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Abstract— With the rapid development of the Internet-
of-Medical-Things (IoMT) in recent years, it has emerged
as a promising solution to alleviate the workload of medi-
cal staff, particularly in the field of Medical Image Quality
Assessment (MIQA). By deploying MIQA based on IoMT, it
proves to be highly valuable in assisting the diagnosis and
treatment of various types of medical images, such as fun-
dus images, ultrasound images, and dermoscopic images.
However, traditional MIQA models necessitate a substantial
number of labeled medical images to be effective, which
poses a challenge in acquiring a sufficient training dataset.
To address this issue, we present a label-free MIQA model
developed through a zero-shot learning approach. This
paper introduces a Semantics-Aware Contrastive Learning
(SCL) model that can effectively generalise quality assess-
ment to diverse medical image types. The proposed method
integrates features extracted from zero-shot learning, the
spatial domain, and the frequency domain. Zero-shot learn-
ing is achieved through a tailored Contrastive Language-
Image Pre-training (CLIP) model. Natural Scene Statistics
(NSS) and patch-based features are extracted in the spa-
tial domain, while frequency features are hierarchically ex-
tracted from both local and global levels. All of this informa-
tion is utilised to derive a final quality score for a medical
image. To ensure a comprehensive evaluation, we not only
utilise two existing datasets, EyeQ and LiverQ, but also
create a dataset specifically for skin image quality assess-
ment. As a result, our SCL method undergoes extensive
evaluation using all three medical image quality datasets,
demonstrating its superiority over advanced models.

Index Terms— IoMT, Medical imaging, image quality as-
sessment, zero-shot learning.

I. INTRODUCTION

The increasing volume of healthcare requirements places
significant pressure and challenges on medical staff [1]. To
address this reality, there is a realistic demand for the integra-
tion of intelligent and automated technologies in the healthcare
industry, giving rise to the concept of the Internet of Medical
Things (IoMT). The IoMT aims to establish an intelligent
service platform for medical health by seamlessly integrating
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various complex medical images with global business data
[1]. As image processing technologies continue to advance,
AI-assisted medical image processing within the IoMT has
emerged as a crucial component of smart medicine. By lever-
aging robust scheduling IoMT platforms and effective image
processing algorithms, it holds the promise of alleviating
the workload of medical staff through the full utilisation of
machine intelligence [2]. The accuracy of biometric mea-
surements heavily relies on the quality of medical images.
However, due to the sensitive nature of patient data, strict
data privacy standards must be upheld, making it impractical
to annotate these images directly. Therefore, it is necessary
to explore alternative approaches that ensure data protection
within healthcare systems while maintaining the integrity of
image quality assessment.

Advanced image processing technologies aid medical pro-
fessionals in diagnosing patients by assisting in the analysis
of vast amounts of medical data [3, 4]. These technologies
alleviate the burden on doctors, allowing them to focus on
accurate diagnoses and improving healthcare outcomes for
patients. The past decade has witnessed remarkable strides
in the domains of deep learning and intelligent computing
[5]. These cutting-edge technologies have revolutionised the
landscape, propelling the boundaries of what is achievable
in the analysis and interpretation of medical images. Unlike
traditional image recognition tasks, the importance of quality
assessment is significantly amplified in the context of medical
images. This critical evaluation directly impacts disease diag-
nosis and grading, making it a crucial component of effective
healthcare practices [6, 7]. Image Quality Assessment (IQA)
plays a vital role in understanding human perception which
can be full-reference IQA or blind IQA [8]. There has been
a notable focus on BIQA models, as they offer the ability to
evaluate image quality without relying on reference informa-
tion. Compared to natural IQA, medical IQA is a task that
traditionally relies on the expertise of healthcare specialists
such as ophthalmologists, radiologists, and other medical pro-
fessionals. In diabetic retinopathy diagnosis, timely detection
of retinal lesions is vital for effective treatment, but it is a
process that can be time-consuming and highly dependent on
the expertise and experience of healthcare professionals. To
facilitate accurate and automated diagnoses, it is necessary to
gather large collections of retinal images along with patient
information. [9].

Nevertheless, the collection and storage of sensitive data
pose legitimate concerns regarding data cybersecurity and
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patient privacy. To solve these issues, one streamline is to
safeguard healthcare systems and uphold patient confidential-
ity by developing robuest security protocols such as intrusion
detection, firewall protection, digital forensics, antivirus soft-
ware, access control, and encryption techniques [10]. Another
streamline is to develop domain generalisation methods, where
no sensitive data is needed to train a MIQA model while
can generalise to assess the quality of medical images. Do-
main generalisation revolves around two distinct domains: the
source domain and the target domain. The primary aim is to
train a neural network utilising data from the source domain,
enabling it to demonstrate proficiency when confronted with
data from the target domain, even without access to labels
for the latter. Drawing inspiration from this concept, we are
actively investigating the adoption of domain generalisation
techniques within the healthcare domain, particularly in the
realm of assessing the quality of medical data. This approach
holds substantial practical significance as it operates without
labels, prioritising the preservation of privacy and security
within healthcare systems.

