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Abstract: Extrusion based additive manufacturing of polymer composite magnets can increase the
solid loading volume fraction with greater mechanical force through the printing nozzle as compared
to traditional injection molding process. About 63 vol% of isotropic NdFeB magnet powders were
compounded with 37 vol% of polyphenylene sulfide and bonded permanent magnets were fabricated
while using Big Area Additive Manufacturing without any degradation in magnetic properties.
The polyphenylene sulfide bonded magnets have a tensile stress of 20 MPa, almost double than that
of nylon bonded permanent magnets. Additively manufactured and surface-protective-resin coated
bonded magnets meet the industrial stability criterion of up to 175 ◦C with a flux-loss of 2.35% over
1000 h. They also exhibit better corrosion resistance behavior when exposed to acidic (pH = 1.35)
solution for 24 h and also annealed at 80 ◦C over 100 h (at 95% relative humidity) over without coated
magnets. Thus, polyphenylene sulfide bonded, additively manufactured, protective resin coated
bonded permanent magnets provide better thermal, mechanical, and magnetic properties.

Keywords: NdFeB PPS bonded permanent magnets; additive manufacturing; thermal stability;
tensile strength; magnetic properties

1. Introduction

Additive Manufacturing (AM) is a promising technique for bonded permanent magnet (PM)
production. It is a novel three-dimensional (3D) materials printing technology in a layer-by-layer
fashion. There are several approaches of implementing the AM of the PMs, such as fused deposition
modeling (FDM) [1–6], selective powder-bed fusion using laser also known as selective laser melting
(SLM) [7], spark plasma sintering (SPS) [8], cold spray (CS) [9], stereolithography (SL) [10], direct energy
deposition (DED) [11], vat photopolymerization [12], laminated object manufacturing (LOM) [13],
and binder jetting technology (BJT) [14]. Extrusion deposition: FDM based AM of bonded PMs have
demonstrated useful metrics in terms of energy density, flexural strength, and lower eddy current
loss [2,4]. A bonded PM is desired to have a high energy product, good mechanical/flexural strength,
high thermal stability, high resistivity, and low eddy current loss. High energy product can be achieved
with a higher loading proportion of magnetic fillers in the polymers. The energy product of bonded
PMs is proportional to the square of magnetic filler’s volume fraction. Nylon (polyamides) and
polyphenylene sulfide (PPS) are the two extensively used polymers in bonded PMs [15,16]. PPS is
a semi-crystalline high temperature performance thermoplastic polymer with a high melting point
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of 275–285 ◦C. Nylon 12 (or nylon 6,6) is a crystalline thermoplastic polymer with a melting point of
178–180 ◦C. Nylon can be loaded with up to 70 vol% of magnetic particles filling [3], whereas PPS is
reported to load up to 61 vol% of NdFeB micro particles [15]. Nylon bonded magnets can perform well
only up to 150 ◦C. To achieve higher temperature thermal stability, PPS is an option that can perform
well up to 180 ◦C and higher [15]. The polymer embedded magnetic particles surface are well coated
with polymer, which increases the PM corrosion resistance as well as reduces the eddy current loss,
which is very essential property that is required for electric machines [17].

A computer-aided-design (CAD) model based on Solidworks or Fusion 360 or Rhino is used in
AM to produce complex shaped magnets with minimal or no waste followed by post-heat-treatment
processing. It provides flexibility to create a wide range of shapes and designs for relatively limited
quantity parts independent from the specific molding tools. Either magnetic-particles-loaded polymer
is extruded through the printing nozzle, and printed layer-by-layer fashion or laser melting is applied
to appropriately prepared precursor powder. The thickness of the printed layers depends on the
printing nozzle diameter, scanning speed, and magnetic particle size of the magnet polymer composite
materials, which altogether determine the printing resolution unit cell also known as voxel size [18,19].
The desired materials properties may require post-treatment of printed products. Some of the recent
examples of AM fabricated PMs can be found in the literature [4–6,20].

