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This study develops and evaluates models to estimate Annual Average Daily Traffic (AADT)
at non-coverage or out-of-network locations. The non-coverage locations are those where
counts are performed very infrequently, but an up-to-date and accurate estimate is needed
by state departments of transportation. Two types of models are developed, one that sim-
ply uses the nearby known AADTSs to provide an estimate and one that requires roadway
features (e.g., type of median, presence of left-turn lane). The advantage of the former type
is that no additional data collection is needed, thereby saving time and money for state
highway agencies. A natural question and one that this study seeks to answer is: can this
type of model provide equally as good or better estimates than the latter type? The models
developed belonging to the first type include hybrid-kriging and Gaussian process regres-
sion model (GPR-no-feature), and the models developed belonging to the second type
include point-based model, ordinary regression model, quantile regression model, and
Gaussian process regression model (GPR-with-features). The performance of these models
is compared against one another using South Carolina data from 2019 to 2021. The results
indicate that the GPR-with-features model yields the lowest Root Mean Squared Error
(RMSE) and lowest Mean Absolute Percentage Error (MAPE). It outperforms the hybrid
kriging model by 6.45% in RMSE, GPR without features model by 4.25%, point-based model
by 4.69%, regular regression model by 11.35%, and quantile regression model by 4.25%.
Similarly, the GPR-with-features model outperforms the hybrid kriging model by 25.21%
in MAPE, GPR without features model by 17.81%, point-based model by 22.26%, regular
regression model by 26.36%, and quantile regression model by 21.07%.
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1. Introduction

State Departments of Transportation (DOTs) are responsible for network planning, roadway maintenance, and traffic
safety, among many other responsibilities. To carry out these design and analysis tasks, an essential input that is needed
is the annual average daily traffic (AADT). In addition, state DOTs are required by the Federal Highway Administration, as
part of the Highway Performance Monitoring System (HPMS) Program, to submit AADT data for all roads they maintain
on an annual basis. The sources used by state DOTs to ob’ain AADTs include permanent or contin uous count stations
(CCS) and short-term count stations. These are called coverage counts or in-network counts because counts at these locations
are updated on an annual, biennial, or triennial basis. Fig. 1a shows the locations of coverage counts in South Carolina. Even
though it may appear that there are many coverage locations, comparatively, there are significantly more non-coverage loca-
tions as shown in Fig. 1b. Non-coverage counts are performed very infrequently, oftentimes more than ten years since the
previous count was performed. The challenge for most state DOTs is getting accurate estimates for non-coverage counts.

Getting short-term counts at non-coverage locations requires both time and money. In addition, it requires the DOT to
send its personnel or contractors to the non-coverage location to set up the pneumatic tubes and counters for a 48-h data
collection period. Thus, it poses a safety risk to DOT personnel and contractors. According to the New York State Department
of Transportation, a short-term count costs approximately $100 (Holik et al. (2017)). In South Carolina, there are about
28,600 non-coverage roads, which means the South Carolina DOT would need to spend nearly $2.9 million to obtain accurate
non-coverage counts. Hence, budget constraints make short-term counts an impractical and infeasible approach to obtaining
AADTs at non-coverage locations on a regular basis.

There is a large body of work on methods to estimate AADT using short-term counts; these methods include regression
models, geospatial methods, travel demand models, centrality, image processing, and machine learning methods. Among
these methods, regression models are the most frequently used. The independent variables found to be statistically signif-
icant in these regression studies include, but are not limited to, number of lanes, area type, functional classification, distance
to highway, population, income, percentage of adults unemployed in a household, and percentage of households below the
poverty line (Yang et al. (2014), Apronti et al. (2016) and Pan (2008)). Machine learning (ML) techniques have also been used
extensively to estimate AADT using nearby short-term counts. The most commonly used ML technique is Artificial Neural
Network (Sharma et al. (2000) and Sharma et al. (2001)). A few studies have used Support Vector Regression, another ML
technique. A much smaller number of studies explored methods to estimate AADT at non-coverage locations. Collectively,
the methods used in these studies could be grouped into the following categories: multiple linear regression, kriging,
machine learning, travel demand, and others. A gap in the literature is that no study has utilized quantile regression and
Gaussian Process Regression (GPR) to estimate AADT at non-coverage locations. GPR is a non-parametric, machine learning
method designed to solve regression and probabilistic classification problems, and it has been shown to outperform the clas-
sical regression approach (Vogel et al. (1999) and Sun et al. (2014)). Another gap in the literature is that no study has com-
pared the performance of models that simply use the nearby known AADTSs to provide an estimate for the non-coverage
count to those models that require roadway features (e.g., type of median, presence of left-turn lane). The advantage of
the former type of model is that no additional data collection is needed, thereby saving time and money for state DOTs. This
study addresses the two identified gaps.

The objective of this study is to develop and evaluate models to estimate AADT at non-coverage locations (i.e., non-
coverage counts). Two types of models are developed, one that simply uses the nearby known AADTSs to provide an estimate
and one that requires roadway features (e.g., type of median, presence of left-turn lane). The models developed belonging to
the first type include hybrid-kriging and Gaussian process regression model (GPR-no-feature), and the models developed
belonging to the second type include point-based model, ordinary multiple linear regression model, quantile regression

(a) (b)

Fig. 1. Locations of count stations in South Carolina: a) coverage, and b) non-coverage.
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model, and Gaussian process regression model (GPR-with-features). The performance of these models is compared against
one another using South Carolina data.

The remainder of this paper is organized as follows. Section 1 provides a review of estimation approaches for non-
coverage counts. Section 2 presents the methodological details of the developed models. Section 3 describes the model fitting
and validation procedure. Section 4 discusses the model comparison results. Lastly, Section 5 provides a summary of the
study, its limitations, and potential areas of future work.

2. Literature review

Readers are referred to the work of Baffoe-Twum et al. (2022) for a review of methods used to estimate coverage counts.
The following review focuses exclusively on studies that dealt with non-coverage counts. These studies are grouped into the
following categories: regression analysis, kriging, machine learning, and others. Within each category, studies are summa-
rized in chronological order.

