

Bungarus fasciatus venom from eastern and north-east India: venom variation and immune cross-reactivity with Indian polyvalent antivenoms

Talukdar, Amit; Malhotra, Anita; Lalremsanga, H.T.; Santra, Vishal; Doley, Robin

Journal of Proteins and Proteomics

DOI:

10.1007/s42485-022-00104-2

Published: 01/03/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Talukdar, A., Malhotra, A., Lalremsanga, H. T., Santra, V., & Doley, R. (2023). Bungarus fasciatus venom from eastern and north-east India: venom variation and immune cross-reactivity with Indian polyvalent antivenoms. *Journal of Proteins and Proteomics*, *14*(1), 61-76. Advance online publication. https://doi.org/10.1007/s42485-022-00104-2

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal?

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

- 1 Molecular phylogeny reveals distinct evolutionary lineages of the banded krait,
- 2 Bungarus fasciatus (Squamata, Elapidae) in Asia
- 3 Lal Biakzuala¹, Hmar T. Lalremsanga^{1,*}, Vishal Santra^{2,3}, Arindam Dhara², Molla T. Ahmed²,
- 4 Ziniya B. Mallick², Sourish Kuttalam^{2,4}, A. A. Thasun Amarasinghe^{5,*} & Anita Malhotra^{4,*}
- ¹Developmental Biology and Herpetology Laboratory, Department of Zoology, Mizoram
- 6 University, Aizawl, Mizoram 796004, India. ²Society for Nature Conservation, Research
- 7 and Community Engagement, Nalikul, Hooghly, West Bengal 712407, India. ³Captive and
- 8 Field Herpetology, 13 Hirfron, Anglesey LL65 1YU, Wales, UK. ⁴Molecular Ecology and
- 9 Evolution at Bangor, School of Natural Sciences, College of Environmental Sciences and
- 10 Engineering, Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK.
- ⁵Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas
- 12 Indonesia, Kampus UI, Depok 16424, Indonesia. email: htlrsa@yahoo.co.in;
- thasun.amarasinghe@ui.ac.id; a.malhotra@bangor.ac.uk

14 Abstract

- 15 The banded krait, *Bungarus fasciatus* is a widespread elapid snake, likely to comprise
- several distinct species in different geographic regions of Asia. Therefore, based on
- molecular phylogenetics and comparative morphology data, we present an overview of the
- systematic composition of the species to delimit potential biogeographic boundaries. Our
- 19 phylogenetic analyses, based on four mitochondrial genes, reveal the existence of at least
- 20 three evolutionary lineages within *B. fasciatus*, corresponding to Indo-Myanmar, Sundaic
- 21 and eastern Asian lineages. We are convinced that there are at least three taxonomic
- 22 entities within the nomen *B. fasciatus* and restrict the distribution of *B. fasciatus* sensu
- 23 stricto to the Indo-Myanmar region. We also provide additional natural history data of the
- 24 taxon from eastern India. Finally, we advocate further studies to establish the degree of
- 25 reproductive isolation among these diverging evolutionary lineages and to reassess the
- 26 systematic status of this species complex especially the Sundaic and eastern Asian
- 27 lineages.

28

Introduction

- 29 Aside from its taxonomical importance, recognition and ascertainment of independently
- 30 evolving lineages is crucial for understanding the evolutionary processes affecting the origin
- of population structure and species diversification [1]. Because of the growing availability of
- 32 genetic methods for species delineation [2], numerous studies have uncovered cryptic

for instance, among fishes [3–5], amphibians [6–8], birds [9–11], and mammals [12–14].

Moreover, recent phylogeographical and molecular studies have refined our understanding of cryptic speciation across biogeographic boundaries or within biogeographic regions [15,16], and even propounded the suitability of reptiles in particular as biogeographic indicators

diversity within the widespread vertebrate species including in tropical and sub-tropical Asia;

existence of previously unnoticed cryptic diversity, including in lizards [19–22] and snakes

[17,18]. Recent studies focusing on widespread reptilian species have also established the

40 23–30].

33

38

39

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Bungarus Daudin, 1803, collectively known as kraits, are venomous elapid snakes which inhabit the Asian subcontinent [31]. Most of the nominal *Bungarus* species are poorly understood. However, recent study on the diversification and evolution of elapid snakes have highlighted that the diversification of kraits occurred around 30–25 million years ago, and are close relatives of other Australasian elapid genera and sea snakes [32]. Bungarus fasciatus (Schneider, 1801), commonly known as the banded krait, is a nocturnal and conspicuous krait that grows up to 2,250 mm in total length and is morphologically characterized by its yellow (or cream) and black banded body [33]. It occurs in various habitat types such as primary forests, agricultural lands as well as domestic gardens up to 2,300 m above sea level [33,34]. So far, B. fasciatus has been reported from eastern India, Nepal, Bhutan, Bangladesh, and Myanmar, extending southwards through Thailand, Malaysia and Singapore into the Indonesian archipelago, and eastwards through Laos, Vietnam and China [35,36]. The species is currently listed as a Least Concern (LC) species in the IUCN Red List [35]. Despite its wide distribution, studies have so far been conducted mainly on its potential medical significance [37], ecological importance [38,39], or characterization of venom [40–45].

Although there are no studies specifically on the molecular systematics of this species, several previous studies have highlighted intra-specific or geographical variability based on genetic barcoding [46–48]. Accurate species delimitation is crucial in view of the variability in snake venom composition [49] and its potential effects on antivenom efficacy [50]. Most of the existing taxonomic and systematic literature on *Bungarus* have apparently overlooked the intraspecific diversity of *B. fasciatus* [51–58]. Therefore, in this study we fill in the inherent knowledge gaps by providing comparative morphological evidence and molecular phylogeny based on four mitochondrial genes (COI, CYTB, ND4 and 16S rRNA) based on sequences from east and northeast India, Indochina, and the Greater Sunda islands. Moreover, given the minimal knowledge on the natural history, reproductive behaviour, and

ecology, which are important for assessing the population status of the species [34,59], we also provide natural history data for the populations of *B. fasciatus* from India.

69

70

67

68

Materials and methods

Sampling. For this study, we collected both morphological and genetic data for *Bungarus* 71 fasciatus, which we compared to publicly available or unpublished data. We collected 72 morphological data for the B. fasciatus population represented by 15 specimens from 73 74 northeastern India between the years 2007–2022. We surveyed during the day and night, collected individuals by hand, and euthanized them with MS-222 following the standard 75 procedure [60] in compliance with the American Veterinary Medical Association (AMVA) 76 guidelines and approved by the Institutional Animal Ethics Committee (IAEC) (Permission 77 No. MZU-IAEC/2018/12). We then fixed the specimens in 10% buffered formalin solution 78 overnight, prior to their storage in 70% ethanol. We preserved liver tissue samples for DNA 79 80 analysis in 95% ethanol, which were stored at -20 °C. Vouchered specimens were deposited at the Departmental Museum of Zoology, Mizoram University (MZMU). Additional blood 81 samples from the caudal sinus were collected from the West Bengal (WB) populations and 82 preserved in EDTA-Tris buffer; these specimens were subsequently released after taking 83 necessary scale counts. Our study is reported in accordance with the ARRIVE 2.0 guidelines 84 85 (Animal Research: Reporting of In Vivo Experiments) [61]. The distribution map was prepared using QGIS v3.16.2 and the digital elevation model (DEM) was downloaded from 86 87 Open Topography (https://opentopography.org/). **DNA extraction, amplification and molecular analyses.** Liver tissue or blood was used to 88 extract genomic DNA using DNeasy (QiagenTM) blood and tissue kits following the 89 manufacturer's instructions. Fragments of four mitochondrial (mt) markers (16S, COI, ND4 90 and CYTB) were amplified in a 20 µL reaction volume, containing 1X DreamTag PCR 91 Buffer, 2.5 mM MgCl₂, 0.25 mM dNTPs, 0.2 pM of each gene primer pair, approximately 92 3.0 ng of extracted DNA, and 1 U of Taq polymerase. A negative control with reagent grade 93 water instead of DNA template was always included. Target mt gene sequences were 94 95 amplified using the thermal profiles and primers given in Supplementary Table S1. PCR products were checked using gel electrophoresis on a 1.5% agarose gel containing ethidium 96 bromide. The PCR products were cleaned using ThermoFisher ExoSAP-IT PCR product 97 cleanup reagent and subsequently sequenced using the Sanger dideoxy method using the 98 99 ABI 3730xl DNA Analyzer at Barcode BioSciences, Bangalore, India. The generated partial gene sequences were deposited on the NCBI repository (GenBank accession numbers are 100

given in Supplementary Table S2). In this study, a total of one COI, six 16S, six ND4, and 101 nine CYTB sequences were generated and were combined with published sequences of B. 102 fasciatus obtained from the NCBI database; database sequences of B. caeruleus, B. 103 candidus, B. ceylonicus, B. sindanus, and B. multicinctus were used as outgroups. The four 104 mt gene alignments were concatenated in SequenceMatrix [62]. Using the CYTB dataset, 105 106 the uncorrected p-distance was estimated in MEGA X using the complete deletion option for the treatment of gaps/missing data [63]. Prior to the Bayesian analysis, PartitionFinder 107 v2.1 [64] was utilized to search the best partitioning schemes and the best fitting model 108 109 through Bayesian Information Criterion (BIC) (Supplementary Table S3). Bayesian 110 phylogeny (BI) was recon-structed using the selected models in Mr.Bayes v3.2.5 [65]. The MCMC was run with four chains (one cold and three hot chains) for 20 million generations 111 and sampled every 5000 generations. Tracer v1.7 [66] was used to checkthe convergence of 112 likelihood and the burn-in cut-off. The diagnosis of topological convergence and MCMC 113 114 and mixing of chains was done in R-Studio [67] using the package, R We There Yet (RWTY) [68]. The BI tree was further illustrated using web-based tree annotator iTOL 115 116 software v5 [69]. The Maximum Likelihood (ML) tree was reconstructed in IQ-TREE [70] using 10,000 Ultrafast Bootstrap (UFB) [71] based on the dataset partitioned by codon 117 118 positions with the most appropriate model selected for each partition using ModelFinder [72] integrated in IQ-TREE [70]. The CYTB dataset, partitioned by codon, was utilized for 119 performing BI and ML based PoissonTree Processes (PTP) species delineation analyses [73] 120 implemented in iTaxoTools v0.1 [74]. For the input file of PTP, a non-ultrametric tree was 121 produced in IQ-TREE [70] with 10,000 UFB replicates [71] using the models selected for 122 CYTB partitions. Only the CYTB dataset was selected for the species delimitation analysis 123 as it contains more samples from different geographical regions compared to the other three 124 125 genes. **Morphology.** We obtained morphometric (mensural and meristic) data for species 126 127 comparisons, and distribution data from examined specimens (Java (JV), Mizoram (MZ) and WB) and published literature [54,75–77]. We measured the following characters to the 128 nearest millimetre with a Mitutoyo digital caliper and Leica M50 (Leica Microsystems Inc.) 129 dissecting microscopes: eye diameter (ED, horizontal diameter of orbit); eye-nostril length 130 (EN, distance between anteriormost point of eye and middle of nostril); snout length (ES, 131 distance between anteriormost point of eye and snout); head length (HL, distance between 132 posterior edge of mandible and tipof snout); head width (HW, maximum width of head); 133 snout—vent length (SVL, measured from tip of snout to anterior margin of vent); tail length 134