AM can provide the near-net shaped NdFeB permanent magnet fabrication even with powder
precursors while using laser melting resulting in magnets with an energy product of 5.65 MGOe
comparable to typical injection molded bonded PMs [7]. It can reduce the cost that is associated with
processing time, molding dies, and reduce the loss of magnetic materials during magnet production.
However, the 3D-printed PMs contain defects, such as cracks and porosities, which do not meet certain
requirements for industrial applications. The bonded permanent magnets are good alternative for
mechanically flexible and moderately strong PMs. PPS bonded magnets are more thermally stable than
nylon-bonded PMs. However, the viscosity of the PPS limits the dispersion of magnetic microparticles
in it and, hence, reduces the volume fraction of them needed for high magnetic flux. Here, we report
our successful AM fabrication, characterization, mechanical, and magnetic properties of PPS-bonded
isotropic NdFeB PMs and compared them with nylon bonded PMs.

2. Experimental Methods

Commercial PPS isotropic NdFeB composite (37:63 volume ratio) was purchased from integrated
magnetics limited (Part number: L-3082) (Hong Kong). Bonded magnets were three-dimensional
(3D) printed using Big Area Additive Manufacturing (BAAM) printer (Cincinnati Inc., Harrison,
OH, USA) at Manufacturing Demonstration Facility in Oak Ridge National Laboratory as explained
previously [3]. BAAM is specially designed as FDM based printer that can extrude polymer composite
beads using a single screw extruder [21]. The geometric design and printing thickness of the depositing
layers are scripted in the standard triangular language (.STL) to supply printing instruction to the
BAAM printer. As obtained magnet polymer composite pellets were used as the printing material
which was extruded through the Barrell inside a 5-zone furnace maintained at melt temperature
range from 305, 316, 321, 321, and 321 ◦C with a nozzle diameter of 5.08 mm (0.2”) maintained in
the range 318–324 ◦C. The printer bed was maintained at ~95 ◦C. The slightly heated printing bed
helps to maintain a temperature gradient to spread the composite material to form a smooth base layer
which forms the foundation for the successive iterations. The extrusion rate of 25.4 mm (1”) per sec
with a layer thickness of 5.08 mm (0.2”) was maintained throughout the printing process. During
printing, Argon gas was fed into the system to prevent any magnet oxidation. Figure 1 shows some
examples of the printed shapes, such as hollow and solid cylinders. Differential scanning calorimetry
(DSC) measurements were carried out at 10 ◦C/min in a Helium atmosphere on NdFeB PPS polymer
composite pellet to determine its melting and solidification temperatures. The results (Figure 2) will be
discussed in Section 3. The morphology of the NdFeB magnet in PPS binder was studied by scanning
electron microscopy (SEM) (Zeiss Merlin, Pleasanton, CA, USA).
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Figure 1. Additive Manufacturing (AM) printed NdFeB polyphenylene sulfide (PPS) hollow and solid 
cylinder shaped bonded PMs. Printed magnet outer surfaces were polished and coated with resin. 

 
Figure 2. Differential scanning calorimetry (DSC) thermograms showing heat flow and thermal 
characteristics of NdFeB-PPS composite pellets. 

Magnetic properties were determined using a vibrating sample magnetometer (Quantum 
Design PPMS® VersaLab™, San Diego, CA, USA). The magnetic hysteresis loop and AC loss fraction 
up to 10 kHz of the printed bonded magnets were measured at 300 K. For the flux loss measurements, 
the AM fabricated bonded magnets were cut into rectangular shaped magnet specimens with 
approximate dimensions of 30 × 15 × 10 mm3 and were magnetized in a 5–7 T electromagnet at room 
temperature. Magnetized bonded magnets were coated with ~10 µm thick protective resin coatings 
(3M Scotch-Weld DP100 (designated as coating #1) and J-B Weld epoxy coating (designated as coating 
#2)) and they were studied for flux-loss at various operation temperatures. The mechanical properties 
of three sets of AM fabricated bonded magnets were determined at ambient conditions while using 
a servohydraulic testing machine (MTS Model # 810, Eden Prairie, MN, USA) equipped with 
hydraulically actuated grips and a clip-on extensometer with a gauge length of 25 mm. All of the 
tensile tests were carried out at a constant crosshead displacement rate of 5 mm/min. The test machine 
was also equipped with an alignment fixture to correct for lack of concentricity and/or angularity 
[22]. Dog-bone shaped samples (≈8 × 8 × 13.8 mm3) were cut to study the mechanical properties of the 
printed polymer composites. The variation in mechanical stress with extension is studied, which 
generally provides the elastic, ductile, and breaking stress for the bonded permanent magnets.  
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Figure 1. Additive Manufacturing (AM) printed NdFeB polyphenylene sulfide (PPS) hollow and solid
cylinder shaped bonded PMs. Printed magnet outer surfaces were polished and coated with resin.
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Figure 2. Differential scanning calorimetry (DSC) thermograms showing heat flow and thermal
characteristics of NdFeB-PPS composite pellets.