This paper proposes a semantics-aware contrastive learning
(SCL) model for medical image quality assessment, which
deploys in IoMT for medical data quality assessment. The
proposed model is built in medical image label-free man-
ner, where Contrastive Language-Image Pre-training (CLIP)
model is introduced to leverage natural language as a flex-
ible prediction space to enable zero-shot learning. To enable
generalisation, semantics-aware attributions are extracted from
both spatial and frequency domains in a hierarchical manner.
More specifically, NSS and local features of patches are
extracted spatial domain. Hierarchical features are extracted
by steerable Wavelet Decomposition in both local and global
levels in frequency domain. Finally, our method integrates the
knowledge of zero-shot learning model, NSS, local patches,
hierarchical frequency features to derive the final prediction of
medical image quality. The main contributions of this paper
are summarised as follows.

• We propose a novel Semantics-aware Contrastive Learn-
ing (SCL) model for domain-shifted quality assessment
of medical images, which is a zero-learning framework.
That is, no training and labels are required from medical
data.

• To build a model without using medical images and
labels, we focus on designing a blind and domain-
shifted image quality assessment. More specifically, we
transcend traditional paradigms by leveraging the com-
prehensive visual language encoded in the CLIP model.

• To achieve better generalisation ability, semantics at-
tributions of both spatial and frequency domains are
extracted hierarchically from local to global level. In
addition, we synthesise low-illumination and blurred
skin images based on good quality skin images from
ISIC dataset to create SkinQ dataset.

• To carry out a comprehensive evaluation, we compare
our method with other state-of-the-art (SOTA) methods
on three distinct medical image datasets, including EyeQ
[11], LiverQ [12], and SkinQ [13] datasets, to show its

effectiveness in domain generalisation.

II. RELATED WORK

A. Zero-shot Learning
Zero-shot learning is to generalise to unseen object cate-

gories when no data is available to train a model [14]. One
streamline of zero-shot learning is to built models by using
pre-trained contrastive models. Contrastive models focus on
learning input representations where similar items are posi-
tioned closely together and dissimilar items are placed farther
apart in the latent space. This approach has demonstrated its
effectiveness not only in self-supervised learning methods but
also in facilitating zero-shot transfer learning tasks [14, 15].
Zero-shot transfer learning tackles the challenge of performing
a task without the need of accessing to dedicated training
sets specifically designed for that task [14]. To exemplify this
concept, imagine a scenario where an individual has never
encountered a zebra previously. Suppose we offer a compre-
hensive explanation for a zebra, highlighting its horse-like
appearance adorned with distinctive black-and-white stripes.
In such a scenario, the individual would be able to recognise a
zebra when encountering one. CLIP [14] is a recently proposed
pre-trained contrastive model, which is able to learn visual
representations from natural language supervision. CLIP is
trained by an extensive dataset of 400 million image-text pairs
obtained, which provides abundant language supervisions.
This unique characteristic enables CLIP to perform various
image classification tasks without the need for task-specific
optimisation.

Given strict patients data protection regulations and high
cost of collecting medical images, zero-shot learning is recog-
nised as a promising solution to solve medical image quality
assessment. Therefore, this paper focuses on developing a
zero-shot transfer model, which can generalize its learned
knowledge to a new task. In our work, zero-shot transfer is
used to conduct image quality assessment for various types of
medical images (e.g., fundus images, ultrasound images, and
dermoscopic images).

B. Blind Image Quality Evaluator (IQE) and Medical IQE
In the absence of ground-truth images, the evaluation of

image quality can be performed using no-reference IQA meth-
ods [16]. These methods operate on the premise that natural
scene images exhibit specific statistical characteristics and
suffer from alternations under distortions. The degree of this
alteration can be quantified to assess the quality of the image
accurately. Instead of relying solely on statistical properties,
features extracted from supplementary datasets are utilised to
quantify the degradation observed in natural scene images.
These features serve as alternatives to statistical properties
for assessing image quality. In most of blind IQA methods, a
model is trained on degraded images to facilitate the training
process [17, 18]. As a result, the state-of-the-art no-reference
IQA methods are less effective accounting for the artifacts
such as incorrect high-frequency details. On the other hand,
given that medical images often exhibit blur and ringing
artifacts [19], it is crucial for medical IQA algorithms to share
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similarities with existing metrics to measure blur and sharp-
ness. High-quality medical imaging is essential for enabling
accurate interpretation, precise diagnosis, informed surgical
planning, and effective treatment delivery. The quality of
medical images plays a critical role in ensuring the success and
reliability of these crucial healthcare processes. Image quality
assessment methods, such as NIQA [20] and BRISQUE [21],
have proven to be effective in quality assurance and clinical
diagnosis across diverse imaging modalities. These methods
have found successful applications in fields such as MR
imaging [22, 23] and fundus imaging [24, 25].

In medical community, it is very difficult to access full-
reference medical image dataset which contains the scores
from low-to-high in various quality versions of identical
medical images. Hence, blind IQA methods offer a promising
approach for medical IQA as they can assess the quality of
diverse images without the requirement of having the exact
same images. Instead, these methods rely on scoring variations
across different images to evaluate their quality. In this work,
we attempt to fill two gaps: high cost of labelling medical
image quality and the challenging of acquiring sufficient
medical images. To tackle with these two issues, a novel blind
and zero-shot model is proposed in this work to assess the
quality of medical images through learning from perceptual
features of spatial and frequency domains in hierarchical levels
and then therefore generalising quality assessment on various
types of medical images.