2.1. Regression analysis

Mohamad et al. (1998) applied multiple linear regression(MLR) to estimate non-coverage counts on local roads in Indiana.
The significant independent variables were determined to be urban/rural classification, easy access to state highways, county
population, and total arterial mileage of the county. Their final model was validated using measured AADTSs at eight ran-
domly selected locations with a mean square error of 16%. Xia et al. (1999) developed an MLR model to estimate non-
coverage counts in urban areas of Florida. The significant variables were determined to be accessibility to non-state roads,
number of lanes, land use type, functional classification, automobile ownership, and service employment. Their final model
was validated using data from 40 additional locations with a Mean Absolute Percentage Error (MAPE) of 22.7%.

Seaver et al. (2000) expanded the MLR methodology to incorporate principal component analysis and cluster regression
analysis. Principal component analysis was used to reduce 45 independent variables to around seven or eight, depending on
the area being investigated. Cluster regression analysis was used to locate clusters with the same road type and metropolitan
status (i.e., either in or out of a metropolitan statistical area, MSA). Within each cluster, an MLR model was developed to esti-
mate AADT using the previously determined principal variables. The models within an MSA achieved an R-squared value
ranging from 0.46 to 0.75, and the models outside of an MSA achieved an R-squared value ranging from 0.27 to 0.94.
Zhao and Chung (2001) continued the work that was started in 1999 by Xia et al. (1999). Four MLR models were developed
and assessed. The most promising model had five significant variables: number of lanes, functional class, regional accessi-
bility to employment centers, employment indicator, and direct access to an expressway. Their model had an R-squared
value of 0.818, compared to 0.63 obtained in the 1999 study. Chen et al. (2019) estimated uncovered local roads using gen-
eralized mixed regression with a number of lanes, population density, and distance to arterials. The authors also improved
bias on uncovered roads via oversampling from these roads. The study obtained about 80% correlation with the true AADT
values.

Zhao and Park (2004) were the first to investigate the use of geographically weighted multiple linear regression (GWMLR)
models to estimate non-coverage counts for roads in Florida. An ordinary MLR model was developed to serve as a control,
and the same parameters were then used in two geographically weighted models. The parameters utilized included the
number of lanes, regional accessibility to employment centers, population size, employment size, and direct access to
expressways. The first GWMLR model utilized a bi-square weighting function, and the second model utilized a Gaussian
weighting function. Both GWMLR models outperformed the control model which had an R-squared value of 0.764. The
bi-square model had an R-squared value of 0.8756 which was higher than the R-squared value of the Gaussian model (0.87).

Anderson et al. (2006) compared the performance of an MLR model against the travel demand method for a small urban
community in Alabama. The travel demand approach is more comprehensive but it is computationally expensive. The MLR
model had five significant variables: number of lanes, functional class, population, employment, and a binary variable that
represents mobility. Results indicated that both approaches produced similar results; this was confirmed by using a t-test,
graphical inspection, and a Nash-Sutcliffe statistic. The R-squared value of the MLR model was 0.819. Pan (2008) developed
MLR models to estimate AADTs on all types of roads in Florida. The state of Florida was broken into three categories based on
population (low, medium, and high), and for each of these categories, two models were developed. One model was developed
for the state/county highways and another model was developed for local roads. It was observed that the state/county high-
way model outperformed the local model for all three population areas. Moreover, it was observed that the low population
models (MAPE of 31.99% and 46.69%) outperformed the medium (MAPE of 65.01% and 65.35%) and high population models
(MAPE of 46.81% and 159.49%).

Pulugurtha and Kusam (2012) investigated the effect of buffer sizes for the GWMLR method. Both negative binomial and
Poisson weighting distributions were investigated, and it was observed that the negative binomial weighting distribution
outperformed the Poisson weighting distribution. It was also observed that an appropriate buffer varies with the functional
class being investigated. For freeways/expressways a five-mile buffer was appropriate, while a three-mile buffer was appro-
priate for major thoroughfares and a two-mile buffer was appropriate for minor thoroughfares. A model was developed for
the entire study area and additional models were developed for each functional class. The quasi-likelihood under the
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independence model criterion (QIC) was used to assess the models, and for this metric the smaller the QIC value the better
the model. The authors found that segmenting the study area into groups based on functional class allowed for better accu-
racy. The variables that were found to be significant in the functional class-based models are urban classification, number of
lanes, speed limit, upstream road speed limit, downstream road speed limit, downstream cross street number of lanes, pop-
ulation, manufactured housing (land use), and rural district.

Lowry et al. (2012) developed an MLR model to estimate non-coverage counts on rural roads to include a new parameter
called the connectivity importance index. The connectivity importance index was determined by finding the shortest path
between every node in the network. The number of times a node is included in a shortest path is that node’s connectivity
importance index. The final model had functional class, number of lanes, and connectivity importance index as significant
variables and an R-squared value of 0.72. Yang et al. (2014) proposed a new variable selection procedure for MLR called
smoothly clipped absolute deviation penalty (SCAD). This selection procedure selected significant independent variables
and estimated regression coefficients in one step. The SCAD selection procedure was then compared to backward and for-
ward variable selection procedures. The significant variables were found to be number of cars (obtained from satellite
image), number of lanes, housing units, median income, percentage below poverty line, and car intensity (obtained from
satellite image). The authors concluded that backward and SCAD selection procedures resulted in the same R-squared value
(0.6954), while both outperformed the forward variable selection procedure (0.6423).

Apronti et al. (2016) developed an MLR model to predict non-coverage counts in Wyoming. The final model utilized pave-
ment type, access to primary or secondary roads, agricultural cropland, agricultural pastureland, industrial areas, and pop-
ulation in the census block group as independent variables. Before the log transformation was applied to AADT the model’s
R-squared value was 0.44, and after the log transformation, the model’s R-squared value improved to 0.64. When the MLR
model was validated an R-squared value of 0.69 was obtained. The authors concluded since the model’s R-squared values for
the training and validation data sets are similar, the developed model is not biased. Staats (2016) developed MLR models to
estimate non-coverage counts on local roads in Kentucky. The state of Kentucky was split into three geographic areas using
highway districts to account for geographic and socioeconomic variability. A model was developed using counts from probe
vehicles, residential vehicle registrations, and curve rating as independent variables for each of the three areas. For each of
the three areas investigated, a rural model and an urban model were developed. The rural models were those with AADT
values that ranged between 20 and 1,000; a road is not considered rural if the AADT is above 1,000. For the rural models,
the MAPE was found to be between 61% and 87%, while the MAPE for the urban models ranged between 354% and 1,956%.