(TaL, measured from anterior margin of vent to tail tip). Meristic characters were taken as follows: supralabials (SL) and infralabials (IL) (first labial scale to last labial scale bordering gape); dorsal scale rows (DSR, counted around the body from one side of ventrals to the other in three positions, on one head length behind neck, at midbody and at one head length prior to cloacal plate); when counting the number of ventral scales (Ve), we scored values according to the method described by Dowling [78]. We counted subcaudal scales (Sc) from the first subcaudal scale meeting its opposite to the scale before the tip of the tail, the terminal scute is excluded when counting. Sex of the specimens was identified by examining everted hemipenes or by ventral tail dissection. We evaluated the relative size of the nuchal band, the number of the black cross bands of each individual. The number of cross bands on the body (BB) were counted from the first band posterior to the nuchal band on the nape up to the level of cloaca, the count on the tail from the level of cloaca to the tip oftail (BT), and number of vertebral scales covering the nuchal band (NBW). In addition, the number of vertebral scales covering the first cross band is also considered a reliable character for adult individuals. Values for bilateral head characters are given in left/right order. We followed Keogh [79] for hemipenial terminology, and the extent of inverted hemipenis in terms of percentage of subcaudal scales (HpR). **Statistical analyses.** The morphological information was obtained from three different populations examined by us: recent and long-term preserved specimens from JV in Indonesia (n = 15), live specimens from WB (n = 8) and live, recent and long-term preserved specimens from MZ (n = 15) states in India. Before performing any further analyses, the meristic data were standardized to zero mean and unit standard deviation to avoid potential bias due to difference in the range of measurement among variables; for mensural data, the combination of characters with the highest R-squared score obtained through linear regression was selected as the best log transformation model to make linear relationship with body size. Since we do not have gender information from the WB population, the meristics of the remaining populations (JV and MZ) were first tested using separate oneway analysis of variance (ANOVA) using sex and locality as factors along with Levene's test [80] to test the homogeneity of variances; if the assumption of homoscedascity was violated, Brown-Forsythe test [81] was utilised as an alternative approach. For mensurals (TaL, HL, and HW), a two-way analysis of covariance (ANCOVA) was carried out with snout-vent length (SVL) as a covariate. The meristic variables identified with no sexual dimorphism were utilised for multiple comparison among the three populations by pooling sexes using one- way ANOVA using locality as a factor, and post-hoc was performed with

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

applying Bonferroni correction. In addition, a potential observer difference was screened by repeating measurements on the same specimens and then tested using one-way ANCOVA. The variable characters among lineages identified through the univariate analyses were utilized further for Principal Component Analysis (PCA) to visualize the clustering of the different populations. The correlation matrices between all pairs of the morphological variables, variance explained by each eigenvalue as well as the correlations of each variable to the first two components are explored. Specimens with missing characters were excluded in the multivariate analysis. Statistical analyses were performed using the SPSS v.25.0 statistical package (Armonk, NY: IBM Corp.).

Results

Phylogenetic relationship. The first 25% of trees from the BI analysis were discarded as burn-in, and the standard deviation of split frequencies were < 0.005 when analyses terminated. The graphs created using RWTY in R-Studio also indicated satisfactory topological mixing. The inferred concatenated trees from BI and ML analyses were congruent with each other. The BI tree, created using Mr.Bayes v3.2.5 [65] and further illustrated using iTOL software v5 [69], is show in Fig. 1, with Bayesian posterior probabilities from the BI analysis and UFB values from the ML analysis. The CYTB dataset consisted of a total of 1047 aligned characters, with 97 variablesites (excluding outgroups).

Molecular phylogenetic based on the concatenated aligned matrix for four mitochondrial genes (16S, COI, ND4, and CYTB; 2850 bp in length), recovered a monophyletic clade consisting of three lineages within Asia. Both the phylogenetic analyses and the single-locus-based PTP species delineation approach significantly support these three distinct clades which we describe as, (i) *B. fasciatus* from the Sundaic region, especially from Great Sunda islands which we describe as the Sundaic lineage (Clade I; Fig. 1); (ii) *B. fasciatus* from Indo-Myanmar(Clade II; Fig. 1), and (iii) *B. fasciatus* from mainland Sundaland including southern China, here described as east Asian lineage (Clade III; Fig. 1).

The overall mean intra-specific divergence across all lineages of *B. fasciatus* (uncorrected p-distance) was 3.5%. Furthermore, 0.4% intra-clade genetic divergence was observed within Clade I (between two locations in JV), 0.0%–1.3% within Clade II (between India and Myanmar), and 0.0%–6.5% within Clade III (among China, Vietnam, Thailand, and an unknown locality). The mean inter-clade genetic divergence is 5.0% between Clade I (Sundaic) and Clade II (Indo-Myanmar), 5.3% between Clade II (Indo-Myanmar) and III (east Asia); 5.7% between Clade I (Sundaic) and III (east Asia). Combined *B. fasciatus* (Clades I + II + III) shows the least inter- specific genetic divergence (19.5%–19.8%) with *B*.

- 203 candidus, while inter-specific distances among other species (B. sindanus, B. caeruleus, B.
- 204 candidus, B. ceylonicus, and B. multicinctus) range from 3.0% (between B. candidus and B.
- 205 multicinctus) to 19.0% (between these two species and B. ceylonicus) (also see
- 206 Supplementary Table S4).
- 207 **Morphometric analysis.** In this study, despite limited sampling, morphometric analyses
- were performed to identify taxonomically informative characters among the examined
- populations (WB, MZ and JV). Only the mensurals such as TaL (p < 0.001), HW (p < 0.05)
- and HL (p < 0.05) showed significantly dimorphic characters between males and females
- 211 within JV and MZ populations. For meristic characters, inter-population differences were
- statistically significant (p < 0.001) for Ve (MZ vs. JV), BB, BT, and NBW (the latter three
- characters are tested among three populations), all of which showed a higher number in the
- MZ population; for mensural characters, inter-population differences were also statistically
- significant for TaL (p < 0.05) and HL (p < 0.001) (Table 1). Post-hoc tests conducted among
- 216 the three populations for BB, BT, and NBW showed that, except for BT between MZ and
- WB populations (p > 0.05), significant differences are seen for all characters: BB (p < 0.001)
- across all the populations), NBW (p < 0.001 in MZ vs. WB, and JV vs. WB; p < 0.05 in MZ
- vs. JV), and BT (p < 0.001 in MZ vs. JV; p < 0.01 in JV vs. WB). Comparison was also
- 220 made based on the identified variable meristic characters among the three populations using
- a PCA. The correlation matrix showed weak correlations between pairs of variables (r <
- 222 0.7); thus, all variables were retained for this analysis. The first two components accounted
- for 84% of the total variation of the data, with PC1, PC2 and PC3 representing 64%, 20%
- and 11%, respectively. The loadings of all variables are high on the first axis, while only Ve
- loads considerably highly on the second axis, with Ve having less effect on PC1 than PC2
- 226 (Supplementary Table S5). The representation of the first two components depicts
- substantial separation of the Javanese and the Indian populations on the first axis (PC1), and
- marginal separation of the WB and MZ populations on the second axis (PC2) (Fig. 2). Given
- 229 that the samples from the three populations (WB, MZ and JV) were examined by different
- 230 recorders, we also tested for potential recorder bias between the East Indian and northeast
- Indian specimens; however, no significant differences were seen after re-examination of the
- same specimens (p > 0.05).
- 233 **Systematics.** We present diagnostic morphological, morphometric, and meristic data taken
- for *Bungarus fasciatus* Clade II from east and northeast India (Supplementary Table S6).
- The examined specimens of *B. fas ciatus* from India are morphologically distinguishable
- 236 from the Sundaic population (see Table 2). Based on the present study, we postulate the

- existence of at least three different taxonomic entities within the nomen *B. fasciatus*, and also
- confirm that populations in eastern India (e.g. Odisha, WB, etc.) and northeastern India (e.g.
- 239 MZ, Assam, etc.) are conspecific. Based on the original description of *Pseudoboa fasciata*,
- 240 minimum three specimens were available or referable to Schneider [82]; hence syntypes.
- Among these syntypes two specimens (ZMB 2771,2772) have been deposited at ZMB from
- the collection of Marcus Bloch (fide Bauer [83]). In addition, one of syn-types was depicted
- in Russell [84] (page 3, plate 3) as the "Bungarum Pamah", an adult from "Mansoor Cottah"
- 244 (now Gobalpur, Odisha (Orissa), India), specimen is now lost (fide Bauer [85]). So far, the
- only existing name-bearing type specimens are the two syntypes in the collection of Berlin
- Zoological Museum (ZMB 2771–72) originating from "Indien" (=India) fide ZMB
- catalogue [36] a detailed taxonomic revision will be published elsewhere (Amarasinghe et
- al. in preparation). We affirm that the specimen used by Russell [84] for his illustration is the
- same specimen (syntype) housed in the ZMB, thus we adhere with the type locality given by
- Russell [84]. Therefore, here we postulate the Indo-Myanmar populations (Clade II) as B.
- 251 fasciatus sensu stricto, while considering the populations from Sundaic region, especially
- from Greater Sunda Islands (Clade I) and mainland Sundaland including southern China
- 253 (Clade III) as *B. fasciatus* sensu lato. Consequently, we redescribe the *B. fasciatus* sensu
- stricto, including hemipenis morphology, based on MZ population, from where a large
- 255 number of samples are available.
- 256 Bungarus fasciatus (Schneider, 1801) sensu stricto
- 257 (Tables 1, 2; Figs. 3A–E, 4A–B, 5)
- 258 [English: Banded krait; Bengali: Sankhamuti/Sankhini/Chamorkasa; Mizo:
- 259 Chawnglei/Tiangsir]
- 260 Pseudoboa fasciata Schneider, 1801
- 261 Bungarus annularis Daudin, 1803.
- 262 Bungarus fasciatus bifasciatus Mell, 1929.
- 263 Bungarus fasciatus insularis Mell, 1930.
- **Examined materials.** Males (*n*=7; MZMU 933, 1314, 1320, 1417, 1421, 1883, 2935) and
- 265 Females (*n*=8; MZMU 1319, 1321, 1550, 1562, 1561, 1548, 1572, 2481) collected from
- 266 Mizoram, northeast India.
- 267 **Species redescription.** Based on the overall examined MZ materials with combined sexes,
- adults SVL 444.0–1220.0 mm, tail length 47.0–133.0 mm; head elongate (HL 2.0–3.5% of
- SVL), wide (HW 71.8–92.1% of HL), slightly flattened, indistinct from neck; snout elongate