C. Natural Scene Statistics

Natural scenes encompass a wide range of images and
videos captured using high-quality devices operating in the
visual spectrum, representing the visual environment. This
distinction sets them apart from other forms of media such
as text, computer-generated graphics, cartoons, animations,
paintings, drawings, random noise, or images and videos
captured from non-visual stimuli like radar, sonar, X-rays,
ultrasounds, and so on. The realm of natural scenes constitutes
a small subset within the vast expanse of all possible scenes
[26, 27]. To comprehend the intricacies of this subspace,
numerous researchers have delved into studying the statistical
properties and crafting statistical models for natural images
[26]. By employing localized models like principal compo-
nents analysis (PCA) and independent components analysis
(ICA), researchers have uncovered intriguing connections be-
tween the statistical characteristics of natural scenes and the
intricacies of the human visual system (HVS) [27]. These
models, which incorporate local statistics that capture human
attention. In general, approaches that model the statistics of
natural scenes are called natural scene statistics (NSS) models.
By leveraging NSS, it enables supervised learning models
to predict the quality of images. One noteworthy model in
this context is NIQE [20], which is widely recognised as
one of the pioneering unified BIQA models. NIQE aims to
effectively capture a wide range of distortions. Nevertheless,
only employing NSS features in NIQE does not exhibit
sufficient sensitivity to the introduction of “unnaturalness”
in images caused by real-world distortions [20]. To address

this limitation, [28] improved NIQE by incorporating a more
robust set of NSS features for the quality predictions of local
regions. This enhancement allows for improved detection and
evaluation of quality issues in images affected by various types
of distortions. NSS have been explicitly incorporated into a
number of image processing applications, including image
compression, image denoising, and image segmentation, etc.
[26].

Although NSS can perform well in processing simplistic
distortions in a blind manner, it is insufficient for medical
image quality assessment due to more complicated distortions
contained in medical images. Taking this into account, our
method combine zero-shot learning based model with NSS
to achieve better generalisation ability for various types of
medical images.

III. SEMANTICS-AWARE CONTRAST LEARNING (SCL)
MODEL

A. The Architecture of SCL Model
An overview of our SCL model is shown in Fig. 1. The orig-

inal size of an medical image is processed in three branches.
For the first branch, input image is used to extract spatial
and frequency domain features. More specially, discrete cosine
transform (DCT) is conducted to extract local frequency fea-
tures. Steerable Wavelet Decomposition (SWD) is conducted
on input image to generate neighbouring wavelet coefficients
and then passed to Gaussian Scale Mixture (GSM) to extract
global frequency features. Spatial features are derived from
patches instead of individual pixels, enabling them to pos-
sess enhanced discriminative strength. Additionally, principal
component analysis (PCA) is applied to the patches, and the
results of singular values are utilised to capture and describe
spatial discontinuities in the image. This approach aids in
effectively characterising the structural properties and local
variations within the image. With using these three branches,
features from both spatial and frequency domains under local
and global levels are extracted. For the second branch, a
prompt pair {“Good photo.” And “Bad photo.”} is utilised
to exploit CLIP for perception assessment so that ambiguity
can be reduced. The features of a paired prompts (normal
prompt and its antonym) are defined by t1 and t2. Then, the
cosine similarity of them are measured to derive final score.
For the third branch, the original size is partitioned into fixed-
size patches to extract and integrate local quality-aware NSS
features. The pristine multivariate Gaussian (PMVG) model is
fitted to the feature vector of each patch and its local quality
score is computed accordingly. The quality score of full-size
medical image is obtained by integrating local quality scores
of all patches with using a pooling operation.

B. Zero-shot Transfer
In our work, an effective prompt pairing strategy is in-

troduced to mitigate the ambiguity problem of CLIP. This
strategy entails utilising pairs of antonym prompts, such as
“Good photo.” and “Bad photo.”, to facilitate each prediction.
Suppose that p1 and p2 are features extracted from the two
prompts that convey opposite meanings. Initially, the cosine
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Fig. 1: The overall architecture of the proposed semantics-aware contrastive learning (SCL) model for assessing the quality
of medical images. The data flow is also provided starting from IoMT devices (e.g., smart phones) which collecting medical
images and then captured medical images are passed to our SCL model deployed in edge devices (smart phones) for quality
assessment. If the captured medical images are high quality, these medical images will be passed data centre and healthcare
professionals. Otherwise, we will suggest the out-patients to retake the medical images.

similarity between the image feature x and each prompt
feature is computed. The final similarity of SIM∗ ∈ [0, 1]
is calculated using Softmax as follows:

SIMi =
i⊙ pi

||i|| · ||pi||
, i ∈ {1, 2} (1)

SIM∗ =
eSIM1

eSIM1 + eSIM2
(2)

where i ∈ RD and p ∈ RD denote the feature vectors extracted
from the image and the prompt, respectively. The operator ⊙
denotes the dot product between vectors, and the notation || · ||
represents the ℓ2 norm of a vector.

Using antonyms (contrasting adjectives) in prompts effec-
tively eliminates prompt ambiguity and significantly enhances
performance aligning predictions better with human percep-
tion. Following guidance from [29], we use the ”[text]” photo
for prompt simplicity and common-sense for our domain-
shifted problem. We also analyzed the impact of different
adjectives using the same template, observing performance
variations. For overall image quality assessment, “Good/Bad”
prompts correlate more strongly with human perception than
“High quality/Low quality” or “High definition/Low defini-
tion” prompts, indicating that uncommon adjectives may yield
weaker results. Dealing with synonyms presents a challenge,
underscoring the importance of meticulous prompt design for
accuracy and reliability.