Doustmohammadi and Anderson (2019) presented a Bayesian Regression model for estimating low-volume AADT for
roadways in Alabama. The model was developed using socio-economic factors as independent variables, including nearby
population, number of households in the area, employment in the area, population to job ratio, and access to major roads.
The statistical accuracy was calculated using a Percent Root Mean Square Error (¥RMSE). Using this metric, the Bayesian
Regression model was found to outperform the linear regression model in predicting AADT of low-volume roadways, partic-
ularly, those with at least 250 vehicles per day.

Das and Tsapakis (2020) compared the performance of two statistical models (MLR and generalized linear model) against
three machine learning models (random forest, support vector machine, and K-nearest neighbor) in estimating low-volume
AADT. The data used for the analysis, from the state of Vermont, included traffic count data on low-volume roadways, U.S.
Census data (population per sq. mile), American Community Survey data (household per square mile), Longitudinal
Employer-Household Dynamics data, and distance to major highways. The best-performing machine learning model was
found to be random forest which had a higher R? value than the statistical models. The best-performing random forest model
outperformed the MLR model by 45% to 0.77%. According to the study, significant factors were population and work employ-
ment density. The studies commonly showed that machine learning methods performed better than the traditional linear
and generalized regression models.

Pulugurtha and Mathew (2021) developed ordinary least square (OLS) and geographically weighted regression (GWR)
models to estimate AADT on local roads in North Carolina. Their models used land-use data (e.g., single-family residential
units, multi-family residential units, agriculture land use, and commercial areas), population density, road density, and
the number of local road traffic count stations available in each county as independent variables. The model estimation
results indicated that road density, AADT at the nearest non-local road, and land use variables have a significant influence
on local road AADT. The GWR model was found to outperform the OLS regression model, and thus, was used subsequently to
estimate AADT at non-coverage locations. The prediction error was found to be higher in urban areas and counties with a
smaller number of local road traffic count stations.

2.2. Kriging

Eom et al. (2006) were the first to utilize kriging to estimate AADT for non-freeway facilities. Multiple theoretical semi-
variograms were investigated, including Gaussian, exponential, and spherical. Both exponential and spherical models pro-
vided more accurate AADT estimates for urban and rural areas when compared to traditional regression model estimates;
WLS had a mean square prediction error (MSPE) of 2.91, REML achieved an MSPE of 2.86, and OLS achieved an MSPE of
3.12. Wang and Kockelman (2009) divided roadways in the state of Texas into two categories, interstate highway, and prin-
cipal arterial, and developed a kriging model for each category. The authors found that the kriging models performed well for
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roads that have an AADT greater than 1,000 and that the principal arterial model overestimated the AADT on roads that had
low traffic volumes. Selby and Kockelman (2013) compared kriging to GWMLR. It was found that the kriging model outper-
formed the GWMLR model by 3 to 8% in absolute error on average. The authors also investigated the use of Euclidian distance
instead of network distance to see the effects on the model’s error. No sizable difference in error was found between these
two methods.

2.3. Machine learning

Sharma et al. (2001, 2000) applied Artificial Neural Networks (ANNs) to estimate AADT on low-volume roads in Alberta,
Canada. Their ANNs were based on a multilayered, feedforward, and back-propagation design for supervised learning. The
AADT estimation errors resulting from various durations and frequencies of counts were analyzed by computing average
and percentile errors. The results of their study indicated that using two 48-h counts is better than other frequencies
(one or three) or durations (24-h or 72-h) of counts. The authors noted that “the 95th percentile error values of about
25% for the neural network models compare favorably with the values reported in the literature for low-volume roads using
the traditional factor approach.”.

Castro-Neto et al. (2009) investigated the use of support vector regression with data-dependent parameters to estimate
AADT on roads in Tennessee. A comparison of support vector regression model with data-dependent parameters, Holt expo-
nential smoothing model, and ordinary least squares regression model was performed for urban and rural roads. It was found
that the support vector regression model with data-dependent parameters outperformed the Holt exponential smoothing
model (MAPE of 2.26% compared to 2.69%) and the ordinary least squares regression model (MAPE of 3.85%). Sun and Das
(2015) utilized a modified support vector regression (SVR) method to estimate AADT on non-state roads in Louisiana. A vari-
ety of models was explored and SVR was found to be the best and its estimates are sufficiently accurate for transportation
planning and traffic safety studies. The authors noted that their SVR model tends to underestimate AADT for roadways with
AADT higher than 1,500 and they recommended that parish-specific models be developed. Sfyridis and Agnolucci (2020) pro-
posed a methodology to combine machine learning and standard statistical methods to estimate AADT on all roads in Eng-
land and Wales. They first applied a clustering algorithm to take into account (dis) similarities among count locations and
their surroundings and group points with similar characteristics. Then, they applied three models, namely ordinary MLR,
Random Forests (RF), and SVR for each cluster and validated the results. The SVR model produced a MAPE ranging from
2% to 277% and was comparable to the random forest method, which produced a MAPE ranging from 2% to 288%. Both meth-
ods outperformed the ordinary MLR model which produced a MAPE ranging from 2% to 325%.

Zhang and Chen (2020) compared the performance of neural networks and random forests to each other and the ordinary
MLR. Their study was the first to use probe vehicle data as an independent variable in the estimation model, as well as the
“betweenness” centrality (BC) measure. BC is a measure that quantifies the number of shortest paths that pass through a
given link and is used in complex network theory to determine the hierarchical importance of network links (Zhang and
Chen (2020)). The random forest model was found to yield the best performance, with an R-squared of 0.92 and a median
APE of 25.2%. Moreover, incorporating both probe vehicle data and BC in the models boosted models’ accuracies by 30%-37%
for all roads and 23%-43% for lower functional class (5-7) roads compared to models that used only socio-demographic and
roadway characteristic factors.

2.4. Others

Another method used to estimate AADT is based on a node’s centrality measure. There are multiple forms of centrality,
but each form is a measure of how popular or utilized a node is. For example, stress centrality is the number of times a node
is included in the shortest distance between every node pair. If a node has a high stress centrality, then multiple shortest
paths go through that node, implying its popularity. Another common form of centrality is closeness centrality, which is
based on the distance between every node. A node with high closeness centrality will be close to multiple nodes, which
implies that node’s popularity. Lowry et al. (2012) used the centrality method to estimate AADT on roads in Moscow, Idaho.
Stress centrality was used as the independent variable in a regression model. The model was validated using an out-of-
sample data set with an R-squared value of 0.95. A key advantage of this method is that it requires minimal data collection
and can be easily executed using a geographic information system. Keehan (2017) investigated the use of origin—destination
centrality which includes internal-internal, internal-external, and external-external to estimate AADT on roads in South Car-
olina. These three parameters were then combined with three additional parameters, functional class, speed limit, and num-
ber of lanes, to produce an MLR model. The significant variables were found to be internal-internal centrality, external-
external centrality, and speed limit. The final model was found to outperform the traditional travel demand model in terms
of Root Mean Square Error (RMSE) and R-squared value.

