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Abstract 
Despite efforts to collect genomics and phenomics (“omics”) and environmental data, spatiotem-
poral availability and access to digital resources still limit our ability to predict plants’ response to 
changes in climate. Our goal is to quantify the improvement in the predictability of maize yields by 
enhancing climate data. Large-scale experiments such as the Genomes to Fields (G2F) are an oppor-
tunity to provide access to “omics” and climate data. Here, the objectives are to: (i) improve the G2F 
“omics” and environmental database by reducing the gaps of climate data using deep neural net-
works; (ii) estimate the contribution of climate and genetic database enhancement to the predictabil-
ity of maize yields via environmental covariance structures in genotype by environment (G×E) 
modeling; and (iii) quantify the predictability of yields resulting from the enhancement of climate 
data, the implementation of the G×E model, and the application of three trial selection schemes (i.e., 
randomization, ranking, and precipitation gradient). The results show a 12.1% increase in predicta-
bility due to climate and “omics” database enhancement. The consequent enhancement of covariance 
structures evidenced in all train-test schemes indicated an increase in maize yield predictability. The 
largest improvement is observed in the “random-based” approach, which adds environmental vari-
ability to the model. 

mailto:fmunoz@unl.edu
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Keywords: climate data science, deep neural network (DNN), genotype by environment (G×E) 
model, Genomes to Fields (G2F), maize yield predictability, train-test schemes 
 
Abbreviations: ASOS, Automated Surface Observing Systems; DF, degrees of freedom; DNN, deep 
neural network; DP, dew point; EC, environmental covariable; G×E, genotype by environment; G2F, 
Genomes to Fields; I., improved; “omics”, genomics and phenomics data; NSRDB, National Solar 
Radiation Database; NWS, National Weather Service; N.I., not improved; R, rainfall; Racc, accumu-
lative rainfall; RH, relative humidity; RMSE, root mean squared error; SNP, single nucleotide poly-
morphism; SR, solar radiation; T, temperature; WD, wind direction; WS, wind speed 
 
Introduction 
 
Global crop production is required to rise by 100% to 110% to meet the demands of the 
growing population by 2050, and, specifically, this value needs to increase 70% in the case 
of cereal yield (Tilman et al., 2011; Alexandratos and Bruinsma, 2012; Matthews et al., 
2013). At the local scale, weather and climate impact on crop production, leading to posi-
tive and negative production trends across the globe (Ray et al., 2015). Furthermore, data 
availability and missing values may constrain our ability to diagnose and predict complex 
crop traits, mainly yields subject to different environmental conditions (Hoogenboom, 
2000). This study aims to improve crop yield predictability in multienvironments by en-
hancing climate data and genomics and phenomics data (“omics”) structures for better 
crop phenotypic responses. 

Worldwide efforts have been made to predict phenotypes of major crops, mainly yield 
under current and future climate variations in a range of spatial and temporal resolution 
scales (Stehfest et al., 2007). Despite improvements in crop model performance (biophysi-
cal and statistical models), climatic drivers remain an unclear factor in the diagnostics and 
prognostics of crop productivity. Unlike the biophysical modeling efforts for yield predic-
tion (Olesen et al., 2000; Mbungu et al., 2015; Raoufi and Soufizadeh, 2020), the statistical 
models provide an opportunity to analyze genetic variation in the modeling procedure, 
such as factorial regression (Baril et al., 1995), the Finlay–Wilkinson model (Finlay and 
Wilkinson, 1963), quantitative trait locus-based models (Hayes et al., 1993), and genomic 
selection models (Meuwissen et al., 2001). These methods facilitate quantifying interactive 
effects of genes and environments called genotype by environment (G×E) interactions 
across environments (Meuwissen et al., 2001; Jarquin et al., 2014, 2017; Crossa et al., 2017). 
In particular, genomic selection models use all molecular markers for phenotypic predic-
tion (Crossa et al., 2017), enabling the use of complex environmental data. Jarquin et al. 
(2014) improved a genomic selection model incorporating G×E interactions between mark-
ers and environmental factors via covariance structures. 

Several studies have investigated the impacts of climate variables on yield, such as min-
imum and maximum temperature, solar radiation, and rainfall (Hoogenboom, 2000; Tao 
et al., 2008). Ray et al. (2015) found that climate variability explains about one-third of crop 
yield variability, following spatial patterns. Also, Lobell et al. (2009) reported global aver-
age yields of major crops at ~80% of the potential yield in most irrigated fields, suggesting 
improvements of cropping systems through climate adaptation actions. These improvements 
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require a deeper understanding of how genotypes interact with environments and how 
phenotypes respond to key climate covariables, turning the selection of superior lines in 
each environment into sound breeding, a decrease in the yield gap between the current 
and the potential yields, and food production sufficiency (Osei et al., 2014). Duvick (2005) 
highlighted that 50–60% of maize yields rely on genetic improvements, indicating the crit-
ical role of genetics in breeding tolerant varieties in response to biotic and abiotic stresses. 
However, the net climate effects on the predictability of phenotypes, including environ-
mental variables such as temperature, dew point, relative humidity, precipitation, and 
their interactions with genomics, remain unclear. The elucidation of the role that climate 
drivers play in phenotypic responses can advance our understanding of how crop pheno-
types respond to weather and climate changes across regions and scales. 