1) Removal of Positional Embedding: The Naive CLIP
model’s fixed-sized inputs aren’t ideal for perception as-
sessment, as resizing and cropping can introduce distortions
affecting the score. To address this, we follow [29] by re-
moving positional embeddings and adopting ResNet. Unlike
convolutional models, ResNet embeds positional information
deep within its architecture, enhancing performance even
without explicit positional embeddings. This contrasts with
Transformer models, which are more sensitive to positional
embeddings’ removal and may lead to a drop of performance.

2) Quality Perception: In No-Reference IQA for overall
quality perception assessment, we use common antonym pairs
like ”Good photo” and ”Bad photo” and fine-tune them with
CLIP-IQA+ [29] without modifying the network weights, ben-
efiting from extensive language-vision training for enhanced
generalizability. To assess fine-grained quality aspects like
brightness, noisiness, and sharpness, we adapt the same zero-
shot model [29] by replacing ”good” and ”bad” with the
attribute and its antonym, e.g., ”Bright photo” and ”Dark
photo” for brightness evaluation. Unlike most learning-based
approaches, this zero-shot model doesn’t rely on predefined
labels making it versatile for assessing various attributes.

C. Semantics-aware Perception

1) Local Quality-aware NSS extraction and Integration: A
multivariate Gaussian (MVG) model is constructed to repre-
sent NSS features from natural images, which serves as a
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“reference” for evaluating medical image patch quality. To
make NSS features more meaningful for quality prediction,
we selectively use patches with significant contrast to improve
the effectiveness of image quality assessment. The contrast of
a pixel is given as follows.

Ī(x, y) =
I(x, y)− µ(x, y)

σ(x, y) + 1
(3)

where x and y are spatial coordinates. µ(x, y) and σ(x, y) are
the mean and contrast of the local image. For smoothing, the
additional one is added in the denominator.

Then, we calculate patch contrast by combining contrasts
within each patch to provide a quantitative assessment of
overall contrast for comprehensive image quality analysis. To
enhance quality prediction, we compute NSS features at dif-
ferent scales for capturing multi-scale attributes and improving
assessment robustness by considering various levels of detail.
These selected patches create feature vectors of dimensionality
d by combining NSS and gradient magnitude features. Given
independent samples xi, i ∈ 1, ..., n from an m-dimensional
MVG distribution, we can learn the MVG distribution from
xi by using maximum likelihood estimation as follows.

f(x) =
1

(2π)
m
2 |Σ| 12

exp (−1

2
(x− µ)TΣ−1(x− µ)) (4)

where x ∈ Rm×1 is the vector variable, and µ and Σ are the
mean vector and covariance matrix of x. Note that the MVG
model is fully described by the pair (µ,Σ).

After obtaining MVG model (µ,Σ) followed by [28], it can
be employed to assess the quality of patches within a given
medical image. During training, a medical image is partitioned
into k patches. For i-th patch, an NSS feature vector yi of
dimension d is extracted. To reduce the dimensionality of yi,
a pre-learned projection matrix Φ is used below.

y′i = ΦT f(xi), y
′
i ∈ R (5)

With the feature set y′ii = 1k obtained from a test medical
image, we can proceed to predict its quality score while
different local regions in an image can contribute differently to
overall perception of image quality [28]. To address this, we fit
each patch i with an MVG model (µi,Σi) to predict its local
quality score. The overall quality score for the test medical
image is then calculated by averaging the local quality scores
of all patches. To simplify computation, all patches share the
same covariance matrix Σ′. Thus, the MVG model for each
patch i is represented by (y′i, Σ

′). To measure the distortion
level of patch i, we employ the following formula:

qi =

√
(µ− y′i)

T (
Σ + Σ′

2
)−1(µ− y′i) (6)

where qi quantifies the statistical distortion of patch i from the
reference statistics derived from high-quality natural images.

2) Spatial and frequency statistical features: For local fre-
quency features, discrete cosine transform (DCT) is introduced
to extract the statistics of coefficients. Then, DCT coefficients
are fitted with the flexible Generalized Gaussian Distribution

(GGD) to capture their underlying statistical properties [16]
as follows.

f(x|µ, β) = 1

2Γ(1 + β−1)
e−|x−µ|β

Γ(z) =

∫ ∞

0

tz−1e−tdt

(7)

where µ is the mean of x, β is a parameter to control the
shape of distribution, and Γ(·) is Gamma function. β is more
discriminative than µ in describing DCT coefficient statistics,
so we use it as a feature for characterizing medical images. In
a DCT block, σ is the standard deviation. To quantify block
perturbation, we use the ratio σ̄ = σ

µ , where µ is the mean
value. We divide the coefficients into three sets in a DCT
block and compute their normalised deviations σ̄i, where i =
1, 2, 3. We also calculate the variation Σ of these normalised
deviations as additional features. To mitigate bias of statistics
from concatenated blocks, we aggregate them by computing
mean values to represent for each medical image.