The travel demand modeling method is another popular method often used to estimate coverage AADT. Wang et al.
(2013) implemented the parcel-level travel demand analysis model to estimate AADT using actual traffic counts from Bro-
ward County, Florida. The model consisted of four steps: network modeling, parcel-level trip generation, parcel-level trip dis-
tribution, and parcel-level trip assignment. Different from the traditional travel demand model, which attempts to simulate
the choices that travelers may make during the entire trip from the origin to the destination, the parcel level model attempts
to simulate choices that travelers may make in response to the given local street system. The parcel-level model does not
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include the mode choice step since transit trips and those with other modes are insignificant on local roads. Their results
showed that the proposed method produces significantly lower MAPE (39%-66%) than other regression-based methods.

The simplest method used to estimate AADT is called a point-based model developed by Unnikrishnan et al. (2018). It is
essentially a lookup table where the AADT can be looked up if the number of "points" or roadway features a roadway as is
known. The premise of this approach is that the fewer the number of features a roadway has (e.g., left-turn lane, two-way
left-turn lane, parking lot), the less traffic it is likely to carry, and vice versa. The estimated AADT is simply the median value
of AADTs from roadways with the same number of points. In their work, Unnikrishnan et al. (2018) developed point-based
models for four sub-regions (mountain, coast, valley-rural, and MPO), as well as local roads. For local roads, the median error
ranged between —16 to 151%. A limitation of this approach is the homogenous nature of local roads, which generally have
the same features in an area.

2.5. Summary

Table 1 provides a summary of the studies reviewed. The study technique, study area, and reported error are shown. The
error values are intended to provide a reference or benchmark for this study.

The above review indicates that while a variety of regression models have been utilized to estimate AADT, no study has
investigated the effectiveness of quantile regression and Gaussian Process Regression (GPR) to estimate non-coverage
counts. Also, no study has compared the performance of models that simply use nearby known coverage counts to estimate
the non-coverage count to those models that require roadway features (e.g., type of median, presence of left-turn lane). The
advantage of the former type of model is that no additional data collection is needed, thereby saving time and money for
state DOTs. It should be noted that Ashley and Attoh-Okine (2021) were the first to apply GPR to estimate AADT. Their moti-
vation for using GPR was to avoid dependency on predictors which may not be readily available to aid in quick and precise
estimation of AADT at a particular bridge (coverage location). For this reason, their work was limited to using AADT collected
at a specific bridge for both training and testing. That is, their GPR models did not include any independent variables. The

Table 1
Summary of literature review.
Year Author(s) AADT Estimation Technique Study Area Reported Error
1998 Mohamad et al. MLR Indiana MSE = 16%
1999 Xia et al. MLR Florida MPE = 20%
2000 Seaver et al. MLR Georgia R?=0.27-0.94
2000 Sharma et al. ANN and TFA Alberta 95% percent error = 25%
2001 Sharma et al. ANN Alberta 95% percent error = 25%
2001 Zhao and Chung MLR Florida R?=0.818
2004 Zhao and Park GWMLR Florida R?=0.8756
2006 Anderson et al. MLR Alabama R?=0.819
2006 Eom et al. K North Carolina MAPE = 2.86 %
2008 Pan MLR Florida MAPE = 32-159%
2009 Castro-Neto et al. SVR Tennessee MAPE = 2.26%
2009 Wang and Kockelman K Texas Median percent error = 33%
2009 Zhong and Hanson TD New Brunswick Average error = 9-174%
2012 Lowry and Dixon MLR Idaho R?=0.72
2012 Pulugurtha and Kusam GWMLR North Carolina MAPE = 26-35%
2013 Selby and Kockelman K Texas MPE=-6.5-3.9%
2013 Wang et al. TD Florida MAPE = 39% —66%
2014 Lowry C Idaho MdAPE = 22-29%
2014 Yang et al. MLR North Carolina R?=0.6954
2015 Sun and Das SVR Louisiana Percent within 100 = 63-100
2016 Apronti et al. MLR Wyoming R?=0.64
2016 Staats MLR Kentucky MAPE = 61-87%
2017 Keehan C South Carolina R?=0.8292
2018 Chang and Cheon EM Ulsan City MAPE = 7%
2018 Unnikrishnan et al. EM Oregon Median error=-16-151
2019 Doustmohammadi and Anderson BRM, MLR Alabama % RMSE = 62.15
2020 Das and Tsapakis MLR, GLM, RF, SVR, KNN Vermont R? = 0.45-0.77
2020 Sfyridis and Agnolucci OLR, RF, SVR Wales MAPE = 2-277%
RMSE = 26-58,650
2020 Zhang and Chen OLR,RF and NN Kentucky R?=0.92 MAPE = 25.2%
2021 Pulugurtha and Mathew OLS and GWR North Carolina MAPE = 52.6%-120.1%

MPE = —19.2%-88.3%
RMSE = 111-993
2023 This paper K,MLR, QRM, PBM and QRM South Carolina RMSE = 203-229

MLR = Multiple linear regression, ANN = Artificial Neural Network, TFA = Traditional Factor Approach, GWMLR = Geographically multiple linear regression,
K = Kriging, TD = Travel demand, C = Centrality, EM = Emerging methods, OLS = Ordinary least square, BRM = Bayesian Regression model, GLM = Generalized
linear modeling, RF = Random forest, SVR = Support vector regression, KNN = K-nearest neighbor, PBM = Point-based Model, QRM = Quantile Regression
Model, SVR = Support vector regression, KNN = K-nearest neighbor, PBM = Point-based Model, QRM = Quantile Regression Model.,
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performance of their GPR models was compared against the Box-Jenkins auto-regressive integrated moving average
(ARIMA) models and the validation results indicated the overall MAPE for the GPR models is 3.6% compared to 44% for
the ARIMA models.