(ES 22.8–40.1% of HL), moderate, flat in dorsalview, rounded in lateral profile, rather depressed. Rostral shield large, flat, slightly visible from above, pointedposteriorly; interorbital width broad; internasals subtriangular; nostrils rather large, nasals large, divided, and elongated, in anterior contact with rostral, and internasal and prefrontal dorsally, 1st and 2nd supralabial ventrally, preocular posteriorly; no loreal; prefrontal rather large, broader than long, and pentagonal; frontal large, hexagonal, short, slightly longer than width; supraoculars narrow, elongate, subrectangular, posteriorly wider; parietals large, elongate, butterfly wing-like in shape, bordered by supraoculars, frontal, upper postocular anteriorly, anterior and upper posterior temporals, and five or six nuchal scales posteriorly; one preocular, vertically slightly elongated, hexagonal, in contact with prefrontal and posterior nasal anteriorly, supraocular dorsally, and 2nd and 3rd supralabials ventrally; eye moderate (ED 10.7–21.7% of HL), round, about half of the size of snoutlength (ED 41.7–69.9% of ES), pupil rounded; two postoculars, subequal or upper one larger, pentagonal, upper postocular in broad contact with supraocular, parietal and anterior temporal, lower postocular in contact with anterior temporal and 5th supralabials; temporals 1 + 2, large, slightly elongated, subrectangular or pentagonal; anterior temporal larger than posterior temporal, in contact with parietal and both postoculars dorsally, and 5th and 6th supralabial ventrally; lower posterior temporal in contact with 6th and 7th supralabials ventrally. Supralabials seven (on both sides), 5th–7th largest in size; 1st supralabial in contact with rostral anteriorly, nasals dorsally, 2nd with posterior nasal and preocular dorsally, 3rd with preocular and orbit dorsally, 4th with orbit; 5th with orbit, lower postocular, and anterior temporal dorsally, and 6th with anterior and lower posterior temporals dorsally, 7th with lower posterior temporal dorsally and scales of the neck posteriorly.

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

Mental large, triangular, blunt posteriorly; first infralabial pair larger than mental plate and in broad contact with each other, in contact with anterior chin shields posteriorly; seven infralabials, 1st–4th in contact with anterior chin shields, 4th infralabial largest in size in contact with both anterior and posterior chin shields; 4th–7th infralabials in contact with gular scales; two larger anterior chin shields, and two slightly smaller posterior chin shields; anterior chin shields in broad contact between them; posterior chin shields bordered posteriorly by seven gular scales.

Body robust, elongate and subcylindrical; dorsal scales in 15 midbody rows, all smooth and pointed posteriorly; 222–228 ventrals in males and 224–231 in females; cloacal plate divided. Tail comparatively short, TaL 8.9–10.4% of total length in males and 13.5–17.1% of total length in males, robust and thick; subcaudals 35–37 in males and 32–36 in

females, divided.

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Coloration. In preservative, dorsum and venter white or yellow; 22–27 black cross bands along the body and 4 or 6 on the tail; cross bands complete laterally, and reaching the ventrals except the nuchal band; the bands on the tail distinct; the nuchal band on the nape anteriorly inverted V-shaped covering 15-20 vertebral scales; nuchal band starts from mid frontal; snout, anterior head, and lateral head black making remaining the white dorsal color an inverted V-shaped marking; first black band on the body covering 6 or 7 vertebral scales; inter-band width covers with 3–5 vertebral scales; lower parts of the supralabials white; ventral head white until the first black band; tail tip black dorsally, white ventrally. In life (Fig. 4A), same color as in preservative, but the white body color may vary from white, cream, pale yellow to bright yellow. One juvenile with cream and black body bands was encountered in Saikhawthlir, MZ (Fig. 4B), but the snake escaped before recording morphological data. **Variation.** Except the anomalous specimen (MZMU1321) which had three postoculars on left and two on right, and temporals 1 + 2 on the left and 2 + 2 on the right, all other meristic and morphometric characters obtained so far did not show any significant variation between the examined populations, and also correspond to the conventional taxonomical characters provided in previously published literature [77,86,87]. **Hemipenis.** Based on MZMU2935, the organ is single and subcylindrical, relatively short, robust, and capitate; inverted hemipenis extends to 4th–7th subcaudal level (i.e. 11.1–20% from the total number of Sc); sulcus spermaticus bifurcate below the crotch, shallow and centripetal; apical lobe less evident with only slight apical flaring; calyculate organ with a complex ornamentation of retiform ridges, papillate flounces, and spines; spines on the upper basal areas enlarged and decreasing the size towards the proximal portion; apical region sharply separated from the basal portion by a well-defined demarcation, so the apex is free and the apical part of the hemipenis is richly capitate (Fig. 5). **Distribution.** Within India, B. fasciatus has been reported from Uttar Pradesh (Gorakhpur, fide Masson [88]; also see Anwar [89] and Das et al. [90]) in the north and central Maharashtra in the west [91–93], extending across Telangana (Hyderabad, fide Kinnear [94], Andhra Pradesh [95], Chhattisgarh [96,97], Jharkhand (Koderma, fide Smith [86]; also see Husain [98]), Bihar [99], Odisha (Mahanadi valley, fide Wall [99]; also see Boruah et al. [100]), and northern part of WB [101] to northeastern India, including Arunachal Pradesh [102,103], Assam [99,104,105], Meghalaya [106], MZ [107,108], Tripura [109], Manipur

[110] and Nagaland [111]. A few unverified records are available from Madhya Pradesh [36], Uttarakhand [35], and southern peninsular India in Tamil Nadu, Karnataka and Kerala [98].

Here we provide additional distributional records for *B. fasciatus* sensu stricto based on 44 new localities from MZ, and two from WB, India (Supplementary Table S7). The lowest elevation among these new records is 4 m a.s.l. at Chitrasali in Hooghly District, WB and the highest is 1426 m a.s.l. at Champhai Jailveng in Champhai District, MZ. Based on the previous distribution of the species, the elevation range was between 40 and 2300 m a.s.l. [33,34]. Moreover, an estimated distribution range of the species was plotted (Fig. 6) following WHO's range estimation for *B. fasciatus* [112].

Natural history. Although *B. fasciatus* is a common species, details on the ecology, habitat, population, and breeding are still sparse and further studies are needed. Therefore, here we provide some natural history data based on two clutches of eggs encountered from two localities in WB State, India:

(i) On 16th May 2020, at ca. 20:00 h, from Chitrasali village, Hooghly, the snake was encountered on the bank of a pond adjacent to a house in the middle of a village. The female was found coiling around a clutch of 19 eggs. The breeding site was located inside a naturally occurring burrow at the base of a dead tree with decayed roots. The burrow was on the bank ca. 6 feet from the pond. The pond had a gentle slope and was surrounded by plentiful vegetation. On the day of the egg collection, the recorded ambient temperature at the natural breeding site was 28–38 °C with average humidity of 78%. The eggs were relocated and incubated in a dedicated herpetoculture room at 27.6 °C using 3 cm thick vermiculite bedding in a perforated box. On 10th June at 20:18 h, the first egg slits were observed, and hatching was completed on 18th June at 05:45 h. The fluctuating room temperature and average humidity from the start of hatching until hatching was completed were 26–35 °C and 81.1%, respectively. Notably, hatchlings crawled out from the pipped eggs on the 12th, 13th, and 14th June. Upon investigation, we found that a total of six eggs failed to hatch, out of which three eggs were unfertilized, two contained partially developed embryos showing deformities, and one egg had a fully developed embryo, possibly unable to cut through the eggshell. On 18th June, we recorded the biometric data of the 13 hatchlings (5 females with average SVL 322.2 mm, TaL 32.4 mm, and body weight 21.2 g; 8 males with average SVL 318.6 mm, TaL 36.5, body weight 19.9 g), and were subsequently released close to where the eggs were collected.

(ii) On 05th May 2021 at 12:30 pm, from a construction site at Ankuni village, Hooghly.

A clutch of eight eggs were uncovered under a pile of old bricks at the base of a dead tree 372 with lots of burrows. The breeding site was located on the bank of a pond, and the entire 373 rubble pile was covered in vegetation. However, in this case, the female snake was not found 374 near the eggs, and it is possible that the excavation work might have scared the female away. 375 The eggs were relocated and incubated in the same herpetoculture room using 3 cm thick 376 377 vermiculite bedding in a perforated box. The room temperature recorded on 5th May fluctuated between 24 and 33 °C, with a relative humidity of 65%. Egg slits were seen on 6th 378 June at ca. 22:00 h. On 8th June at ca. 08:00 h, hatching was completed and all of the 379 380 juveniles had emerged from the eggs. From the egg relocation until the completed hatching (6th–8th June), the temperature and humidity fluctuated between 24 and 39 °C and 65–75%, 381 respectively. On 8th June, the biometric data of the eight hatchlings were taken (3 females 382 with average SVL 333.3 mm, TaL 38.7 mm, and body weight 21.3 g; 5 males with average 383 SVL 351.0 mm, TaL 43.2, body weight 21.4 g), and they were also released close to the site 384 385 from which the eggs had been collected. **Discussion** 386 387 Bungarus fasciatus sensu stricto. Evidence from this study, based on morphology and molecular data, defines three distinct clades of B. fasciatus with non-overlapping 388 389 distribution clusters. The high genetic divergence among lineages also suggests distinct species-level groups within B. fasciatus as currently conceived. Our morphometric data 390 analysis also provides evidence of their morphological distinctiveness between Clade I and 391 II. Moreover, the lineage from east Asia is basal to the other two lineages but, if these clades 392 were to be accepted as full species, the name-bearing lineage is Clade II. Thus, according to 393 our newly presented evidence, and partly according to Russell [84], the distribution range of 394 Bungarus fasciatus sensu stricto (Indo-Myanmar clade) comprises east and northeast India 395 extending towards Myanmar. (Figs. 1, 6). 396 397 **Systematic challenges.** In this study, we elucidate the presence of three independent lineages within B. fasciatus, which is crucial for future nomenclatural revision. In the CYTB 398 gene, while negligible intra-clade genetic divergence was observed within Clade I (0.4%; 399 400 between two locations in JV) and Clade II (0.0–1.3%; Myanmar, east and northeast India), a wide range of intra-clade genetic divergence (00.0–6.5%) was evident within Clade III 401 402 (China, Vietnam, Thailand). Consequently, we speculate that there might still be cryptic diversity within the east Asian lineage (Clade III). Moreover, for robust delimitation of the B. 403 404 fasciatus complex, it is necessary to establish whether these lineages have undergone some degree of extrinsic or intrinsic reproductive isolation to be evolving separately [113]. For 405

instance, due to the high evolutionary rate of hemipenial traits com- pared to the other morphological traits [114,115], the organ has commonly been used to provide a picture of sexual barrier even among cryptic species [116–118].