For global frequency features, the overall wavelet coeffi-
cient distribution in medical images may not fit a standard
Gaussian distribution well. Instead, we use the Gaussian scale
mixture (GSM) model to effectively capture marginal and joint
statistics of images following [16]. Considering a group of
adjacent wavelet bands denoted by a vector Y (Y ≡ z ·U ), it
is classified as a GSM, where ≡ denotes equality in probability
distribution, U is a zero-mean Gaussian random vector, and
z is a scalar random variable. Q is the covariance of U . The
density of Y can be expressed as an integral below.

PY (y) =

∫ ∞

0

1

(2π)N/2|z2Q|1/2
e

(
−Y T Q−1Y

2z2

)
pz(z)dz (8)

where PY (y) is the probability of the mixing variable z and
N is the number of filters in the neighborhoods. To create
neighboring wavelet coefficients, we utilize steerable pyramid
decomposition on a medical image in both real and imaginary
domains for improved discriminatory capabilities.

For spatial features, we leverage the strong connection
between pixel intensity variation and perceptual scores in
medical image studies. To enhance discrimination, we extract
features from patches, not individual pixels. We employ Prin-
cipal Component Analysis (PCA) on the image patches, using
their associated singular values to represent spatial disconti-
nuity. In smoother medical images, singular values diminish
more rapidly toward zero, indicating reduced significance of
corresponding eigenvectors in capturing important features.

For spatial features, by recognising the close relationship
between the spatial discontinuity of pixel intensity and percep-
tual scores in subject studies for medical images, we enhance
the discriminative strength by extracting features from patches
instead of individual pixels. To capture the spatial discontinuity
in a more effective manner, the patches of an medical image
are applied by principal component analysis (PCA) and then
we leverage the associated singular values to represent the
spatial discontinuity. The singular values of medical images
containing smooth contents tend to diminish more quickly,
approaching zero, compared to images with sharp contents.
This behavior reflects the reduced importance of corresponding
eigenvectors in capturing significant features.
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D. Semantics and zero-shot information fusion
The decision-level fusion method of our work is a meta-

method classifier that fuses learning-based and non-learning-
based image quality assessment models to recognise high-
quality and low-quality medical images through a soft voting
technique [30]. The soft voting technique predicts HQ and LQ
medical images based on the predicted quality scores of each
medical image assessment models as follows.

ŷ = argmax
c

m∑
k=1

wkpc,k (9)

where wj is a weight that can be given to determine the con-
tribution of each IQA mode and pc,k represents the predicted
probability of the class label c and the classifier k.

IV. EXPERIMENTS RESULTS

A. Dataset
There are three medical image datasets, including EyeQ

[11], LiverQ [12], and SkinQ [13], to be used to evaluate
the performance of our proposed methods. EyeQ is a fundus
image dataset. LiverQ is an ultrasound image dataset. SkinQ
is a dermoscopic photograph dataset.

EyeQ dataset is a re-annotated retinal image quality dataset
from the EyePACS dataset, which is a diverse retinal image
dataset captured using various camera models and types, en-
compassing a wide range of imaging conditions. In this paper,
we utilise ‘Good’ grade and ‘Reject’ grade with considering
blurring, uneven illumination, low-contrast, and artifacts as
common quality indicators. “Good” retinal image exhibits
no low-quality factors, and all retinopathy characteristics are
clearly visible, as depicted in Fig. 2a. “Reject” retinal image
suffers from significant quality issues, rendering it unsuitable
for providing a comprehensive and reliable diagnosis, even by
ophthalmologists, as illustrated in Figs. 2b to 2d. Moreover, a
fundus image that has an invisible disc or macula region is also
classified as a “Reject” grade. There are two experts involving
in grading the quality of images in the EyePASC dataset for
the purpose of re-annotating the EyeQ dataset. Subsequently,
the images with ambiguous labels were excluded, resulting in
16818 Good quality and 5540 Reject quality retinal images. A
summary of Good quality and Reject quality and lesion levels
are provided in Table I and some examples of “Good” and
“Reject” quality retinal images are shown in Fig. 2.

(a) Good (b) Blur (c) Low-contrast (d) Illumination

Fig. 2: Examples of “Good” and “Reject” quality image in
EyeQ dataset: (a) Good; (b) Reject: Blur; (c) Reject: Low-
contrast; (d) Reject: Illumination.

LiverQ dataset comprises clinical ultrasound (US) images
of the abdominal liver obtained from a retrospective database

TABLE I: The statistics of the EyeQ dataset, where L-i
identifies the level of retinopathy.

L0 L1 L2 L3 L3 Total
Good 12,308 1,585 2,454 366 104 16,694
Reject 3,739 262 995 191 353 5,540
Total 16,047 1,847 3,449 557 457 22.234

of the University Hospital of Angers in France. This dataset
consists of 72 images of varying sizes (1080 × 810, 1024 ×
768) captured by SuperSonic Aixplorer and Siemes Acuson
S2000 systems, exhibiting granular, smooth, cirrhotic, and
non-cirrhotic liver textures. The images were anonymised, and
ethical approval was obtained from the University Hospital
of Angers for their use. The perceived quality of the images
was evaluated based on four criteria: image contrast, diagnos-
tic ability, texture conspicuity, and edge sharpness by three
radiologists from the affiliated Hospital of Nanjing Medical
University in China. These radiologists had different levels of
experience and were not familiar with the test images. The as-
sessment was conducted following the European guidelines on
quality criteria for diagnostic radiographic images [12], which
recommend involving at least two observers to independently
assess each image with the given criteria. Fig. 6 illustrates
examples of high and low-quality ultrasound images from this
dataset.