This study contributes to the current body of work by comparing the effectiveness of GPR and quantile regression models
against the point-based model, hybrid-kriging, and ordinary MLR model. Additionally, it extends the seminal work of Ashley
and Attoh-Okine (2021) to include independent variables in the GPR models. Two types of GPR models are explored in this
study, one that uses only nearby coverage counts (referred to as GPR-no-feature model hereafter) and one that uses both
nearby coverage counts and roadway geometric features (referred to as GPR-with-features model hereafter).

3. Methodology
3.1. Data description

Coverage counts from 3679 local roads throughout the state of South Carolina were obtained from the South Carolina
Department of Transportation (SCDOT). These counts along with their associated functional class (rural/urban), latitude,
and longitude were used to develop the kriging model and GPR-no-feature model. Fig. 2a shows the locations of the coverage
counts in the training data set. As part of this study, geometric features shown in Table 3 were obtained for all 3679 locations
in the training data set to develop the point-based model, ordinary MLR model, quantile regression model, and GPR-with-
features model. This information was obtained using Google Earth. To validate the model, counts and roadway geometric
features were obtained for an additional 1024 locations. Fig. 2b shows the locations of the non-coverage counts in the testing
data set. These data were collected for specific counties selected by the SCDOT. Descriptive statistics between the training
and testing data sets are shown in Table 2. It can be seen that the mean AADT of the training data set (coverage counts)
is much higher than that of the testing data set (non-coverage). For this reason, the AADT in the training data set was divided
by a reduction factor. In this study, the reduction factor was chosen to be the integer value of the quotient: mean AADT of
training data set divided by mean AADT of testing data set. Once the reduction factor was applied, any count in the training
data set that was higher than the maximum value of the testing data set (5900) was considered an outlier, and thus,
removed. The final sample size of the training data set after removing outliers is 3675.

3.2. Regression models

Using the collected features shown in Table 3 as independent variables, two types of regression models were developed to
estimate non-coverage counts: ordinary multiple linear regression and quantile regression.

3.2.1. Ordinary multiple linear regression
The ordinary MLR model explores the relationship between a scalar response and one or more explanatory variables. The
standard form of the MLR model is as follows:

ypred = bo +b1X1 +b2X2 +...+biX,- (1)
where y,.q is the predicted or expected value of the dependent variable, X, through X; are i distinct independent or predictor

variables, by is the value of Y when all the independent variables (X; through X;) are equal to zero, b; and through b; are the
estimated regression coefficients.

(a) (b)

Fig. 2. Training and testing data sets: a) locations of coverage counts in training data set, and b) locations of non-coverage counts in testing data set.
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Table 2
Descriptive statistics of training and testing data sets.
Dataset Training dataset Testing dataset
Average Value 1750 233
Minimum Value 25 25
First Quartile 300 50
Median Quartile 700 100
Third Quartile 1650 250
95% Quartile 6215 850
Maximum Value 115100 5900

Table 3
Roadway features collected for model development.
Features/ Description of the Variables
Points
Urban “1” if the roadway segment is in an urban area, and “0” if it is in a rural area.
Double yellow “1” if the roadway segment has a double yellow line pavement marking, and “0” if it has no centerline pavement marking.
line
Median Type “1” if the roadway segment has a median that is either flush, raised, or two-way left- turn lane, and “0” if it does not have any of
these types of median.
Right-Turn “1” if the roadway segment has an exclusive right-turn lane within 1,000 feet upstream and 1000 feet downstream of the midpoint,
Lane and “0” if it does not have an exclusive right-turn lane within 1000 feet of the midpoint.
Left-Turn Lane  “1”if the roadway segment has an exclusive left-turn lane within 1,000 feet upstream and 1000 feet downstream of the midpoint,
and “0” if it does not have an exclusive left-turn lane within 1000 feet of the midpoint.
Sidewalk “1” if the roadway segment has a sidewalk on both sides within 1000 feet upstream and 1000 feet downstream of the midpoint,
and “0” if it does not have a sidewalk on both sides within 1000 feet of the midpoint.
Parking Lot “1” if the roadway segment has a parking lot (e.g., pay to park, parking lots, and parking lots for schools, shopping centers,

recreational facilities, and hospitals) adjacent to it within 1,000 feet upstream and 1000 feet downstream of the midpoint, and “0”
if it does not have a parking lot adjacent to it within 1000 feet of the midpoint.

3.2.2. Quantile regression model
The quantile regression model is more robust against outliers in the response variable compared to the ordinary MLR
model (Li (2015)). It can be described by the following equation:

Ypred = bo(q) + b1 (@)X1 + b2 (q)X2 + ... + bi(q)Xi 2)

where, y,..q is the predicted or expected value of the dependent variable, X; through X; are i distinct independent or predictor
variables, by is the value of Y when all the independent variables (X; through X;) are equal to zero, b; and through b; are the

estimated regression coefficients associated with gt quantile. This study used the 50™ quantile for the quantile regression
model.

3.3. Hybrid kriging model

Given a set of n data points with known information, the goal of kriging is to determine an estimate at an unknown loca-
tion, which is shown in Fig. 3. The known locations are represented by Y (s;), where s; is a position vector that describes the
location i. Since there are n known locations, i is in the range of 1 to n. The unknown location is represented by sy, and the
estimate at that unknown location, Y(s;), is determined by finding a linear combination of nearby known locations. There are

F(s)

@ G

Y(s)
¥(s): AADT at known location i
¥(s,): AADT at unknown location 0

4. Distance between the known
location i and the unknown

¥(s)
' location 0

Fig. 3. Illustration of kriging assigning weights to neighbors, adapted from Smith (2016).
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multiple methods that use a linear combination of nearby known locations, but what makes kriging unique is its use of geo-
statistical methods to estimate weights to use for each utilized location. The weights are described by /4;, which corresponds
to location i.

Kriging makes an estimation at an unknown location,¥(s;), by using a linear combination of known values, Y(s;). This can
be represented by equation.

?(Si) = Zo/li * Y(S,‘) (3)
i=1

This study adopted the approach used by Shamo et al. (2015) in applying the kriging method to estimate non-coverage
counts. However, the Euclidean distance was used instead of network distance to avoid the complexity involved in calculat-
ing network distances. As mentioned in the literature review section, Selby and Kockelman (2013) found no sizeable differ-
ence between these two methods. Given a pair of latitude and longitude, the distance between the two locations follows the
curvature of the earth. In this study, it was assumed that the earth’s radius is constant since the distances involved are rel-
atively short. This assumption allows for the use of the great circle distance (i.e., the shortest distance between two points on
a sphere) to be calculated.