Several national and international projects have conducted breeding trials for the major 
crops to record the genotypic, phenotypic, and environmental datasets at field scale for 
training and testing multienvironment statistical trait simulation efforts. Some of these are 
the International Maize and Wheat Improvement Center (genomics.cimmyt.org), ARVALIS 
(arvalis-infos.fr), Genomes to Fields (G2F) initiative (genomes2fields.org), and SOYNAM 
(soybase.org). The G2F’s “Genotype by Environment” project records, synthesizes, and re-
leases large-scale, multiyear, and multienvironment data of maize breeding trials across 
North America (Lawrence-Dill et al., 2019; McFarland et al., 2020). However, several envi-
ronmental data gaps exist in the recorded environmental time series due to technological, 
logistic, and experimental design complications, limiting their use when fitting G×E models. 

High-dimensional databases have been created to manage and harness an increasing 
availability of data from novel, advanced, and low-cost technologies to traditional digital 
products (Shekhar et al., 2017, Preprint; Quinones et al., 2021). Expressions of these high-
dimensional digital products are the “omics” databases, which have contributed to im-
proving the diagnostics and predictability yields through statistical methodologies such as 
the covariance structures (Howard et al., 2014; Jarquin et al., 2021) and machine learning 
(Long et al., 2011). The consolidation of such complex databases can benefit from the ex-
pansion of climatological stations, the development of gridded products and models, and 
the enhancement of other “omics” digital resources. The enhancement of “omics” and cli-
mate data contributes to better understanding of the propagation of errors from the climate 
data to the creation of covariance structures and the same predictability of phenotypes 
(Sarzaeim et al., 2020). Machine learning techniques such as artificial neural networks, sup-
port vector machines, and deep neural networks (DNNs) have been widely used to improve 
environmental data gaps of multiple complexities. Some experiences include improve-
ments in daily precipitation (Hernandez et al., 2016; Kumar et al., 2019, 2021), solar radia-
tion (Ghimire et al., 2019), temperature (Amato et al., 2020), and those that include complex 
integrated climate, agricultural, and hydrologic processes (Amaranto et al., 2018, 2019, 
2020). A DNN is a sophisticated supervised and multilayer artificial neural network that 
potentially outperforms more traditional machine learning techniques such as the support 
vector machine method. DNNs enable the recognition of complicated unknown mathe-
matical relationships between a large number of input(s) and output data more efficiently. 
Here we take advantage of the capability of DNNs to impute the missing values and im-
prove the database for yield predictability. 
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The hypotheses associated with this study are formulated as follows: (i) the G×E predict-
ability of maize yield values increases by using a DNN-enhanced environmental covariance 
matrix interacting with genetic markers; and (ii) the contribution of environmental varia-
bility will be evidenced in G×E prediction skill by the selection of train-test structure based 
on randomness, ranked covariance matrix, and the gradient of single climate driver values 
(e.g., precipitation). 

To test the hypotheses, the objectives of this research are defined as: (i) to improve the 
G2F “omics” and environmental database by reducing the gaps in climate data using a 
DNN, enabling a larger sample of high-throughput markers and tested phenotypes; (ii) to 
estimate the contribution of database enhancement (from objective i) to the predictability 
of maize yield based on the interactions of the enhanced genetic molecular markers with 
the environment through the environmental covariance structures in G×E modeling; and 
(iii) to identify the contribution and the possible attribution to the predictability of pheno-
types by enhancing climate data (via environmental covariance matrices) to G×E model 
predictability by applying three trial selection schemes (random, ranked, and gradient) to 
provide evidence for the role played by the randomization, ranking of the environmental 
covariance matrix, and precipitation gradient. 

This study is structured as follows: first, the G2F database including “omics” and envi-
ronmental (i.e., climate) data and their limitations is described. Then, the methodology of 
the G2F database for improvement of the evaluation-improvement pipeline to categorize 
G2F experiments and fill in the missing values is described in detail. Next, the G×E model 
and the equations employed incorporating the main and interactive effects of climate and 
genetics are explained to evaluate the improved data effect on predictability skills. To evi-
dence the contribution of climate to predictability enhancement, three train-test design ap-
proaches based on random selection, ranked environmental covariance, and precipitation 
gradient schemes are discussed. Finally, the results, discussion, concluding remarks, and 
proposed future work for subsequent efforts in maize phenotypic predictability analysis 
and improvements are also presented. 
 