Although it has been previously stressed that delimiting the taxonomic status of geographically diversified populations of venomous snakes alone cannot necessarily predict patterns of venom variation, it can play a pivotal role in overcoming the consequential variability of venoms [119–121]. Fry et al. [120] further indicated that the medical importance of *B. fasciatus* has been overestimated. Moreover, the possible existence of undiscovered cryptic species accompanied by more venom diversity with uncharacterized components had been pointed out [122]. Siqueira-Silva et al. [123] observed that more productive environments favour more complex venom, with more toxins in similar proportions. Based on the verbal autopsy we have conducted so far within MZ, there are three cases of fatal envenomation potentially from the bite of banded krait. Therefore, here we highlight the importance of analyzing the venom compositions in different populations in each biogeographically isolated clade.

Further work. The combination of multivariate morphometric analysis and mitochondrial gene-based phylogeography has been applied successfully for species delineation [24,124,125] as well as for testing species boundaries [126]. However, nuclear genes provide an independent test of species boundaries [127] as they are capable of measuring the extent of gene flow, and for this reason, recent work has increasingly used a combination of nuclear and mitochondrial genes for phylogeographic analyses and species delineation [128]. Consequently, we believe that the potentially species-level diversity across different *B. fasciatus* populations depicted in this study cannot be overlooked, and a thorough comprehension of *B. fasciatus* systematics is still a fundamental challenge.

Data availability

The generated partial gene sequences were deposited on the NCBI repository (GenBank accession numbers are given in Supplementary Table S2).

Acknowledgements

We thank the Chief Wildlife Warden of Environment, Forests and Climate change

Department, Government of Mizoram for providing collection permits (No.A.33011/2/99
CWLW/22 and No.B.19060/5/2020-CWLW/20-26). We also thank the Directorate of

Forests, Wildlife Wing, Government of West Bengal for continued support to carry out our

438	research and conservation activities. This work is supported by DST-SERB, New Delhi
439	(DST No: EMR/2016/002391), DBT, New Delhi (DBT-NER/AAB/64/2017), National
440	Mission for Himalayan Studies (NMHS), Uttarakhand (GBPNI/NMHS-2017/MG-22/566),
441	DRDO, New Delhi (DGTM/DFTM/GIA/19- 20/0422), and DST-SERB, New Delhi (DST
442	No: EEQ/2021/000243). AM would like to acknowledge EU Marie Curie Action PIRSES-
443	GA-2013-612131 (the BITES project); the Bangor University ESRC Impact Acceleration
444	Account, for funding; and Ashok Mallik for his assistance in this work. HTL is grateful to
445	the International Herpetological Symposium (IHS), USA for the award grant. LB is also
446	thankful for the small grant he received from The Rufford Foundation, UK (grant number
447	36737-1). LB and HTL would like to thank Mathipi Vabeiryureilai, Fanai
448	Malsawmdawngliana, Lal Muansanga, Lalengzuala Tochhawng, Ht. Decemson, Gospel
449	Zothanmawia Hmar, Vanlal Siammawii, H. Laltlanchhuaha; VS would like to thank
450	Biswajit Das, Lakshmi Santra, Aritra Dhara, Pallab Das, Ayan Koley, Rakesh Koley,
451	Rajkumar Chakraborty, Amal Kr Santra, Ananta Katwal, Ishan Santra, Shrabani Santra for
452	their assistance in this study. AATA thanks the Ministry of Environment and Forestry
453	(KLHK) and The Directorate General of Conservation of Natural Resources and
454	Ecosystems (KSDAE) of the Republic of Indonesia for granting research permits; C.
455	Rahmadi, A. Riyanto, A. Hamidy, Syaripudin, and W. Trilaksano (MZB) for their support
456	and facilitating the in-house study of specimens under their care. We are deeply thankful to
457	Patrick David for the insightful taxonomical comments in the draft version of the
458	manuscript.
459	Author contributions
460	Lal Biakzuala: Conceptualization, Data curation, Formal analysis, Investigation,
461	Methodology, Software, Visualization, Writing – original draft. Hmar T. Lalremsanga:
462	Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project
463	$administration, \ Validation, \ Visualization, \ Writing-original\ draft, \ Resources, \ Supervision.$
464	Vishal Santra: Investigation, Resources, Writing – review & editing. A.A. Thasun
465	Amarasinghe: Data curation, Formal analysis, Software, Validation, Visualization,
466	Investigation, Writing – review & editing. Arindam Dhara: Investigation, Resources. Molla
467	T. Ahmed: Investigation, Resources. Ziniya B. Mallick: Investigation, Resources. Sourish
468	Kuttalam: Investigation, Software, Writing – review & editing. Anita Malhotra: Formal
469	analysis, Validation, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- 1. Jirsová, D. et al. From taxonomic deflation to newly detected cryptic species: Hidden diversity in a widespread African squeaker catfish. *Sci. Rep.* **9**, 1–13;
- 476 <u>https://doi.org/10.1038/s41598-019-52306-2</u> (2019).
- 2. Luo, A., Ling, C., Ho, S. Y. & Zhu, C. D. Comparison of methods for molecular species delimitation across a range of speciation scenarios. *Syst. Biol.* **67**, 830–846; https://doi.org/10.1093/sysbio/syy011 (2018).
- 3. Dwivedi, A. K. et al. Cryptic diversity in the Indian clade of the catfish family
 Pangasiidae resolved by the description of a new species. *Hydrobiologia*. **797**, 351–
 370 (2017).
- 483 4. Halasan, L. C., Geraldino, P. J. L. & Lin, H. C. First Evidence of Cryptic Species
 484 Diversity and Population Structuring of *Selaroides leptolepis* in the Tropical Western
 485 Pacific. *Front. Mar. Sci.* 8: 756163; https://doi.org/10.3389/fmars.2021.756163
 486 (2021).
- 5. Matsumoto, S. et al. Cryptic diversification of the swamp eel *Monopterus albus* in East and Southeast Asia, with special reference to the Ryukyuan populations. *Ichthyol. Res.* **57**, 71–77; https://doi.org/10.1007/s10228-009-0125-y (2010).
- 6. Nishikawa, K. et al. Molecular phylogeny and biogeography of caecilians from Southeast Asia (Amphibia, Gymnophiona, Ichthyophiidae), with special reference to high cryptic species diversity in Sundaland. *Mol. Phylogenet. Evol.* **63**, 714–723; https://doi.org/10.1016/j.ympev.2012.02.017 (2012).
- 7. Ramesh, V., Vijayakumar, S. P., Gopalakrishna, T., Jayarajan, A. & Shanker, K.

 Determining levels of cryptic diversity within the endemic frog genera, *Indirana* and *Walkerana*, of the Western Ghats, India. *Plos One.* **15**, e0237431;

 https://doi.org/10.1371/journal.pone.0237431 (2020).
- 8. Stuart, B. L., Inger, R. F. & Voris, H. K. High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. *Biol. Lett.* **2**, 470–474; https://doi.org/10.1098/rsbl.2006.0505 (2006).
- Lohman, D. J. et al. Cryptic genetic diversity in "widespread" Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. *Biol. Conserv.* 143, 1885–1890; https://doi.org/10.1016/j.biocon.2010.04.042 (2010).

- 10. Outlaw, D. C. & Voelker, G. Pliocene climatic change in insular Southeast Asia as an engine of diversification in *Ficedula* flycatchers. *J. Biogeogr.* **35**, 739–752;
- 506 <u>https://doi.org/10.1111/j.1365-2699.2007.01821.x</u> (2008).
- 11. Rheindt, F. E., Wu, M. Y., Movin, N. & Jønsson, K. A. Cryptic species-level diversity
 in Dark-throated Oriole *Oriolus xanthonotus*. *Bull. Br. Ornithol. Club.* 142, 254–267;
 https://doi.org/10.25226/bboc.v142i2.2022.a10 (2022).
- 12. Chattopadhyay, B. et al. Cryptic diversity of *Rhinolophus lepidus* in South Asia and differentiation across a biogeographic barrier. *Front. Biogeogr.* **13**; https://doi.org/10.21425/F5FBG49625 (2021).
- 13. Chen, S. et al. Multilocus phylogeny and cryptic diversity of white-toothed shrews

 (Mammalia, Eulipotyphla, Crocidura) in China. *BMC Evol. Biol.* **20**, 1–14;

 https://doi.org/10.1186%2Fs12862-020-1588-8 (2020).
- 516 14. Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan 517 species. *Curr. Biol.* 27, 3487–3498; https://doi.org/10.1016/j.cub.2017.09.047 (2017).
- 15. Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed
 among taxa and biogeographical regions. *BMC Evol. Biol.* 7, 1–6;
 https://doi.org/10.1186/1471-2148-7-121 (2007).
- 16. Vodă, R., Dapporto, L., Dincă, V. & Vila, R. Cryptic matters: overlooked species
 generate most butterfly beta-diversity. *Ecography*. 38, 405–409;
 https://doi.org/10.1111/ecog.00762 (2014).
- 524 17. Bauer, A. M. Reptiles and the biogeographic interpretation of New Caledonia.
 525 *Tuatara*. **30**, 39–50 (1989).
- 18. Camargo, A., Sinervo, B. & Sites, J. W. Lizards as model organisms for linking
 phylogeographic and speciation studies. *Mol. Ecol.* 19, 3243–3488;
 https://doi.org/10.1111/j.1365-294x.2010.04722.x (2010).
- 19. Gowande, G. et al. Molecular phylogenetics and taxonomic reassessment of the widespread agamid lizard *Calotes versicolor* (Daudin, 1802) (Squamata, Agamidae) across South Asia. *Vertebr. Zool.* **71**, 669–696; https://doi.org/10.3897/vz.71.e62787 (2021).
- 533 20. Guo, P. et al. Cryptic diversity of green pitvipers in Yunnan, South-west China 534 (Squamata, Viperidae). *Amphib. Reptil.* **36**, 265–276 (2015).
- 535 21. Wagner, P. et al. Integrative approach to resolve *Calotes mystaceus* Duméril & Bibron, 1837 species complex (Squamata: Agamidae). *Bonn Zool. Bull.* **70**, 141–171; https://doi.org/10.20363/BZB-2021.70.1.141 (2021).