In this study, the training data set was divided into two sets. The first set (80% of training data set) was used to develop
the kriging model. The second set (20% of the training data set) was used to specify the absolute error threshold. When a
sampled coverage location has an absolute error above this threshold, then all non-coverage locations within a certain radius
of that coverage station use a default value (i.e., average AADT for corresponding county and functional class) instead of the
kriging-predicted value. The use of a default value in conjunction with the kriging method is called "hybrid-kriging."

Compared to the popular SVM method, GPR showed great advantages in learning the kernel and regularization parame-
ters, integrated feature selection, and generating fully probabilistic predictions.

3.4. The GPR model

To make this paper self-contained, the mathematical details of GPR is briefly provided here. Fig. 4 shows the steps fol-
lowed in this study to train and test the GPR model. Following the methodology presented in Zeng et al. (2020), the predic-
tion function of a linear model is:

V.= BoXi+ 1+ & (4)

where X, indicates the matrix of test inputs, y, indicates the matrix of test outputs, and ¢; indicates a noise term. In this
study, non-coverage counts are the outputs and nearby coverage counts along with road features are the inputs. GPR
assumes that the ¢ follows a Gaussian distribution with a mean of 0 and a variance of Oﬁ:

& ~ N(0,0%) (5)
The marginal likelihood of the sample data can be expressed as follows.
p(yIX) ~ N(0.Ky + 671) (6)

where Ky represents the covariance matrix for the training set, I is the identity matrix, 62 is the variance of the noise term,
and the noise terms are assumed to be identical, independently distributed (IID) random variables.
The predictive results follow a distribution of:

p.IX..X,y) ~ N(.. 031) (7)
= Ko(Ky+02) 'y (8)
02 =K., — Ky (Kn + 021) 'Kn. 9)

In the above equations, u, is the mean value of the Gaussian process posterior mean, 6 is the covariance matrices of pre-
diction, K. represents the covariance matrix between the training and testing data sets, 02 is the variance of the noise term,
X, is the testing data set, and X is the training data set.

A kernel (or covariance function) describes the covariance of the Gaussian process random variables. Together with the
mean function the kernel completely defines a Gaussian process. Five different kernels are evaluated in this study. Their
equations are provided below.

Radial-basis function (RBF) kernel:

2

k(xi, x;) = exp —M (10)
21

where, d(x;,x;) = Euclidean distance, | = length-scale parameter and 1 should be positive (I > 0).
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Prepare training dataset and testing
dataset
Normalize the dataset into the
range[0,1]
Set the kernel and the initial
hyperparameters used in GPR
|
Train the GPR model using training
dataset
!
Select the principal components from
the testing dataset
|
Test the model performance using
test dataset

Fig. 4. GPR model development and testing procedure, adapted from Wang (2020).

Matern kernel:

k(xi,x;) =

1 V2y v (V20
W (ld(xi,xj) Kv (ld(x,-,xj)>

where, K, (@ d(x,-,xj)> = the modified Bessel function, I'(v)= the Gamma function.

y=ly_3y22
T2 2 2
Exponential-sine-squared (Exp-Sine-Squared) kernel:
d(x. x:)?
k(xi,x;) = (l +—(X"X’) )

2al

where, | = length-scale parameter (I,0), p is periodicity parameter (p > 0).
Rational quadratic kernel:

k(X,',Xj) = exp ( WW)

where, | = length-scale parameter (I,0), o = the scale mixture parameter.
Dot-product kernel:

k(X,‘,Xj) = 95 + X; * Xj

where, s = parameter which controls the homogeneity of the kernel.

3.5. Point-based model

(11)

(12)

(14)

(15)

The point-based model applied in this paper is based on a study sponsored by the Oregon Department of Transportation
(ODOT) (Unnikrishnan et al. (2018)). This method operates under the presumption that certain roadway features are indica-
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tive of segments with higher AADTs. For example, a roadway segment with a two-way left-turn lane is more likely to have a
higher AADT than one with just a double yellow line. Each feature shown in Table 3 is considered a point; the higher the
number of points a roadway segment has, the higher its AADT. Although there are seven features, the double yellow line
feature and median feature are in the same category. Thus, only one of these two features can have a value of 1. That is,
if a roadway segment has a double yellow line, then it does not have a median. Conversely, if a roadway segment has a med-
ian, then it does not have a double yellow line. The minimum number of points a roadway segment can have is zero. In this
case, it is a local road without any centerline pavement marking. The chosen seven features for this study are those that are
expected to be collected as part of SCDOT’s asset management system, namely, AgileAssets. Using this method, all 3679 local
roads in the training data set were grouped by the number of points or features (see Table 3) they have. Within each group,
the median AADT was calculated. The median AADT was then used as the predicted non-coverage count given the number of
features a roadway has.

4. Results and discussion

To compare the performance of the developed models,the Mean Absolute Percentage Error (MAPE) andthe Root Mean
Squared Error (RMSE) are used. Each of the developed models was validated using MAPE and RMSE. RMSE gives the square
root of the average of squared differences between actual values and predicted values as shown in the following equation.

RMSE = \/ - 3™ 57— ) (16)

MAPE measures the average magnitude of error produced between the actual values and predicted values as shown in the
following equation.

.
MAPE:%ZH 17)

i=1

i

where, y; = predicted AADT value, y; = actual AADT value, and n = number of observations.

4.1. Regression models

Table 4 shows the ordinary MLR model estimation results. Only the statistically significant variables are shown. To be
statistically significant at the 0.05 significance level, their t-values need to be greater than 1.96 or less than —1.96. This
implies that their p-values must be less than 0.05, which can be verified in the last column. All variables have a positive sign,
which suggests that the presence of these features will increase the AADT. Their coefficients represent the increase in AADT.
For example, the AADT is increased by 91vehicles per day (vpd) if the local road is located in an urban area versus a rural
area. Similarly, the AADT is increased by 70 vpd if the local road has a double yellow line versus no centerline marking. If
a road has none of these features, it is estimated to have an AADT of 54 vpd.

Table 4 shows the quantile regression model estimation results. Only the statistically significant variables are shown (i.e.,
those with p-values <0.05). Similar to the ordinary MLR model, all coefficients are positive. However, their coefficients are
different. For example, this model predicts that a non-coverage road located in an urban area will add only 50 more vehicles
per day compared to 91 predicted by the ordinary MLR model. If a road has none of these features, this model predicts the
AADT to be 25 vpd, which corresponds to the minimum AADT the SCDOT would report to FHWA.