Study area and data 
The G2F initiative, established in 2014, is one of the most comprehensive public-accessible 
maize breeding databases (Lawrence-Dill et al., 2019). The G2F initiative has operated sev-
eral maize field trial plots across the USA and Ontario in Canada since 2014, assembling a 
unique large-scale, multiyear, and multienvironment data source for detailed and accurate 
maize breeding research. The database includes maize inbreeds’ genetic molecular mark-
ers (G), phenotypic measurements (P) during and at the end of the growing season, and 
environmental data (E), mainly climatic variables captured during the crop development 
in every single experimental trial. The G2F data enable agricultural researchers, engineers, 
and economists to understand the main and interaction effects of “omics” and environ-
mental drivers on maize phenotypic responses, which helps to develop climate-adaptive 
and resilient maize cropping systems for economically important traits such as yield. 

In the current study, we downloaded, processed, and used the G2F data collected be-
tween 2014 and 2017 for maize hybrid yield prediction. In this period, 98 hybrid experi-
ments have been tested, including > 46,000 maize replicated individual hybrids selected 
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from > 3,300 unique maize lines. The G2F experiments are distributed across more than 17 
states in the USA and the province of Ontario in Canada (Fig. 1). More than one hybrid 
trial has been implemented in multiple cases in one experimental field. The name of each 
hybrid experimental trial is constituted of “year,” “state,” and “number of hybrid experi-
ment in the field,” respectively (for instance, “2014TXH1,” “2014TXH2,” or “2015ILH1”). 
For each experimental field, the genotypic, phenotypic, and environmental data are avail-
able through the G2F initiative website. 
 

 
 

Figure 1. The spatial distribution of Genomes to Fields (G2F) experiments between 2014 
and 2017. The size of the markers represents the accumulative number of experiments in 
each state. 

 
The G2F’s “G×E” project aims to integrate and provide accurate “omics” and environ-

mental data to boost knowledge on the predictability of maize hybrid traits under diverse 
environmental conditions. Yet, the main limitation with the G2F database are the several 
missing values in existing genotypes, phenotypes, and weather time series records, which 
precludes the use of the associated trials, limiting the simulation process. Therefore, to take 
the most advantage of the G2F database and involve a larger number of trials in the maize 
yield simulation procedure, we first need to fill in the missing values. The details of each 
dataset are explained below. 
 
Environmental data (G2F-E) 
The G2F has implemented and collected environmental data in 22 experiments in 2014, 26 
experiments in 2015, 25 experiments in 2016, and 25 experiments in 2017 in multiple states 
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(Fig. 1). In each experimental field, several trials have been implemented with different 
maize hybrid cultivars. During the growing season, eight environmental variables were 
recorded every 30 min, and these are temperature [T (°C)], dew point [DP (°C)], relative 
humidity [RH (%)], solar radiation [SR (W m–2)], rainfall [R (mm)], wind speed [WS (m s–1]), 
wind direction [WD (°)], and wind gust [WG (m s–1)] by a weather station located in the 
field. As mentioned before, despite the efforts made to record and integrate a comprehen-
sive environmental database, there are several gaps and missing values in the released 
time series in G2F-E datasets. 
 
Cured environmental databases 
For missing data imputation, three other publicly available databases were used: (i) the 
National Solar Radiation Database (NSRDB), modeling and integrating a half-hourly grid-
ded meteorological dataset in the nation developed by the U.S. Department of Energy 
(Sengupta et al., 2018); (ii) DayMet, daily surface weather and climatological summaries 
developed by Thornton et al. (2018); and (iii) The Automated Surface Observing Systems 
(ASOS), developed by the National Weather Service (NWS) which is a station-based pro-
gram containing daily and subdaily historical and forecasting hydroclimate data. The var-
iables included in the NSRDB, DayMet, and NWS databases, along with their spatiotemporal 
resolution, and sources are listed in Table 1. 
 

Table 1. Summary of hydroclimatic variables features from NSRDB, DayMet, and NWS databases 

Database Variable (unit) 
Spatial 
resolution 

Temporal 
resolution Source 

NSRDB T (°C), DP (°C), RH (%), 
SR (W m–2), WS (m s–1), WD (°), 
PW (mm), P (mbar) 

4×4 km2 30 min https://nsrdb.nrel.gov 

DayMet Tmin (°C), Tmax (°C), R (mm), 
SR (W m–2), P (Pa) 

1×1 km2 Daily https://daymet.ornl.gov/getdata 

NWS T (°C), DP (°C), RH (%), 
R (mm), WS (m s–1), WD (°), 
WG (m s–1) 

ASOS 
network 

Subdaily https://mesonet.agron.iastate.edu 

PW, precipitable water; P, pressure. The other acronyms are defined in the text. 