- 538 22. Zug, G., Brown, H., Schulte, J. & Vindum, J. Systematics of the Garden Lizards,
- 539 Calotes versicolor Group (Reptilia, Squamata, Agamidae), in Myanmar: Central Dry
- Zone Populations. *Proc. Calif. Acad. Sci.* **57**, 35–68 (2007).
- 23. Alfaro, M. E., Karns, D. R., Voris, H. K., Abernathy, E. & Sellins, S. L. Phylogeny of
- Cerberus (Serpentes: Homalopsinae) and phylogeography of *Cerberus rynchops*:
- diversification of a coastal marine snake in Southeast Asia. *J. Biogeogr.* **31**, 1277–
- 544 1292; https://doi.org/10.1111/j.1365-2699.2004.01114.x (2004).
- 545 24. Malhotra, A., Dawson, K., Guo, P. & Thorpe, R. S. Phylogenetic structure and species
- boundaries in the mountain pitviper *Ovophis monticola* (Serpentes: Viperidae:
- 547 Crotalinae) in Asia. Mol. Phylogenet. Evol. **59**, 444–457;
- 548 https://doi.org/10.1016/j.ympev.2011.02.010 (2011).
- 549 25. Mallik, A. K. et al. Disentangling vines: a study of morphological crypsis and genetic
- divergence in vine snakes (Squamata: Colubridae: Ahaetulla) with the description of
- five new species from Peninsular India. *Zootaxa*. **4874**, 1–62;
- 552 <u>https://doi.org/10.11646/zootaxa.4874.1.1</u> (2020).
- 26. Shankar, P. G. et al. King or royal family? Testing for species boundaries in the King
- Cobra, *Ophiophagus hannah* (Cantor, 1836), using morphology and multilocus DNA
- analyses. *Mol. Phylogenet. Evol.* **165**, 107300;
- 556 https://doi.org/10.1016/j.ympev.2021.107300 (2021).
- 557 27. Thorpe, R. S., Pook, C. E. & Malhotra, A. Phylogeography of Russell's viper (*Daboia*
- *russelii*) complex in relation to variation in the colour pattern and symptoms of
- envenoming. *Herpetol. J.* **10**, 209–218 (2007).
- 28. Wüster, W. Taxonomic changes and toxinology: systematic revisions of the Asiatic
- cobras (*Naja naja*) species complex. *Toxicon.* **34**, 399–406;
- 562 https://doi.org/10.1016/0041-0101(95)00139-5 (1996).
- 563 29. Wüster, W. & Thorpe, R. S. Naja siamensis, a cryptic species of venomous snake
- revealed by mtDNA sequencing. *Experientia*. **50**, 75–79;
- 565 <u>https://doi.org/10.1007/BF01992054</u> (1994).
- 30. Wüster, W., Otsuka, S., Malhotra, A. & Thorpe, R. S. Population systematics of
- Russell's viper: a multivariate study. *Biol. J. Linn. Soc.* **47**, 97–113;
- 568 https://doi.org/10.1111/j.1095-8312.1992.tb00658.x (1992).
- 31. Midtgaard, R. Repfocus, a Survey of the Reptiles of the World
- 570 http://repfocus.dk/Bungarus.html (2022).

- 32. Lee, M. S., Sanders, K. L., King, B. & Palci, A. Diversification rates and phenotypic
- evolution in venomous snakes (Elapidae). Royal Soc. Open Sci. **3**,150277;
- 573 <u>http://dx.doi.org/10.1098/rsos.150277</u> (2016).
- 33. Ahmed, M. F., Das, A. & Dutta, S. K. Amphibians and Reptiles of Northeast India. A
- 575 Photographic Guide (Aaranyak, 2009).
- 34. Knierim, T. K., Strine, C. T., Suwanwaree, P. & Hill, J. G.III. Spatial ecology study
- reveals nest attendance and habitat preference of banded kraits (*Bungarus fasciatus*).
- 578 *Herpetol. Bull.* **150**, 6–13 (2019).
- 35. Stuart, B. et al. *Bungarus fasciatus*. The IUCN Red List of Threatened Species 2013
- 580 https://www.iucnredlist.org/species/192063/2034956 (2013).
- 36. Wallach, V., Williams, K. L. & Boundy, J. Snakes of the world: a catalogue of living
- and extinct species (CRC press, 2014).
- 37. Pe, T. et al. Envenoming by Chinese krait (*Bungarus multicinctus*) and banded krait
- 584 (*B. fasciatus*) in Myanmar. *Trans. R. Soc. Trop. Med. Hyg.* **91**, 686–688;
- 585 https://doi.org/10.1016/S0035-9203(97)90524-1 (1997).
- 38. Ahsan, M. F. & Rahman, M. M. Status, distribution and threats of kraits (Squamata:
- Elapidae: *Bungarus*) in Bangladesh. *J. Threat. Taxa.* **9**, 9903–9910;
- 588 https://doi.org/10.11609/jott.2929.9.3.9903-9910 (2017).
- 39. Tongpoo, A. et al. Krait envenomation in Thailand. *Ther. Clin. Risk Manag.* **14**, 1711–
- 590 1717; https://doi.org/10.2147%2FTCRM.S169581 (2018).
- 591 40. Lo, T. B. & Lu, H. S. Studies on *Bungarus fasciatus* venom. (Toxins, 1978).
- 592 41. Lu, J. et al. A novel serine protease inhibitor from *Bungarus fasciatus* venom.
- 593 *Peptides.* **29**, 369–374; https://doi.org/10.1016/j.peptides.2007.11.013 (2008).
- 42. Rusmili, M. R. A., Yee, T. T., Mustafa, M. R., Hodgson, W. C. & Othman, I.
- Proteomic characterization and comparison of Malaysian *Bungarus candidus* and
- 596 Bungarus fasciatus venoms. J. Proteom. 110, 129–144;
- 597 <u>https://doi.org/10.1016/j.jprot.2014.08.001</u> (2014).
- 43. Tan, N.H. & Ponnudurai, G. A comparative study of the biological properties of krait
- 599 (genus Bungarus) venoms. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 95, 105–
- 600 109; https://doi.org/10.1016/0742-8413(90)90089-r (1990).
- 44. Tsai, I. H., Tsai, H. Y., Saha, A. & Gomes, A. Sequences, geographic variations and
- molecular phylogeny of venom phospholipases and threefinger toxins of eastern India
- Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2. *FEBS J.* **274**,
- 512–525; https://doi.org/10.1111/j.1742-4658.2006.05598.x (2007).

- 45. Ziganshin, R. H. et al. Quantitative proteomic analysis of Vietnamese krait venoms:
- Neurotoxins are the major components in *Bungarus multicinctus* and phospholipases
- 607 A2 in *Bungarus fasciatus*. *Toxicon*. **107**, 197–209;
- 608 https://doi.org/10.1016/j.toxicon.2015.08.026 (2015).
- 46. Kundu, S. et al. Mitochondrial DNA discriminates distinct population of two deadly
- snakes (Reptilia: Elapidae) in Northeast India. *Mitochondrial DNA B Resour.* 5,
- 611 1530–1534; https://doi.org/10.1080/23802359.2020.1742210 (2020).
- 47. Laopichienpong, N. et al. Assessment of snake DNA barcodes based on mitochondrial
- 613 COI and Cytb genes revealed multiple putative cryptic species in Thailand. *Gene*.
- **594**, 238–247; https://doi.org/10.1016/j.gene.2016.09.017 (2016).
- 48. Supikamolseni, A., Ngaoburanawit, N., Sumontha, M., Chanhome, L., Suntrarachun,
- S., Peyachoknagul, S. & Srikulnath, K. Molecular barcoding of venomous snakes and
- species-specific multiplex PCR assay to identify snake groups for which antivenom is
- available in Thailand. *Genet. Mol. Res.* **14**, 13981–13997;
- 619 <u>https://doi.org/10.4238/2015.october.29.18</u> (2015).
- 49. Chippaux, J. P., Williams, V. & White, J. Snake venom variability: methods of study,
- results and interpretation. *Toxicon*. **29**, 1279–1303; https://doi.org/10.1016/0041-
- 622 0101(91)90116-9 (1991).
- 50. Harrison, R. A., Wüster, W. & Theakston, R. D. G. The conserved structure of snake
- venom toxins confers extensive immunological cross-reactivity to toxin-specific
- antibody. *Toxicon.* **41**, 441–449; https://doi.org/10.1016/s0041-0101(02)00360-4
- 626 (2003).
- 51. Abtin, E., Nilson, G., Mobaraki, A., Hosseini, A. A. & Dehgannejhad, M. A new
- species of krait, *Bungarus* (Reptilia, Elapidae, Bungarinae) and the first record of that
- genus in Iran. Russ. J. Herpetol. 21, 243–250; https://doi.org/10.30906/1026-2296-
- 630 2014-21-4-243-250 (2014).
- 52. Ashraf, M. R. et al. Phylogenetic analysis of the Common Krait (*Bungarus caeruleus*)
- in Pakistan based on mitochondrial and nuclear protein coding genes. *Amphib. Reptile*
- 633 *Conserv.* **13**, 203–211 (2019).
- 53. Biakzuala, L., Purkayastha, J., Rathee, Y. S. & Lalremsanga, H. T. New data on the
- distribution, morphology, and molecular systematics of two venomous snakes,
- 636 Bungarus niger and Bungarus lividus (Serpentes: Elapidae), from north-east India.
- 637 *Salamandra*. **57**, 219–228 (2021).