4.2. Hybrid-kriging model

The hybrid kriging model determined the absolute error threshold based on the calculated RMSE. When a sampled cov-
erage location has an absolute error above this threshold, then all non-coverage locations within a certain radius of that cov-
erage station will use a default value. The default value is the mean AADT based on county and functional class. Table 5
shows the effect of changing the absolute error threshold. A threshold of 90th percentile resulted in the lowest RMSE. For
this reason, this threshold value was used for the hybrid kriging model. Table 5 also shows the RMSE for different radii with
the absolute error threshold at the 90th percentile. As shown, a radius of 0.9 degrees resulted in the lowest RMSE. For this
reason, 0.9 degrees was used for the hybrid kriging model.

4.3. Gaussian regression process model

As part of the GPR model training, the hyperparameters of each kernel were optimized. The optimization was performed
by maximizing the log-marginal-likelihood. In this study, the "fmin_1_bfgs_b” function which known as the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) was used to find optimal hyperparameters for the models. Kernels and
their optimal parameters are listed in Table 6.
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Table 4
Coefficients for the ordinary MLR model and quantile regression model.
Variable Estimate Std. Error t-value p-value
Coefficients for Ordinary MLR Model
(Intercept) 54 15.45 3.135 0.022144
Urban 91 18.64 2.164 1.14E-7
Double Yellow Line 70 21.34 5.326 <2e-16
Median Type 135 25.85 3.323 0.00081
Right-turn Lane 172 36.31 9.327 1.11E-6
Left-turn Lane 526 49.43 5.364 < 2e-16
Sidewalk 61 19.86 2.294 <2e-16
Coefficients for Quantile Regression Model
(Intercept) 25 2.4 12.3 0
Urban 50 4.9 114 0
Double Yellow Line 50 4.6 7.8 0
Median Type 50 6.5 121 0.0042
Right-turn Lane 200 36.1 6.5 0
Left-turn Lane 375 66.4 2.5 0
Parking Lot 50 15.6 39 0
Sidewalk 50 6.5 4.6 0
Table 5

Effect of absolute error threshold and Radii on Kriging model performance.

Absolute Error Threshold (percentile) Radius (degrees) RMSE

Effect of absolute error threshold

95 0.9 352
90 0.9 347
85 0.9 349

Effect of radii with the absolute error threshold at 90th percentile
90 0.1 375
90 0.2 375
90 0.3 373
90 0.4 371
90 0.5 369
90 0.6 367
90 0.7 361
90 0.8 357
90 0.9 352
90 1.0 368

Table 6

Optimized kernel w/o road features using GPR.
Kernel Opimized kernel parameters RMSE

Models with road features
RBF 316 * +2 = RBF(length_scale = 154) 208
Matern 316 * x2 = Matern(length_scale = 157, nu = 1.5) 208
Exp-Sine-Squared 77.4 x %2 x ExpSineSquared(lengthspace scale = 8.36e + 03, periodicity = 108) 203
Rational quadratic 316 x x2 * RationalQuadratic(alpha = 1.1, length_scale = 58.7) 215
Dot-product 28.9 x x2 = DotProduct(sigmay = 151) 218
Models without road features

RBF 316 x x2 * RBF(length scale = 2) 215
Matern 316 x x2 x Matern(length_scale = 132,nu = 1.5) 226
Exp-Sine-Squared 0.86 « %2 x ExpSineSquared(length_scale = 107, periodicity = 1.36) 212
Rational quadratic 316 x *2 * RationalQuadratic(alpha = 1.1, length_scale = 58.7) 214
Dot-product 1.97 « x2 x DotProduct(sigma, = 298) 242

4.4. Point-based model

As explained previously, the coverage counts are grouped by the number of points or features the roads have in common
and the median AADT in each group is used as the predicted value for the point-based model. Table 7 shows the results of the
point-based model. This model indicates that if a non-coverage road has zero points then its predicted AADT is 125 vpd, and
if a road with three points then its predicted AADT is 650 vpd.
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Table 7
Point-based model.

Features/ Points AADT Description

0 125 contains none of the 7 features
1 175 contains 1 of the 7 features
2 350 contains 2 of the 7 features
3 650 contains 3 of the 7 features
4 900 contains 4 of the 7 features
5 1600 contains 5 of the 7 features
6,7 1800 contains at least 6 of 7 features

As expected, the results indicate that the more points or features a roadway segment has the higher its AADT. A local road
located in an urban area will have a higher AADT than one located in a rural area due to higher population density, vehicle
ownerships, and thereby higher number of vehicle trips. The presence of a median of any type suggests a safety concern at
that particular location due to a higher-than-expected number of conflict points. Thus, a roadway segment with a median
will have a higher AADT than one without. By design, exclusive left or right turn lanes are constructed when it is projected
the roadway segment will have high traffic volume for the corresponding movements. AADT is a major criterion for con-
structing sidewalks in bicycle and pedestrian facility design guides used in the U.S.; the higher the AADT the higher the con-
sideration. Lastly, the presence of a parking lot suggests there are commercial properties adjacent to the roadway. Thus, a
roadway segment with a parking lot will have a higher AADT than one without.

4.5. Comparison of models performance

Table 8 shows the RMSE and MAPE of all models evaluated using the testing data set and the relative improvement of
various models compared to the ordinary MLR model. For reference, the performance of the ordinary MLR model compared
to the SCDOT'’s current method is also reported in Table 8 (22.90% improvement in RMSE and 7.48% in MAPE); the SCDOT’s
current method simply uses an AADT of 100 vehicles per day for rural local roads and 200 vehicles per day for urban local
roads. Using the ordinary MLR model as the benchmark for evaluation of other models, it can be seen that hybrid-kriging
outperformed it by 5.24%, followed by the point-based model at 6.99%, GPR-no-feature at 7.42%, quantile regression at
7.42%, and GPR-with-features at 11.35%. In Table 8, the kernel used for the listed GPR-no-feature model is Exp-Sine-
Squared and the kernel used for the GPR-with-features model is also Exp-Sine-Squared. These results indicate that using
the GPR-with-features model provides a significant improvement over the commonly used ordinary MLR model. The second
best model is the GPR-no-feature. This model has the same RMSE as the quantile regression model but with the benefit of not
having to collect additional roadway features. Compared to hybrid-kriging, which also does not require the need to collect
additional roadway features, the GPR-no-feature model provides an additional 2.3% improvement in RMSE. Lastly, the rela-
tive improvement of using the GPR-with-features model over the GRP-no-feature model is 4.2%. The RMSE values of the GPR
methods found in this study (=200) are within the range of RMSE values (between 26 and 58,650) reported by Sfyridis and
Agnolucci (2020) for low-volume roads using ordinary linear regression, random forest and support vector regression, and
within the range between 111 and 993 reported by Pulugurtha and Mathew (2021) for local roads using ordinary least
square and geographically weighted regression models; given that this study focuses on non-coverage (low-volume) roads,
it corresponds to expectations that our RMSEs would be on the lower end of their reported ranges.