(a) HQ: 83.33 (b) LQ: 20.00

Fig. 3: Examples of High and Low Quality Ultrasound Images
in LiverQ dataset, where (a) represent High Quality (HQ)
ultrasound images; (b) represent Low Quality (LQ) ultrasound
images; values shown under images are the averaged quality
scores of three human experts.

SkinQ dataset is a synthetic image quality dataset derived
from the ISIC dataset [13], which consists of skin images
captured using various camera models under diverse imaging
conditions and guided by a dermatologist. In this paper, we
utilise “Good” grade and “Reject” grade with considering
blurring and illumination. “Good” grade refers to skin im-
ages that exhibit no noticeable quality issues and where all
skin characteristics are clearly visible, as depicted in Fig. 4-
(a). “Reject” grade is assigned to skin images that exhibit
significant quality issues and cannot be relied upon for a
comprehensive and accurate diagnosis, even by dermatologists,
as illustrated in Fig. 4-(b) and (c). The skin images are
extracted from ISIC2018. Good images are image directly
from the dataset. Rejected images are synthesised by good
images. Then, there are 2005 Good quality and 4010 Reject
quality skin images included in the dataset and there are 6015
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skin images in SkinQ dataset.

(a) Good (b) Reject: Dark (c) Reject: Blur

Fig. 4: Examples of “Good” and “Reject” quality image in
SkinQ dataset: (a) Good; (b) Reject: Dark; (c) Reject: Blur.

B. Implementation and Metrics
The implementation of our method is based on PyTorch,

which is a deep learning framework. For the backbone network
of zero-shot learning, the ResNet-50 is chosen due to its
competent performance [29]. In our experiment, all three
medical image datasets, including EyeQ, LiverQ, and SkinQ,
are used for evaluating performance. For evaluation metrics,
there are five threshold-dependent measures used including
accuracy (Acc), precision (P), recall (R), specificity (S), and
Fβ . The definitions of these five metrics are given below:

P =
tp

tp + fp
, R =

tp
tp + fn

, S =
tn

tn + fp

Acc =
tp + tn

tp + fp + tn + fn

(10)

where fp is the number of false positives, tp is the number of
true positives, fn is the number of false negatives, and tn are
the true negatives.

Moreover, Fβ is introduced which considers precision and
recall simultaneously, where β is the parameter for adjusting
the importance of precision and recall. When β exceeds one,
it means that precision is more important. Otherwise, recall
is more important. In this paper, precision and recall are both
significant for medical image quality assessment so we use
F1 score by setting β = 1 which applies the same weight
to precision and recall [31] because correctly detecting good
and missing recognising poor quality are both important for
medical images.

Fβ = (1 + β2)× P ×R

(β2 × P ) +R
(11)

C. Quantitative Evaluation
We use above-mentioned accuracy, precision, recall, speci-

ficity, and F1 as metrics to benchmark MIQA performance,
which are evaluated on all EyeQ, LiverQ, and SkinQ medical
image datasets. For performance on these three datasets, we
have several interesting observations from Table II, Table III,
and Table IV.

First, our proposed SCL method achieves the best label-free
performance of fundus images in terms of accuracy and F1 in
all EyeQ, LiverQ, and SkinQ datasets. Accuracy and F1 are
two of the most metrics to evaluate the holistic performance.
In EyeQ dataset, our proposed method can reach 95.00% on
accuracy and 89.48% on F1. In LiverQ dataset, our proposed

method can reach 84.72% on accuracy and 74.42% on F1.
In SkinQ dataset, our proposed method can reach 83.16% on
accuracy and 87.12% on F1. With regard to accuracy and F1,
our proposed method significantly outperforms other SOTA
methods.

TABLE II: Performance Comparison of Zero-shot Image Qual-
ity Assessment on EyeQ (Fundus) Dataset (Unit %)

Method Acc. Precision Recall Specificity F1

CLIPIQA+ [29] 91.00 98.17 64.87 99.60 78.12
CNNIQA [32] 68.46 40.57 58.72 71.67 47.99
DBCNN [33] 52.38 33.83 96.37 37.89 50.08
ILNIQE [28] 76.88 51.84 94.13 71.19 66.86
MANIQA [34] 65.42 39.27 72.44 63.11 50.93
MUSIQ [35] 88.64 94.27 57.64 98.85 71.54
NIMA [36] 82.28 63.40 67.42 87.18 65.35
NIQE [20] 46.49 31.21 96.26 30.10 47.13
NRQM [16] 77.04 88.59 8.41 99.64 15.36
PAQ2PIQ [37] 75.75 99.16 2.13 99.99 4.17
PI [38] 88.09 75.96 76.01 92.07 75.98
TReS [39] 73.63 48.29 90.51 68.07 62.97
SCL (Ours) 95.00 93.58 93.58 98.06 89.48

Second, DBCNN outperforms other methods with regard to
the recall in EyeQ and LiverQ datasets. Although DBCNN has
great performance on recall, its precision and specificity are
33.83% and 37.89% which fail half of our method on EyeQ
dataset. Similar conclusion can be drawn on LiverQ dataset.
In LiverQ dataset, DBCNN has the best performance on recall
while its specificity is only 8.00% and the specificity of our
method can reach 90.00%. Different from EyeQ and LiverQ
datasets, NIMA achieves the best performance with regard to
recall in SkinQ dataset. Although NIMA outperforms others
on recall, its specificity is only 0.70% where the specificity of
our method can reach 65.49% in SkinQ dataset.