Magnetic properties were determined using a vibrating sample magnetometer (Quantum Design
PPMS® VersaLab™, San Diego, CA, USA). The magnetic hysteresis loop and AC loss fraction up to
10 kHz of the printed bonded magnets were measured at 300 K. For the flux loss measurements, the AM
fabricated bonded magnets were cut into rectangular shaped magnet specimens with approximate
dimensions of 30 × 15 × 10 mm3 and were magnetized in a 5–7 T electromagnet at room temperature.
Magnetized bonded magnets were coated with ~10 µm thick protective resin coatings (3M Scotch-Weld
DP100 (designated as coating #1) and J-B Weld epoxy coating (designated as coating #2)) and they were
studied for flux-loss at various operation temperatures. The mechanical properties of three sets of
AM fabricated bonded magnets were determined at ambient conditions while using a servohydraulic
testing machine (MTS Model # 810, Eden Prairie, MN, USA) equipped with hydraulically actuated
grips and a clip-on extensometer with a gauge length of 25 mm. All of the tensile tests were carried out
at a constant crosshead displacement rate of 5 mm/min. The test machine was also equipped with an
alignment fixture to correct for lack of concentricity and/or angularity [22]. Dog-bone shaped samples
(≈8 × 8 × 13.8 mm3) were cut to study the mechanical properties of the printed polymer composites.
The variation in mechanical stress with extension is studied, which generally provides the elastic,
ductile, and breaking stress for the bonded permanent magnets.
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3. Results and Discussion

The heat flow data from DSC help to understand thermal stability of the AM printed magnets.
The DSC data of the NdFeB-PPS composite pellets show that the melting peak (TM) is around 280 ◦C
as shown in Figure 2. The cooling crystallization temperature (TS), which is used as a rough guide for
determining the solidification point to be around ~225 ◦C. The PPS bonded PM can perform well up to
(225 ◦C) this solidification temperature, which is higher than nylon-bonded PMs (~150 ◦C). The peak
positions in the heat flow curve correspond to melting behavior which exhibit the crystallinity and
crystallization during cooling correspond to solidification. The smaller the difference between the
melting point and solidification point, higher the solidification rates.

Similarly, the electron backscattered microstructure of the printed magnet is shown in Figure 3.
The bright regions are NdFeB microstructures and the dark areas are the PPS matrix. The intermediate
bright areas are either embedded NdFeB microparticles in little deeper regions or exhibiting orientation
contrast. In a very careful look, the PPS polymer network includes the embedded bright and dark
smaller microparticles, which are both the result of orientation contrast and polymer depth contrast.
The NdFeB particles have plate-like morphology with widths that are in the range of 20–40 µm.
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Figure 3. Scanning electron microscopy (SEM) micrographs of AM fabricated magnets featuring plate
like morphology of NdFeB present in PPS polymer.

The room temperature magnetization curve of the AM printed magnet is presented in Figure 4.
The remanence and coercivity data of the printed sample almost matches with the company
specifications: Br > 5 kG and HC > 11 kOe and BH(max) > 5.7 MGOe, as presented in Table 1.
The printing process does not change the magnetic properties noticeably from the starting pellets.
A PM tends to lose its magnetization and coercivity after prolonged use at harsh operating conditions
also known as aging flux-loss. A PM is considered to be thermally stable if the flux loss over 1000 h
of operation does not exceed 5%. The thermal stability of magnets can be compared by measuring
the room temperature flux density of the samples before and after aging at elevated temperatures
(at 100, 127, 150, 175, and 200 ◦C for this study). The flux loss is related to a magnetization reversal
mechanism occurring with rising temperature. The total flux loss is composed of recoverable losses
and irreversible losses, and the latter could be due to the oxidation of the NdFeB magnet powder.
The percentage of flux loss at certain temperature is a direct reflection of the thermal stability of the
magnet. The flux aging loss with time for both magnets (printed; post-annealed; and, coated) are
presented in Figure 5. The as printed PM loses ~5% at 150 ◦C. However, resin coated magnets were
very stable up to 175 ◦C for 1000 h. The 3M Scotch-Weld DP100 resin (coating #1) coated PM showed
better thermal stability over J-B Weld epoxy coating (coating #2). Resin coating was found to be very
useful to improve the flux loss resistant ability and thermal stability of the bonded magnet.
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Table 1. Magnetic properties of AM fabricated NdFeB-PPS bonded PM measured at room temperature.