A relatively larger number of studies have used MAPE to evaluate the performance of their models. How this study’s best
MAPE value provided by the GPR-with-features model compares to other studies’ best models’ MAPE values is summarized
in Table 9. Compared to the MLR models developed by Pan (2008), it can be seen that this study’s best MAPE (53.28%) is
lower than his MAPE for local roads in a large metropolitan area (159.49%) and local roads in a medium-sized urban area
(65.35%), but is higher than his MAPE for local roads in rural areas (46.79%). Wang et al. (2013)’s model produced a MAPE
of 52%. A possible explanation for their model’s slightly better performance than the GPR-with-features model is that it was

Table 8
Comparison of models’ performance.
Model RMSE RMSE Improvement (%) MAPE (%) MAPE Improvement (%)
SCDOT's current method (benchmark) 297 78.21
Ordinary MLR 229 22.90 72.36 7.48
Model RMSE RMSE Improvement (%) MAPE(%) MAPE Improvement (%)
Ordinary MLR (benchmark) 229 72.36
Hybrid Kriging 217 5.24 71.24 1.54
Point-based 213 6.99 68.54 6.66
GPR-no-feature 212 7.42 64.83 10.41
Quantile regression 212 7.42 67.50 6.72
GPR-with-feature 203 11.35 53.28 26.36
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Table 9
Comparative analysis of MAPE values.
Authors AADT Estimation Technique Road Type MAPE (%)
Pan MLR local roads in large urban areas 159.49
local roads in small-medium urban areas 65.35
local roads in rural areas 46.79
Wang et al. TD local roads 52
Sfyridis and Agnolucci SVR multiple types of roads 14.47
Pulugurtha and Mathew OLS local roads 52.6
Pulugurtha and Kusam GWMLR minor thoroughfares 25.83
Staats MLR local roads in rural areas 61
local roads in urban areas 354
This paper GPR-with-features local roads 53.28

MLR = Multiple linear regression, TD = Travel demand, SVR = Support vector regression, OLS = Ordinary least square, GWMLR = Geographically multiple
linear regression, and GPR = Gaussian process regression.

obtained using a travel demand model which required a lot more data and effort.Sfyridis and Agnolucci (2020) validated
their SVR model for a number of roads and obtained an average MAPE of 14.47%. Pulugurtha and Mathew (2021) reported
a MAPE of 52.6% using OLS and data in Duplin County in North Carolina. Their low MAPE values are due to the use of only 235
locations for model validation compared to 1,024 used in this study. Pulugurtha and Kusam (2012) obtained a MAPE of
25.83% using GWMLR for minor thoroughfares. Lastly, Staats (2016)’'s MLR model yielded MAPE values of 61% and 354%
for local roads in rural and urban areas, respectively. Collectively, it can be concluded that the MAPE of the GPR-with-
features model compares favorably to previous studies.

5. Summary and conclusions

This study investigated models to provide more accurate estimates of AADT at non-coverage locations. Six different mod-
els were developed and evaluated: 1) ordinary MLR, 2) quantile regression, 3) hybrid-kriging, 4) GPR-no-feature, 5) GPR-
with-features, and 6) point-based. These models were estimated using a training data set consisting of 3675 coverage counts
(AADTSs) and associated roadway features, and they were validated on a testing data set consisting of 1024 non-coverage
counts which were collected specifically for model evaluation purposes. The results indicated that based on the RMSE of
the models when applied to the testing data set, the best performing models are, from worst to best: ordinary MLR,
hybrid-kriging, point-based, GPR-no-feature, quantile regression, and GPR-with-features. The GPR-with-features model out-
performed the ordinary MLR model by 11.35% and it outperformed the GPR-no-feature model by 4.2%. Moreover, the GPR-
no-feature model outperformed the hybrid-kriging model by 2.3%. Both GPR models, one without and one with roadway fea-
tures, performed best with the Exp-Sine-Squared kernel. Moreover, the results showed that based on the MAPE of the models
when applied to the testing data set, the best performing models are, from worst to best: ordinary MLR, hybrid-kriging,
point-based, quantile regression, GPR-no-feature, and GPR-with-features. The GPR-with-features model outperformed the
ordinary MLR model by 26.36% and outperformed the GPR-no-feature model by 17.81%, the point-based model by
22.26%, the regular regression model by 26.36%, and the quantile regression model by 21.07%. These findings suggest that
GPR is an appropriate method for estimating non-coverage counts.

The practical significance of this study is that it enables the SCDOT to apply one of the developed models to obtain more
accurate estimates of AADT at non-coverage locations than the current method of assuming 100 By combining for rural local
roads and 200 vpd for urban local roads. Given that AADT is used in numerous applications such as roadway planning, facility
deployment, highway maintenance, infrastructure improvement, and congestion mitigation, any improvement in accuracy
would benefit these analyses performed by the SCDOT and its partners, including councils of governments and consultants. A
previous study indicated that a 20% improvement in AADT accuracy would result in savings between $60,000 and $200,000
for a safety study (Zarei and Hellinga, 2023). Thus, when considering the multitude of studies that use AADT, the cost savings
across all agencies are likely to be in the range of millions of dollars.

This study filled two research gaps in AADT estimation. Notable contributions include evaluating the effectiveness of GPR
and quantile regression models against the point-based model, hybrid-kriging model, and ordinary MLR model for estimat-
ing non-coverage counts, and comparing the performance of models that use only nearby coverage counts to those that use
both coverage counts and roadway features. To generalize the findings of this study, it is suggested that future work uses a
sample that spans more than one state. Additionally, other independent variables should be explored to in addition to the six
roadway features considered in this study.
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