- 54. Chen, Z. N., Shi, S. C., Vogel, G., Ding, L. & Shi, J. S. Multiple lines of evidence
- reveal a new species of Krait (Squamata, Elapidae, *Bungarus*) from Southwestern
- China and Northern Myanmar. *Zookeys.* **1025**, 35–71;
- 641 https://doi.org/10.3897/zookeys.1025.62305 (2021).
- 55. Keogh, J. S. Molecular phylogeny of elapid snakes and a consideration of their
- biogeographic history. *Biol. J. Linn. Soc.* **63**, 177–203; https://doi.org/10.1111/J.1095-
- 644 8312.1998.TB01513.X (1998).
- 56. Kuch, U. et al. A new species of krait (Squamata: Elapidae) from the Red River
- system of northern Vietnam. *Copeia*. **2005**, 818–833; https://doi.org/10.1643/0045-
- 8511%282005%29005%5B0818%3AANSOKS%5D2.0.CO%3B2 (2005).
- 57. Slowinski, J. B. A phylogenetic analysis of *Bungarus* (Elapidae) based on
- morphological characters. J. Herpetol. 28, 440–446; https://doi.org/10.2307/1564956
- 650 (1994).
- 58. Slowinski, J. B. & Keogh, J. S. Phylogenetic relationships of elapid snakes based on
- 652 cytochrome b mtDNA sequences. *Mol. Phylogenet. Evol.* **15**, 157–164;
- 653 <u>https://doi.org/10.1006/mpev.1999.0725</u> (2000).
- 59. Maritz, B., Penner, J., Martins, M., Crnobrnja-Isailović, J., Spear, S., Alencar, L.R.,
- 655 Sigala-Rodriguez, J., Messenger, K., Clark, R. W., Soorae, P. & Luiselli, L.
- Identifying global priorities for the conservation of vipers. *Biol. Conserv.* **204**, 94–
- 657 102; https://doi.org/10.1016/j.biocon.2016.05.004 (2016).
- 658 60. Conroy, C. J., Papenfuss, T., Parker, J. & Hahn, N. E. Use of tricainemethanesulfonate
- 659 (MS222) for euthanasia of reptiles. J. Am. Assoc. Lab. Anim. Sci. 48, 28–32 (2009).
- 660 61. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting
- animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).
- 62. Vaidya, G., Lohman, D. J. & Meier R. SequenceMatrix: concatenation software for
- the fast assembly of multi-gene datasets with character set and codon information.
- 664 Cladistics. 27, 1716–180; https://doi.org/10.1111/j.1096-0031.2010.00329.x (2011).
- 63. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular
- evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547–
- 667 1549; https://doi.org/10.1093/molbev/msy096 (2018).
- 64. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder
- 2: new methods for selecting partitioned models of evolution for molecular and
- morphological phylogenetic analyses. *Mol. Biol. Evol.* **34**, 772–773;
- 671 https://doi.org/10.1093/molbev/msw260 (2017).

- 65. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model
- choice across a large model space. Syst. Biol. 61, 539–542;
- 674 https://doi.org/10.1093/sysbio/sys029 (2012).
- 66. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
- summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904;
- 677 <u>https://doi.org/10.1093/sysbio/syy032</u> (2018).
- 67. R Core Team. R: A language and environment for statistical computing
- https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
- 680 68. Warren, D. L., Geneva, A. J. & Lanfear, R. RWTY (R We There Yet): an R package
- for examining convergence of Bayesian phylogenetic analyses. *Mol. Biol. Evol.* **34**,
- 682 1016–1020; https://doi.org/10.1093/molbev/msw279 (2017).
- 69. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for
- phylogenetic tree display and annotation. *Nucleic Acids Res.* **49**, W293–W296;
- https://doi.org/10.1093/nar/gkab301 (2021).
- 70. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh B. Q. IQ-TREE: A fast and
- effective stochastic algorithm for estimating maximum likelihood phylogenies. *Mol.*
- 688 *Biol. Evol.* **32**, 268–274; https://doi.org/10.1093/molbev/msu300 (2015).
- 71. Minh, B. Q., Nguyen M. A. T. & von Haeseler, A. Ultrafast approximation for
- phylogenetic bootstrap. *Mol. Biol. Evol.* **30**, 1188–1195;
- 691 <u>https://doi.org/10.1093/molbev/mst024</u> (2013).
- 72. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S.
- 693 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods*.
- 694 **14**, 587–589; https://doi.org/10.1038/nmeth.4285 (2017).
- 73. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation
- method with applications to phylogenetic placements. *Bioinform.* **29**, 2869–2876;
- 697 https://doi.org/10.1093/bioinformatics/btt499 (2013).
- 74. Vences, M. et al. iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for
- taxonomists. *Megataxa*. **6**, 77–92; https://doi.org/10.11646/megataxa.6.2.1 (2021).
- 75. Smith, M. A. The fauna of British India, Ceylon and Burma. Reptilia and Amphibia,
- Volume 3. Serpentes (Taylor & Francis, 1943)
- 76. Yang, D. T. & Rao, D. Q. Amphibia and Reptilia of Yunnan (Yunnan Science and
- 703 Technology Press, 2008).
- 704 77. Leviton, A. E. et al. The Dangerously Venomous Snakes of Myanmar Illustrated
- 705 Checklist with Keys. *Proc. Cal. Acad. Sci.* **54**, 407–462 (2003).

- 78. Dowling, H. G. A proposed standard system of counting ventrals in snakes. *Br. J.*
- 707 *Herpetol.* **1**, 97–99 (1951).
- 708 79. Keogh, J. S. Evolutionary implications of hemipenial morphology in the terrestrial
- Australian elapid snakes. Zool. J. Linn. Soc. 125, 239–278;
- 710 <u>https://doi.org/10.1111/j.1096-3642.1999.tb00592.x</u> (1999).
- 711 80. Levene, H. Robust tests for equality of variances. Contributions to probability and
- statistics. Essays in honor of Harold Hotelling (ed. Olkin, I. et al.) 279–292 (Stanford
- 713 University Press, 1961).
- 81. Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. *J. Am. Stat.*
- 715 *Assoc.* **69**, 364–367 (1974).
- 82. Schneider, J. G. Historiae Amphibiorum Naturalis et Literariae. Fasciculus Secundus
- 717 Continens Crocodilos, Scincos, Chamaesauras, Boas. Pseudoboas, Elapes, Angues.
- Amphisbaenas et Caecilias. Frommanni, Germany (1801).
- 83. Bauer, A. M. & Lavilla, E. O. (eds.). J. G. Schneider's Historiae Amphibiorum:
- Herpetology at the Dawn of the 19th Century. SSAR (2021).
- 84. Russell, P. An Account of Indian Serpents, Collected on the Coast of Coromandel:
- Containing Descriptions and Drawings of Each Species; Together with Experiments
- and Remarks on Their Several Poisons (W. Bulmer and Co., 1796).
- 85. Bauer, A. M. Patrick Russell's snakes and their role as type specimens. *Hamadryad*.
- 725 **37**, 18–65 (2015).
- 86. Smith, O. A. Large common and banded krait. J. Bombay Nat. Hist. Soc. 21, 283–284
- 727 (1911).
- 728 87. Whitaker, R. & Captain, A. Snakes of India: The Field Guide (Draco Books, 2008).
- 729 88. Masson, J. The distribution of the Banded Krait (*Bungarus fasciatus*). J. Bombay Nat.
- 730 *Hist. Soc.* **34**, 256–257 (1930).
- 89. Anwar, M. First record of banded krait (*Bungarus fasciatus*) from Pilibhit District,
- 732 Uttar Pradesh-India. *Taprobanica*. **3**, 102–103;
- 733 http://dx.doi.org/10.4038/tapro.v3i2.3967 (2012).
- 90. Das, A., Basu, D., Converse, L. & Suresh, C. C. Herpetofauna of Katerniaghat
- 735 Wildlife Sanctuary, Uttar Pradesh, India. *J. Threat. Taxa.* **4**, 2553–2568;
- 736 https://doi.org/10.11609/JoTT.o2587.2553-68 (2012).
- 737 91. Bhandarkar, W. R., Paliwal, G. T., Bhandarkar, S. V. & Kali, A. A. Herpetofaunal
- diversity at navegaon national park, Distt. Gondia Maharashtra. *Int. J. Env. Rehab.*
- 739 *Conser.* **3**, 42–49 (2012).

- 92. Deshmukh, R. V., Deshmukh, S. A., Badhekar, S. A. & Naitame, R. Y. Snakes of
- Bhandara District, Maharashtra, Central India with notes on natural history. *Reptil.*
- 742 *Amphib.* **27**, 10–17 (2020).
- 93. Joshi, P. S., Charjan, A. P. & Tantarpale, V. T. A herpetofaunal inventory of Vidarbha
- region, Maharashtra, India. *Bio. Disc.* **8**, 582–587 (2017).
- 94. Kinnear, N. B. Banded Krait (Bungarus fasciatus) in Hyderabad State. J. Bombay
- 746 *Nat. Hist. Soc.* **22**, 635–636 (1913).
- 95. Srinivasulu, C., Venkateshwarlu, D. & Seetharamaraju, M. Rediscovery of the Banded
- 748 Krait *Bungarus fasciatus* (Schneider 1801) (Serpentes: Elapidae) from Warangal
- District, Andhra Pradesh, India. *J. Threat. Taxa.* 1, 353–354;
- 750 https://doi.org/10.11609/JoTT.o1986.353-4 (2009).
- 96. Chandra, K., Raha, A., Majumder, A., Parida, A. & Sarsavan, A. First Record of
- 752 Banded Krait, Bungarus fasciatus (Schneider, 1801), (Reptilia: Elapidae), from Guru
- 753 Ghasidas National Park, Koriya District, Chhattisgarh, India. Rec. Zool. Surv. India.
- **113**, 77–80 (2013).
- 755 97. Ingle, M. Herpetofauna of Naglok Region, Jashpur District, Chhattisgarh. *Rec. Zool.*
- 756 *Surv. India.* **111**, 99–109 (2011).
- 98. Hussain, A.. New Record of Banded Krait *Bungarus fasciatus* (Schneider, 1801) from
- Ranchi (Jharkhand) with its Preying on Checkered Keel-Back Snake. *Biol. Forum.* 12,
- 759 29–32 (2020).
- 99. Wall, F. A popular treatise on the common Indian snakes. Part 15. *Bungarus fasciatus*
- 761 and Lycodon striatus. J. Bombay Nat. Hist. Soc. **20**, 933–953 (1912).
- 762 100. Boruah, B. et al. Diversity of herpetofauna and their conservation in and
- around North Orissa University Campus, Odisha, India. *NeBIO*. 7, 138–145 (2016).
- 764 101. Sharma, R. C. The fauna of India and the adjacent countries, Vol. 3, Reptilia
- 765 (Serpentes). (Zoological Survey of India, 2007).
- Borang, A., Bhatt, B. B., Chaudhury, S. B., Borkotoki, A., Bhutia, P. T.
- 767 Checklist of the snakes of Arunachal Pradesh, northeast India. *J. Bombay Nat. Hist.*
- 768 *Soc.* **102**, 19–26 (2005).
- 769 103.Das, A. Notes on Snakes of the Genus *Bungarus* (Serpentes: Elapidae) from Northeast
- India. Indian Hotspots (Springer, 2018).
- 771 104.Mathew, R. On a collection of snakes from North-east India (Reptilia: Serpentes).
- 772 Rec. Zool. Surv. India. **80**, 449–458 (1983).