Residual
Magnetization (kG)

Saturation
Magnetization (kG)

Coercivity
(kOe)

BHmax
(MGOe)

Density
(g/cm3)

5.0 7.3 11.4 5.4 4.85
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Figure 5. Temperature variation of the flux-loss% over 1000 h annealing at various temperatures with
and without protective resin coating to mimic the permanent magnet operation cycle. Magnetized
bonded magnets were coated with ~10 µm thick protective resin coatings (3M Scotch-Weld DP100
(designated as coating #1) and J-B Weld epoxy coating (designated as coating #2)).

Figure 6 shows the tested AM fabricated NdFeB PPS bonded PMs designed for mechanical
properties study. Figure 6 presents the corresponding variation of mechanical stress versus strain.
The linear inclined segment up to 20 MPa tensile stress in PPS-bonded magnet along low elongation
value represents its brittleness. Corresponding Young’s modulus was 21 GPa, as presented in Table 2.
Being brittle thermoplastic, the PPS-bonded magnet samples break in a brittle fracture fashion beyond
the 20 MPa tensile stress, as seen in Figure 6.
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Table 2. Mechanical properties of AM fabricated NdFeB-PPS bonded PM measured at room temperature.

Sample # Tensile Strength (MPa) Tensile Strain (%) Young’s Modulus (GPa)

1 21.60 0.096 20.00
2 18.90 0.082 22.60
3 20.60 0.091 22.00

Average 20.37 0.090 21.53
Std. Deviation 1.37 0.007 1.36

The tensile stress of nylon-bonded PM is reported to be ~6 MPa [15]. The nylon-bonded magnet
attains the maximum tensile strength at ~7 MPa beyond this point, the stress decreases with an increase
in strain and breaks ultimately. In addition to higher thermal stability, the PPS bonded PM has a higher
mechanical strength (see Table 2), almost double than AM printed nylon bonded PM [3] as well as
consistent with previous injection molded bonded-NdFeB magnets [15,23]. However, it is a brittle
thermoplastic and becomes less flexible than nylon-bonded PMs. The ductile region is absent in a PPS
bonded PM and it ultimately breaks without much extension.

Recently, Li et al. [2] reported a high resistivity value of 170 mΩ.cm for 70 vol% BAAM NdFeB-nylon
bonded magnets as compared to that of the state-of-the-art sintered NdFeB magnets with 150 µΩ.cm.
Additionally, they reported a very low eddy current loss for 70 vol% BAAM NdFeB-nylon bonded
magnets. Here, we have reported the total AC magnetization loss fraction as a function of AC magnetic
field frequency (amplitude of 10 Oe) for 63 vol% BAAM NdFeB-PPS bonded magnets in Figure 7.
Eddy current loss for the printed magnets is proportional to AC magnetic loss fraction M′′

M′ , where
M′′ is the imaginary and M′ is the real part of the magnetization. The imaginary part M′′ represents
the dissipative losses in the bonded magnets which can result in subsequent cycles of magnetization.
In addition to the eddy current loss due to dissipation in electrical conductors, further losses due to
irreversible domain wall motion or hysteresis loss are observed with ferromagnets. These results
are also compared with anisotropic NdFeB sintered magnets (for comparison) and BAAM 70 vol%
NdFeB-nylon magnets. Printed magnets were demagnetized for this measurement. The measured
DC electrical resistivity, ρ, of BAAM NdFeB-PPS bonded magnets is 2.58 Ω.cm. This value is even
higher than the reported value for BAAM 70 vol% NdFeB-nylon magnets. Because the eddy current
losses [17,18] are proportional to 1/ρ, the printed bonded magnets will have significantly less eddy
current heating. This is consistent with the eddy current loss fraction of the printed magnet which is
extremely low with M′′

