptosis. Reproduced from [282] with permission from John Wiley and Sons. 

A. Atwal et al.                                                                                                                                                                                                                                   



Advances in Colloid and Interface Science 321 (2023) 103030

24

may experience structural degradation, mechanical integrity loss, or 
excessive swelling over extended periods, hindering their capacity for 
sustained support and therapeutic delivery. Balancing biodegradation 
kinetics with tissue regeneration proves to be an ongoing challenge, 
where hydrogels that degrade too rapidly may impede the formation of 
new cartilage, while those that degrade too slowly may result in inad-
equate healing outcomes. 

Successful cartilage repair also necessitates seamless integration of 
the hydrogel with the surrounding host tissue. Overcoming this hurdle 
of achieving strong bonding and seamless tissue integration remains a 
paramount objective, as poor integration can lead to fibrous tissue for-
mation at the interface, limiting mechanical load transfer and reducing 
regenerative potential. Integration of the hydrogel will also allow for 
migration of endogenous chondrocytes from the native cartilage as well 
MSCs residing in the subchondral bone. Furthermore, strong adhesion of 
the hydrogel to the defect also aids the clinician since arthroscopic 
surgeries carried out under pressurised air or liquid could lead to 
dispersion of the hydrogel before crosslinking can begin to occur. Some 
recent advancements have explored incorporating specific moieties to 
enhance interaction with native cartilage [196,197], nonetheless further 
research is needed in this aspect. 

Additionally, transitioning from laboratory-scale synthesis to large- 
scale production for clinical use poses practical challenges. Ensuring 
reproducibility, scalability, and batch-to-batch consistency of hydrogels 
are essential for regulatory approval and widespread adoption. The 
development of cost-effective manufacturing processes without intro-
ducing batch-to-batch variability is crucial in the translation of 
hydrogel-based therapies. Perhaps this challenge is one of the major 
reasons as to why there is still not as many hydrogels commercially 
available relative to the vast amount of research being done in this field. 

Design parameters inherently differ based on whether the defect is 
focal or originates from degeneration due to osteoarthritis (OA). 

Osteoarthritic joints present a distinct microenvironment marked by 
factors such as a lower pH level and elevated matrix metalloproteinases 
(MMPs). These factors can expedite the degradation of scaffold materials 
when compared to implantation in focal defects [309]. In the case of 
focal defects, hydrogel design may emphasize controlled delivery of 
growth factors or chondroprotective agents to stimulate tissue regen-
eration. Conversely, defects resulting from OA may benefit from 
hydrogels engineered for the targeted release of anti-inflammatory 
drugs, given the inflammatory component associated with OA. It is 
essential to recognize that there is no one-size-fits-all solution in 
hydrogel design. Tailoring approaches to accommodate the unique 
needs of individual patients and specific joint conditions could be 
beneficial to improve patient outcomes. Customizing hydrogels to 
optimize the delivery of therapeutic agents, biomechanical properties, 
and other characteristics ensures a more precise and effective response 
to the cartilage defect location, origin, size and depth, microenviron-
ment, amongst other patient requirements. 

Nonetheless, the significant advancements in tissue engineering 
witnessed in recent years fuel optimism that these design challenges will 
be overcome, revolutionizing cartilage repair and ultimately improving 
patient outcomes. Continued interdisciplinary efforts and innovative 
approaches will pave the way towards realizing the full potential of 
injectable hydrogels for cartilage repair, offering a promising outlook for 
the field of regenerative medicine. 
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Table 4 
Injectable hydrogels that are commercially available and used clinically or injectable hydrogels that are currently undergoing trials.  

Product Name Trial(s) 
start - 
end 

CE 
Mark 

Company/Institute Material and composition Application Clinical trial 
Identifier 

Ref. 

JointRep® 2021- 
2025 

✓ Medicwave, 
(Malaysia) 

Deacylated chitosan Augmentation for 
microfracture 

NCT04840147 
(Recruiting) 

[284–286] 

CaRes® 2003- 
2005 

✓ Arthro Kinetics 
(Esslingen, Germany) 

Type I collagen from rat tail tendon with/ 
without autologous chondrocytes 

Augmentation for ACI 
(MACI) 

N/A [287,288] 

BST-CarGel® 2006- 
2015 
2010- 
2018 

✓ Smith & Nephew, 
(United Kingdom) 

Chitosan solution buffer mixed with 
autologous whole blood before application 
after bone marrow stimulation technique 

Augmentation for 
microfracture 

NCT00314236 
(Completed) 
NCT01246895 
(Completed) 

[289–291] 

Hy2Care® 2022- 
2024 

− Hy2Care, 
(Netherlands) 

Dextran and Hyaluronic acid conjugate Cartilage defect repair 
for small lesions (0.5- 
2cm2) 

NCT05186935 
(Recruiting) 

[292,293] 

Arthrosamid® 2022- 
2026 
2021- 
2027 

✓ Contura International 
Ltd., (Denmark) 

2.5% cross-linked polyacrylamide and 97.5% 
non-pyrogenic water 

Symptomatic treatment 
for knee OA 

NCT05086068 
(Not yet 
recruiting) 
NCT05057559 
(recruiting) 

[294,295] 

Gelrin C™ 2009- 
2019 
2017- 
2023 

✓ Regentis Biomaterials 
Ltd., (Israel) 

PEG diacrylate and denatured fibrinogen 
(formed in situ via photopolymerisation) 

Augmentation for 
microfracture 

NCT00989794 
(Unknown) 
NCT03262909 
(Active, not 
recruiting) 

[296,297] 

NOVOCART® 
Inject plus 

2015- 
2019 
2017- 
2021 

✓ Tissue Engineering 
Technologies AG 
(Germany) 

Expanded autologous chondrocytes, modified 
human albumin, isotonic sodium hyaluronate, 
PEG crosslinker 

Injection system for ACI 
procedure 

NCT02941120 
(Completed) 
NCT03319797 
(Active, not 
recruiting) 

[298] 

ChondDux 2010- 
2017 

− Zimmer Biomet 
Holdings, Inc (USA, 
Indiana) 

PEG/HA functionalised by CS (formed via 
photopolymerisation) 

Augmentation for 
microfracture 

NCT01110070 
(Terminated) 

[299–301] 

CARTISTEM ® 2009- 
2011 
2012- 
2021 

✓ Medipost Co Ltd. 
(South Korea) 

Hyaluronic Acid with allogenic human 
umbilical derived MSCs 

Augmentation for 
microfracture 

NCT01733186 
(Completed) 
NCT01041001 
(Completed) 

[302,303]  
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