- 105. Purkayastha, J., Das, M. & Sengupta, S. Urban herpetofauna: a case study in
- Guwahati City of Assam, India. Herpetol. Notes. 4, 195–202 (2011).
- 106. Mathew, R. State Fauna Series 4: Fauna of Meghalaya, Part I; Reptilia (ed. Director)
- 776 379–454 (Zoological Survey of India, 1995).
- 107. Lalremsanga, H. T., Sailo, S. & Chinliansiama, H. Diversity of snakes (Reptilia:
- Squamata) and role of environmental factors in their distribution in Mizoram,
- 779 Northeast India. *Proc. Adv. Environ. Chem.* **64**, 265–269 (2011).
- 108. Pawar, S. & Birand, A. A survey of amphibians, reptiles, and birds in Northeast India.
- 781 (Centre for Ecological Research and Conservation, 2001).
- 782 109. Majumder, J., Bhattacharjee, P. P., Majumdar, K., Debnath, C. & Agarwala, B. K.
- Documentation of herpetofaunal species richness in Tripura, northeast India. *NeBio.* **3**,
- 784 60–70 (2012).
- 785 110. Singh, S. On a collection of reptiles and amphibians of Manipur. *Geobios New Rep.*
- **14**, 135–145 (1995).
- 787 111. Dasgupta, G. & Raha, S. Fauna of Nagaland, State Fauna Series 12; Reptilia (ed.
- Director) 433–460 (Zoological Survey of India, 2006).
- 789 112. World Health Organization. Snakebite Information and Data Platform.
- 790 https://www.who.int/teams/control-of-neglected-tropical-diseases/snakebite
- 791 envenoming/snakebite-information-and-data-platform/overview#tab=tab_1 (2022).
- 792 113. Hillis, D. M. Species delimitation in herpetology. *J. Herpetol.* **53**, 3–12;
- 793 https://doi.org/10.1670/18-123 (2019).
- 114. Gilman, C. A., Corl, A., Sinervo, B. & Irschick, D. J. Genital morphology associated
- with mating strategy in the polymorphic lizard, *Uta stansburiana*. *J. Morphol.* **280**,
- 796 184–192; https://doi.org/10.1002/jmor.20930 (2019).
- 797 115. Klaczko, J., Ingram, T. & Losos, J. Genitals evolve faster than other traits in *Anolis*
- 798 lizards. J. Zool. **295**, 44–48; https://doi.org/10.1111/jzo.12178 (2015).
- 799 116. Arnold, E. N. Why copulatory organs provide so many useful taxonomic characters:
- the origin and maintenance of hemipenial differences in lacertid lizards (Reptilia:
- 801 Lacertidae). *Biol. J. Linn. Soc.* **29**, 263–281; http://dx.doi.org/10.1111/j.1095-
- 802 <u>8312.1986.tb00279.x</u> (19.
- 803 117. Myers, C. W. & McDowell, S. B. New Taxa and Cryptic Species of Neotropical
- Snakes (Xenodontinae), with Commentary on Hemipenes as Generic and Specific
- 805 Characters. *Bull. Am. Museum Nat. Hist.* **385**, 1–112; https://doi.org/10.1206/862.1
- 806 (2014).

118. Nunes, P. M. S., Fouquet, A., Curcio, F. F., Kok, P. J. R. & Rodrigues, M. T. Cryptic 807 species in *Iphisa elegans* Gray, 1851 (Squamata: Gymnophthalmidae) revealed by 808 hemipenial morphology and molecular data. Zool. J. Linn. Soc. 166, 361–376; 809 https://doi.org/10.1111/j.1096-3642.2012.00846.x (2012). 810 119. Daltry, J. C., Wüster, W. & Thorpe, R. S. Diet and snake venom evolution. *Nature*. 811 812 **379**, 537–540 (1996). 120. Fry, B. G., Winkel, K. D., Wickramaratna, J. C., Hodgson, W. C. & Wüster, W. 813 Effectiveness of snake antivenom: species and regional venom variation and its 814 815 clinical impact. J. Toxicol. Toxin Rev. 22, 23–34; https://doi.org/10.1081/TXR-816 120019018 (2003). 121. Williams, H. F. et al. The urgent need to develop novel strategies for the diagnosis and 817 treatment of snakebites. Toxins, 11, 363; https://doi.org/10.3390%2Ftoxins11060363 818 (2019).819 820 122. Chatrath, S. T. et al. Identification of novel proteins from the venom of a cryptic snake Drysdalia coronoides by a combined transcriptomics and proteomics approach. J. 821 822 Proteome Res. 10, 739–750; https://doi.org/10.1021/pr1008916 (2011). 123. Siqueira-Silva, T. et al. Ecological and biogeographic processes drive the proteome 823 824 evolution of snake venom. Glob. Ecol. Biogeogr. 30, 1978–1989; 825 https://doi.org/10.1111/geb.13359 (2021). 124. Wüster, W. & Broadley, D. G. A new species of spitting cobra from northeastern 826 Africa (Serpentes: Elapidae: Naja). J. Zool. 259, 345–359; 827 http://dx.doi.org/10.1017/S0952836902003333 (2003). 828 125. Wüster, W. & Broadley, D. G. Get an eyeful of this: a new species of giant spitting 829 cobra from eastern and north-eastern Africa (Squamata: Serpentes: Elapidae: Naja). 830 Zootaxa. 1532, 51–68; https://doi.org/10.11646/zootaxa.1532.1.4 (2007). 831 832 126. Puorto, G. et al. Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography of lanceheaded pitvipers in the Brazilian 833 Atlantic forest, and the status of Bothrops pradoi (Squamata: Serpentes: Viperidae). J. 834 Evol. Biol. 14, 527–538; https://doi.org/10.1046/j.1420-9101.2001.00313.x (2001). 835 836 127. Hare, M. P. Prospects for nuclear gene phylogeography. *Trends Ecol Evol.* **16**, 700– 706; http://dx.doi.org/10.1016/S0169-5347(01)02326-6 (2001). 837 128. Wüster, W. et al. Integration of nuclear and mitochondrial gene sequences and 838

morphology reveals unexpected diversity in the forest cobra (*Naja melanoleuca*)

species complex in Central and West Africa (Serpentes: Elapidae). Zootaxa. 4455, 68– 840 98; https://doi.org/10.11646/zootaxa.4455.1.3 (2018). 841 **Figure Legends** 842 Fig 1. Bayesian inference (BI) phylogenetic tree based on concatenated mitochondrial 843 16S, COI, ND4 and CYTB genes; lineage partitions recovered from CYTB-based 844 PTP analyses are presented besides the BI tree (only the CYTB dataset was utilized 845 for PTP analyses because it contains more representative samples from the three 846 847 clades compared to the other genes). Values at each node represent Bayesian posterior probabilities (PP) and Ultrafast Bootstrap (UFB) values from the Maximum 848 Likelihood (ML) analysis (PP/UFB). Abbreviations of country and state/province 849 850 names are: ID: Indonesia, JW/J: Java; MM: Myanmar, AY: Ayeyarwady; IN: India, WB: West Bengal, MZ: Mizoram, AS: Assam; VN: Vietnam, VC: Vinh Phuc; CN: 851 852 China, GZ: Guizhou, GX: Guangxi, GD: Guangdong, YN: Yunnan; TH: Thailand. Fig 2. Ordination of Bungarus fasciatus populations from Mizoram, West Bengal and 853 Java along the first two principal components based on a PCA of the characters Ve, 854 BB, BT, and NBW. Total variance associated with the PC1 and PC2 are 64% and 855 20%, respectively. 856 Fig 3. Bungarus fasciatus sensu stricto (MZMU1883) from Northeast India: (A) 857 dorsal view of full body, (B) ventral view of full body, (C) dorsal view of head, (D) 858 lateral view of the left side of head, and (E) ventral view of head. 859 Fig 4. Live individuals of Bungarus fasciatus sensu stricto (A) from Keitum village, 860 Mizoram, India (MZMU1421), and (B) a juvenile with creamish dorsum coloration 861 862 from Saikhawthlir village, Mizoram, India. Fig 5. Sulcal (left) and asulcal (right) views of the right hemipenis of Bungarus 863 fasciatus sensu stricto (MZMU2935) from Mizoram, India. 864 Fig 6. Map showing the distribution range of Bungarus fasciatus sensu lato, based on 865 the latest species map provided by the World Health Organization (2022); the 866 867 coloration corresponds to the three distinct evolutionary lineages recovered in the phylogenetic analyses. The type locality of *Bungarus fasciatus* sensu stricto is 868 indicated by a black star. Localities of specimens used in the morphological analyses 869 870 are indicated by black filled diamonds (WB), circles (MZ), and triangles (JV). 871 Abbreviations for countries are: IN: India, NP: Nepal, BT: Bhutan, BD: Bangladesh, LK: Sri Lanka, CN: China, MM: Myanmar, LA: Laos, TH: Thailand, VN: Vietnam, 872

873	KH: Cambodia, MY: Malaysia, BN: Brunei Darussalam, ID: Indonesia (KA:
874	Kalimantan, SM: Sumatra, JW: Java).
875	

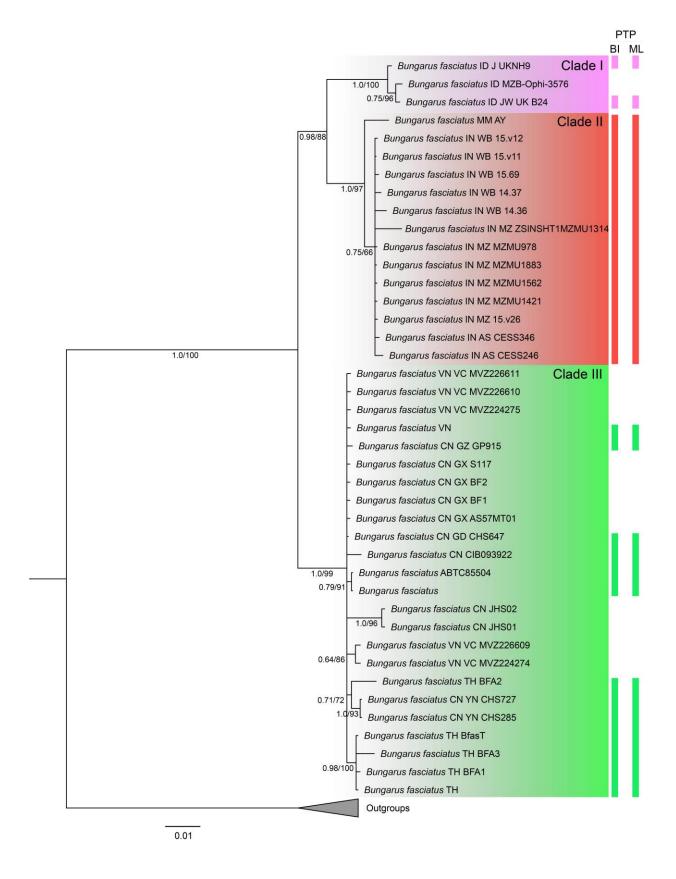


Figure 1.