M′ < 1% with increasing frequency, whereas the sintered magnet exhibits a higher
eddy current loss fraction of 20%. Even though the energy product of printed bonded magnets is
reduced due to the incorporation of a non-magnetic PPS polymer binder, the advantages of substantial
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design freedom and low eddy current loss associated with high resistivity results in high conversion
efficiency. These benefits will make AM magnets rival sintered magnets for certain motor applications.
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Figure 7. The eddy current loss fraction of 63 vol% BAAM NdFeB-PPS magnets compare with sintered
NdFeB and 70 vol% BAAM NdFeB-Nylon magnets.

The corrosion resistance of AM fabricated NdFeB PPS bonded PMs with and without the best
coating of 3M identified ScotchWeld DP100 identified from the flux loss measurements (Figure 5) were
tested under couple of standard industrial conditions. The magnets were soaked in a solution with a pH
of 1.35 for 24 h and annealing the magnets in 95% relative humidity (RH) at 80 ◦C for >100 h. Figure 8
presents the room temperature magnetization curves of the AM printed magnets with and without
coating under two corrosion resistance test conditions. The coercivity and saturation magnetization
values of these magnets are presented in Table 3. Coated magnets survived both aggressive conditions.
However, uncoated magnets drastically degraded in both test conditions. From these results, we can
conclude that printed magnets may need suitable coating conditions identified in this work.
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Figure 8. Magnetic hysteresis loop of AM fabricated NdFeB PPS bonded PM at room temperature.
Sample ID: 1.1- as printed; 1.2-uncoated (dipped in pH 1.35 solution for 24 h), 1.3- coated with 3M
ScotchWeld DP100 (dipped in pH 1.35 solution 24 h), 1.4- uncoated (80 ◦C; 95% RH; > 120 h), 1.5- coated
with 3M ScotchWeld DP100 (80 ◦C; 95% RH; > 100 h).
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Table 3. Magnetic properties of corrosion resistance tested AM fabricated NdFeB-PPS bonded PM
measured at room temperature. Sample ID #: 1.1- as printed; 1.2-uncoated (dipped in pH 1.35 solution
for 24 h), 1.3- coated with 3M ScotchWeld DP100 (dipped in pH 1.35 solution 24 h), 1.4- uncoated (80
◦C; 95% RH; >120 h), 1.5- coated with 3M ScotchWeld DP100 (80 ◦C; 95% RH; >100 h).

Sample ID Coercivity (kOe) Saturation Magnetization (emu/g)

1.1 11.33 111.5
1.2 11.62 98
1.3 11.57 113.3
1.4 11.11 32
1.5 11.53 113.7

4. Conclusions

AM fabrication, characterization, thermal stability, mechanical, and magnetic properties of BAAM
printed isotropic PPS-NdFeB bonded PMs is studied. The AM fabrication is a useful technology
for the printing of complex shaped materials and tools in small scale requirements. 63:37 vol% of
NdFeB:PPS bonded PM was 3D printed, heat treated, and various physical properties: mechanical,
thermal stability, and magnetic flux-loss over 1000 h are studied at several operating temperatures.
Industry standards require magnetic flux loss <5% after 1000 h of operation at any given temperature.
AM printed, PPS bonded, and 3M Scotch-Weld DP100 coated surface coated bonded NdFeB PM meets
the industrial stability criterion up to 175 ◦C with flux loss as low as 2.35% over 1000 h heat treatment.
The tensile strength of the PPS bonded PM is almost twice (~20 MPa) that of the corresponding
nylon bonded PM. The AM manufactured PPS-bonded PM shows higher thermal stability and more
robust mechanical properties needed for the high-performance machine parts in comparison to nylon
bonded AM magnets. This study demonstrates that AM fabricated bonded magnets with reduced
manufacturing waste may potentially offset some critical rare earth element demand through targeted
use in high-efficiency motors.
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