TABLE III: Performance Comparison of Zero-shot Image
Quality Assessment on LiverQ (Ultrasound) Dataset (Unit %)

Method Acc. Precision Recall Specificity F1

CLIPIQA+ [29] 73.61 57.90 50.00 84.00 53.66
CNNIQA [32] 45.83 30.23 59.09 40.00 40.00
DBCNN [33] 36.11 32.35 100.0 8.00 48.89
ILNIQE [28] 69.44 50.00 13.64 94.00 21.43
MANIQA [34] 44.44 33.93 86.36 26.00 48.72
MUSIQ [35] 54.17 38.78 86.36 40.00 53.52
NIMA [36] 51.39 36.74 81.82 38.00 50.70
NIQE [20] 83.33 72.73 72.73 88.00 72.73
NRQM [16] 70.83 100.0 4.546 100.0 8.696
PAQ2PIQ [37] 69.44 50.00 4.546 98.00 8.333
PI [38] 72.22 75.00 13.64 98.00 23.08
TReS [39] 36.11 31.25 90.91 12.00 46.51
SCL (Ours) 84.72 76.19 72.73 90.00 74.42

Third, for the precision and specificity on EyeQ and SkinQ
datasets, the best performances are achieved by PAQ2PIQ
method, which are 99.16% and 99.99% on EyeQ dataset and
95.59% and 98.63% on SkinQ dataset. However, when coming
to its F1, 4.17%. In contrast, our method can achieve 89.48%
of F1 on EyeQ dataset. Simiar to above observation, the
recall and F1 of NRQM in SkinQ dataset is only 19.85%
and 32.87%, respectively. In contrast, our method can achieve
94.93% of recall and 87.12% of F1 on SkinQ dataset. For the
precision and specificity, there is a divergence between EyeQ
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and SkinQ datasets with LiverQ dataset. The best performance
of Precision and specificity achieve by PAQ2PIQ method on
EyeQ dataset and SkinQ. For LiverQ dataset, NRQM obtains
the best performance in terms of precision and specificity.
However, similar to PAQ2PIQ in EyeQ dataset, the F1 of
NRQM in LiverQ dataset is only 8.70%. In contrast, our
method can achieve 61.22% of F1 on LiverQ dataset.

TABLE IV: Performance Comparison of Zero-shot Image
Quality Assessment on SkinQ Dataset (Unit %)

Method Acc. Precision Recall Specificity F1

CLIPIQA+ [29] 78.85 76.95 92.46 58.43 83.99
CNNIQA [32] 68.61 65.99 98.40 23.90 79.00
DBCNN [33] 68.68 65.95 98.82 23.45 79.11
ILNIQE [28] 76.83 76.41 88.80 58.85 82.14
MANIQA [34] 61.29 66.11 72.83 43.97 69.31
MUSIQ [35] 64.80 63.38 97.92 15.11 76.95
NIMA [36] 60.28 60.17 99.98 00.70 75.13
NIQE [20] 75.10 70.95 99.05 39.15 82.68
NRQM [16] 80.58 85.80 81.05 79.88 83.36
PAQ2PIQ [37] 51.35 95.59 19.85 98.63 32.87
PI [38] 82.53 79.59 95.32 63.32 86.75
TReS [39] 74.36 78.30 79.24 67.04 78.76
SCL (Ours) 83.16 80.50 94.93 65.49 87.12

D. Qualitative Evaluation
Qualitative evaluation is conducted on all EyeQ, LiverQ,

and SkinQ medical image datasets. In EyeQ medical image
dataset, all images are collected from real world. Therefore,
for each image, only one type of quality is given, i.e., “Good”,
“Reject: Blur”, “Reject: Low”. Some examples on prediction
of “Good” or “Reject” retinal images are provided in Fig. 5.
Given that EyeQ dataset only identifies the categories of retinal
images as “Good” or “Reject” without the corresponding qual-
ity scores, the ground truth of categories are provided along
with the predicted quality scores of our SCL method. The
range of predicted scores is from 0 to 100. “0” means lowest
quality and “100” means the highest quality and therefore
the threshold is set to “50” to determine “Good” or “Reject”
retinal images. There is an interesting finding that our zero-
shot learning method does not perform very well on case of
Fig. 5-(d). After having a further analysis, we are not surprised
for it. Although this retinal is rejected by illumination, only
above part of this image is low-illumination and the texture of
this image is clear along with good contrast.

In LiverQ ultrasound image dataset, all ultrasound images
are scored by three human experts. Some examples on pre-
diction of “High-quality” or “Low-quality” ultrasound images
are provided in Fig. 6, where the left scores in the bracket
are predicted quality scores of our SCL method and the right
scores in the bracket are averaged quality scores of three
human experts which is treated as ground truth. All quality
scores are normalised between 0 to 100 and higher score value
means better image quality. The threshold is also set to “50”
to determine “HQ” or “LQ” ultrasound images.