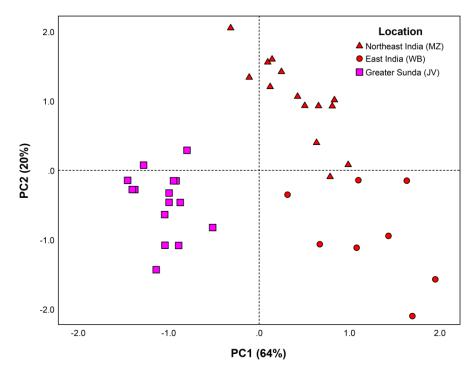
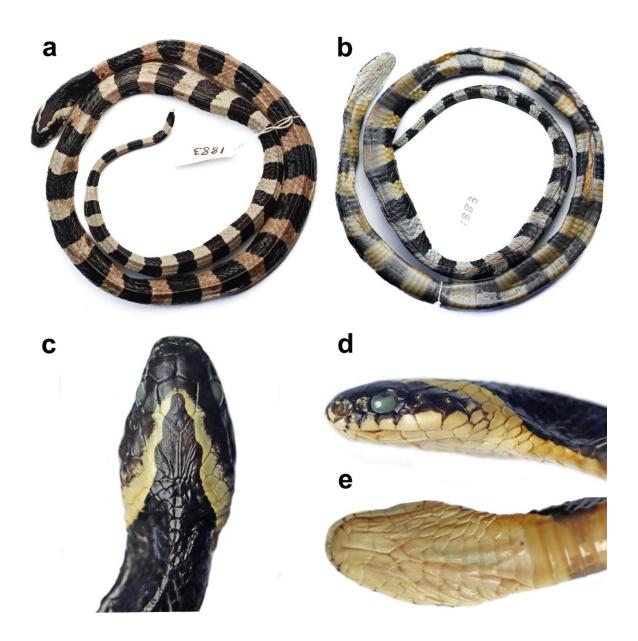



Figure 2.

886 Figure 3.

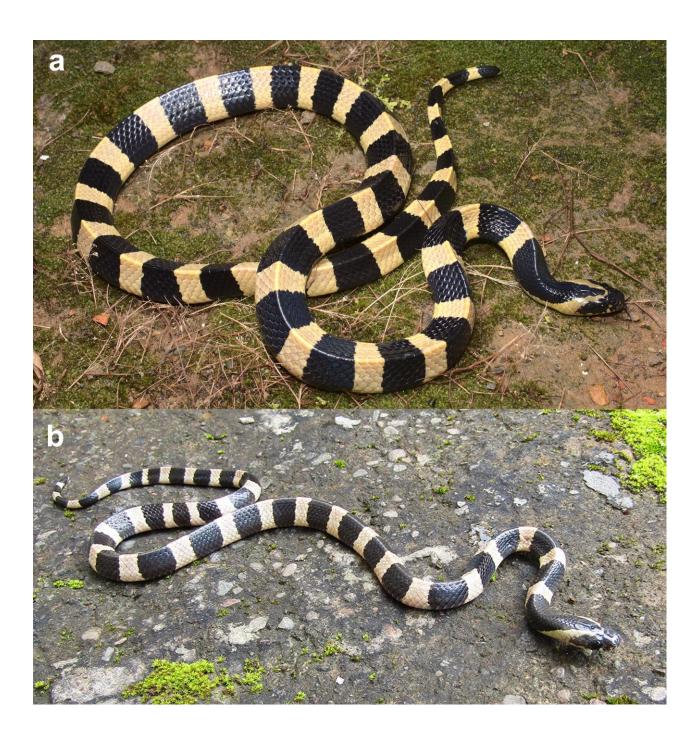


Figure 4.

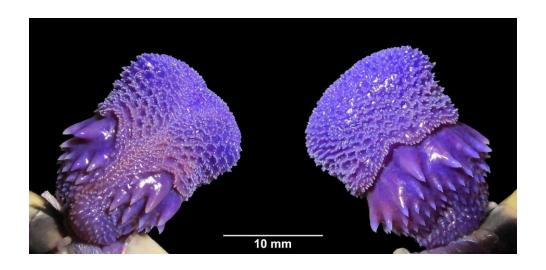
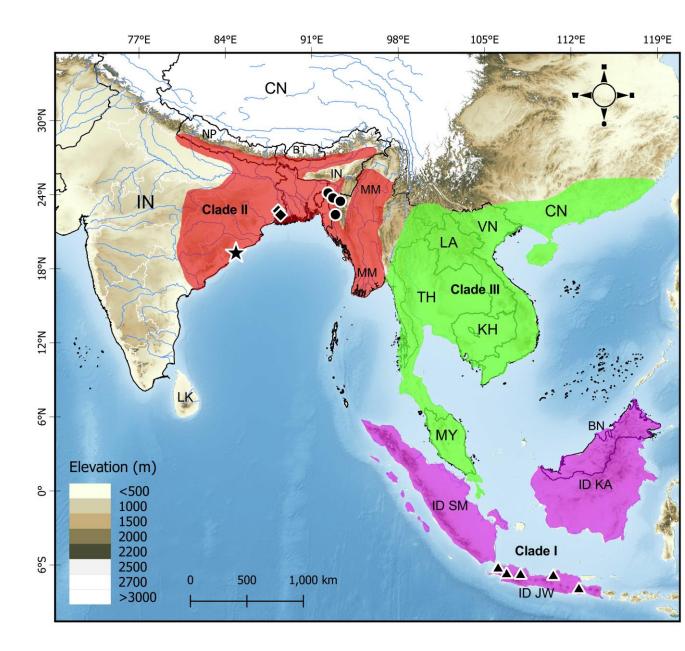



Figure 5.

900 Figure 6.

Table 1. Evaluation on the meristic and mensural characters measured for 38 *Bungarus fasciatus* individuals from Java (JV), Mizoram (MZ), and West Bengal (WB), including mean, standard deviation, minimum and maximum values. Standardized meristic data were utilised for the following tests: Ve of Java and Mizoram was tested for inter-population difference and sexual dimorphism using separate one-way ANOVA with locality and sex as the factors, respectively; Sc of Java and Mizoram was tested using two-way ANCOVA using sex and locality as factors; BB and NBW were tested for inter-population difference (among the three populations) and sexual dimorphism (within JV and MZ) using separate one-way ANOVA with locality and sex as the factors, respectively; since BT violated the assumption of homoscedascity, it was tested using the alternative Brown-Forsythe test and was indicated by octothorp (#). For mensurals, two-way ANCOVA was performed for the log transformed TaL, HL, and HW values from JV and MZ by using the log transformed SVL as a covariate, with locality and sex as the factors. The characters with statistically significant variations at the alpha level of 0.05 are shown in boldface. The characters tested for inter-population difference across the three populations are indicated by asterisk (*). Significant values are in bold.

Characters	Sex	Java (n=15)		Mizoram (n=15)		West Bengal (n=8) unsexed		Sexual dimorphism		Inter-population difference	
		Mean±SD	Range	Mean±SD	Range	Mean±SD	Range				
Ve	Male	205.44±3.43	199–210	226±2.10	222–228	217.63±3.12	212–222	$F_{1,28} = 1.35$	p = 0.256	$F_{1,28} = 469.80$	<i>p</i> < 0.001
	Female	206.83±1.94	205-210	229.11±2.15	224–231						
Sc	Male	34.43±0.98	33–36	35.83±0.75	35–37	34.63±1.49	31–36	$F_{1,25} = 2.44$	p = 0.131	$F_{1,25}=1.30$	p = 0.266
	Female	31.17±1.60	30–34	33.75±1.28	32–36						
BB	Male	22.67±1.12	21–25	24.33±1.97	22–27	28.38±1.73	26–31	$F_{1,28} = 0.44$	p = 0.511	$F_{2,35}=39.78*$	<i>p</i> < 0.001 *
	Female	21.83±1.17	20–23	25.00±1.58	23–27						
BT	Male	3.22±0.67	2–4	5.00±0.00	5	5.25±1.09	4–7	$F_{1,21} = 0.12^{\#}$	$p = 0.728^{\#}$	$F_{2,12} = 17.86^{*\#}$	<i>p</i> < 0.001 **
	Female	3.17±0.41	3–4	4.22 ± 0.44	4–5						
NBW	Male	19.00±1.00	18–20	18.20±0.45	18–19	15.63±1.11	14–17	$F_{1,27} = 0.40$	p = 0.533	$F_{2,34}=22.16*$	<i>p</i> < 0.001 *
	Female	19.00±0.63	18–20	17.67±1.73	15–20						
TaL	Male	120.74±20.01	90–145	101±38.92	47–133	-	-	$F_{1,24} = 18.96$	<i>p</i> < 0.001	$F_{1,24} = 6.01$	p = 0.022
	Female	107.86±23.43	85–145	97.88±15.56	76–119						
HL	Male	35.06±4.97	27.10-40.90	21.60±5.71	12.80-26.60		-	$F_{1,24} = 4.37$	<i>p</i> = 0.047	$F_{1,24} = 79.38$	<i>p</i> < 0.001
	Female	34.81±6.19	25.90-44.50	21.03±5.03	15.74–29.68						
HW	Male	20.88±4.03	13.80-25.70	17.79±5.10	12.18–22.46	-	-	$F_{1,25} = 4.33$	p = 0.048	$F_{1,25} = 0.97$	p = 0.334
	Female	20.70±3.13	16.40–26.20	16.12±4.30	10.40-22.76						

Table 2. Some comparative morphological data of *Bungarus fasciatus* sensu lato in each biogeographic region, based on this study and published data.

	Population / clade					
Character	Indo-Myanmar	East Asia	Greater Sunda			
	(n=23)	(n=11)	(n=15)			
Ventrals	200–234	217–237	199–210			
Subcaudals	23–39	33–41	30–36			
Number of dorsal bands on body	22–31	19–21	20–25			
Number of dorsal bands on tail	4–7 ?		2–4			
Nuchal band covered by vertebral scales	14–20	?	18–20			
Background body color	Yellow / cream Yellow		Yellow / cream			
		Yang & Rao				
	Smith [75]	[76];				
Source		Chen et al. [54];	This study			
	This study	Leviton et al.				
		[77]				