In SkinQ image dataset, there are three types of skin images,
including “Good” images, “Reject: Blur” images, “Reject:
Dark”. “Good” images are realistic dermoscopic images ex-
tracted from ISIC dataset. “Reject: Blur” and “Reject: Dark”

images are synthesised based on real-world ISIC skin images.
To evaluate the performance in a more comprehensive way,
the SkinQ dataset includes both matched image groups and
unmatched image groups. If a “Good” skin image have both
blurred and darked versions of it, it belongs to matched image
groups. Otherwise, it belongs to unmatched image groups.
Some examples on the predictions of “Good” or “Reject”
dermoscopic images are provided in Fig 7. The scores under
images are predicted quality scores of our SCL method. All
quality scores are normalised between 0 to 100 and higher
score value means better image quality. The threshold is also
set to “50” to determine “Good” or “Reject” skin images.

With using matched synthetic skin images from SkinQ
dataset, low-quality skin images obtain lower quality scores
from our SCL model. In Fig. 7, the score under each image is
its corresponding predicted quality score from our SCL model.
The first column is raw skin images which are high-quality
images. The second column is low-illumination skin images.
The third column is blurred skin images. We can see that
blurred images have the lowest scores followed by this. Low-
illumination of images have the second lowest scores.

E. Ablation Study

Comprehensive ablation studies are performed to assess
the contributions of each module in our proposed method,
including natural scene statistics (NSS), Local Integration (LI),
Local and Global frequency (LGF), as well as to study the
influence of contrastive learning (CL) in Table I. When only
using NSS features, the accuracy and F1 can achieve 46.49%
and 47.13% on EyeQ. Then, local features are integrated. The
accuracy and F1 can be improved to 76.88% and 66.86%,
respectively. As argued in [16], both local and global feature
of frequency domain can also provide a significant contribution
to extract the insights for quality assessment. In light of this,
we adapt the local and global frequency domain features to
improve the accuracy and F1 to 92.25% and 83.62%.

Next, we introduce the contrastive learning to improve the
generalisation ability. Contrastive learning is conducted in
a zero-shot learning manner to achieve better generalisation
without the requirement of labelled medical images. After
introducing the contrastive learning, the accuracy of F1 are
further improved to 95.00% and 89.48%, respectively.

TABLE V: Ablation Study on EyeQ Dataset, where NSS:
natural scene statistics, LI: Local Integration, LGF: Local and
Global frequency, CL: contrastive learning (Unit %).

Baseline (NSS) LI LGF CL Acc F1

✓ 46.49 47.13
✓ ✓ 76.88 66.86
✓ ✓ ✓ 92.25 83.62
✓ ✓ ✓ ✓ 95.00 89.48

V. CONCLUSION

In this paper, we proposed a semantics-aware contrastive
learning (SCL) model to implement zero-shot transfer medical
image assessment so as to achieve generalised medical image
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(a) Good (59.23) (b) Reject: Blur (27.25) (c) Reject: Low-contrast (41.18) (d) Reject: Illumination (38.63)

Fig. 5: Visual examples of EyeQ and predicted quality score is shown in the bracket. (a) is image graded as “Good” quality.
(b)-(d) are images graded as poor (“Reject”) quality. For rejected images, it can be rejected due to blur, low-contrast, and
low-illumination.

(a) HQ: (60.50/83.33) (b) LQ: (47.50/26.67) (c) HQ: (58.09/80.00) (d) LQ: (40.21/20.00)

Fig. 6: Examples of High and Low Quality Ultrasound Images in LiverQ dataset, where (a) represent High Quality (HQ)
ultrasound images; (b) represent Low Quality (LQ) ultrasound images; values shown under images are (predicted score /
ground-truth score), where the ground-truth is the averaged quality scores of three human experts.

(a) Good (71.51) (b) Dark (54.82) (c) Blur (24.94)

Fig. 7: Visual examples of SkinQ and predicted quality score
is shown in the bracket. (a) is image graded as “Good” quality.
(b) is image graded as “poor” quality due to dark. (c) is image
with poor predicted quality due to blur.

quality assessment, where Contrastive Language-Image Pre-
training model is introduced to leverage natural language as
a flexible prediction space so as to achieve label-free quality
assessment for various types of medical images. Moreover,
semantics-aware attributions are extracted from both spatial
and frequency domains to further enhance the robustness for
various types of medical image quality assessment. More
specifically, NSS and local patch features are extracted from
spatial domain. In frequency domain, both local and global fre-
quency features are extracted with using steerable Wavelet De-
composition. With considering features extracted from CLIP
model, spatial domain, and frequency domain, the final quality
score of a given medical image can be derived.

In order to have a comprehensive evaluation, not only

using existing EyeQ fundus image and LiverQ ultrasound
image datasets, we also create a new SkinQ dataset which
includes original skin images and two types (blur and low-
illumination) synthetic skin images based on ISIC dataset.
Therefore, our proposed method was evaluated on three med-
ical image datasets, including EyeQ (fundus images), LiverQ
(ultrasound image). Experimental results demonstrate that our
proposed method outperforms other SOTA methods on zero-
shot medical image quality assessment. We also conduct
an ablation study to investigate the contribution of various
components in our method.
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