 
Genomic data (G2F-G) 
Single nucleotide polymorphism (SNP) sequences, as genetic DNA markers, have been 
generated by the genotyping-bysequence (GBS) technique (McFarland et al., 2020). The 
data are stored in a hierarchical data format file and released by G2F through their portal 
to represent genomic information of 1,576 maize (Zea mays L.) lines. The raw data in hier-
archical data format have been processed by TASSEL 5 software (TASSEL, 2021) to recognize 
the genotype in each allele for all the hybrids and convert the genetic codes to numerical 
genotypes. The numerical genotype refers to the probability of a major allele being selected 
randomly in a site marker. Genotypes are converted to the probability that an allele se-
lected at random at a site is the major allele; in other words, homozygous major is 1.0, 
homozygous minor is 0.0, and heterozygous is 0.5 (TASSEL, 2019). For marker quality con-
trol, the hybrid lines with > 20% missing SNPs have been removed. We also considered 
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only the markers with minor allele frequency > 0.03 in the G2F-G. In the updated SNP data, 
the missing values in each marker have been imputed by the average of the numerical 
genotypes of the nonmissing values in the same site marker. 
 
Phenotype data (G2F-P) 
The growing stages of the maize crops were monitored, and various phenotypic categories 
have been recorded during and at the end of the growing season (at the maturity stage), 
among which are plant morphology [e.g. plant height (cm)], ear morphology [e.g., ear 
height (cm), width (cm), and length (cm)], and plant productivity [e.g., grain moisture (%) 
and yield (bu A–1)]. In this study, the target phenotypic variable for simulation and predic-
tion purposes is yield measured in [bushels per acre (bu A–1)]. 
 
Materials and methods 
 
G2F-E database evaluation and improvement 
We designed a pipeline to find data gaps in the G2F-E time series and impute them. This 
pipeline evaluates G2F-E time series for each experiment to find any data gaps over the 
growing season. Also, it categorizes them into “complete,” “empty,” and “incomplete” ex-
periments, and finally fills the data gaps of the “empty” and “incomplete” datasets to cir-
cumvent the missing records (Fig. 2). Suppose the time series for the mth variable in each 
G2F experiment is available completely (i.e., “complete” dataset) over the growing season; 
in that case, it is directly stored in the final G2F-E database (see Fig. 2). Otherwise, the time 
series is either “empty” if the time series for variable mth has not been recorded during the 
entire growing season or “incomplete” if the time series for variable mth has been collected, 
but there are still some gaps in the recorded time series. These gaps are required to be filled 
before transfer to the final G2F-E database for further simulation. In summary, the raw 
G2F-E is the primary input of the pipeline, and the improved fulfilled G2F-E is the ultimate 
output of that. 

To fill the data gaps and enhance the “empty” and “incomplete” G2F-E categories, we 
earlier proposed the application of three other hydroclimate data sources: option (i) 
NSRDB; option (ii) DayMet; and option (iii) NWS. We first need to find the most consistent 
option with each G2F-E-m time series based on the root mean squared error (RMSE) metric 
and then use the selected option to replace the empty records in “empty” experiments. Then, 
the fulfilled experiment is stored in the final G2F-E database. The same approach is applied 
to the “incomplete” experiments to find the best option at each location for a given variable m. 
Then, the selected option and the “incomplete” G2F time series for the given variable m 
are fed into the DNN model as predictors to simulate the missing samples. Finally, the 
improved G2F-E-m time series is transferred to the final improved G2F-E database. More 
details of the applied gap-filling methodology are explained in Sarzaeim et al. (2022) at 
Zenodo (doi:10.5281/zenodo.6299090). 
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Figure 2. Flowchart of the methodology for the G2F-E evaluation-improvement pipeline. 
The pipeline (i) categorizes the G2F experiments, and (ii) fulfills and simulates “empty” 
and “incomplete” G2F-E time series. This methodology has been implemented for each of 
the 15 G2F-E variables, namely minimum temperature (Tmin), average temperature (Tmean), 
maximum temperature (Tmax), minimum dew point (DPmin), average dew point (DPmean), 
maximum dew point (DPmax), minimum relative humidity (RHmin), average relative hu-
midity (RHmean), maximum relative humidity (RHmax), minimum solar radiation (SRmin), 
average solar radiation (SRmean), maximum solar radiation (SRmax), accumulative rainfall 
(Racc), average wind speed (WSmean), and average wind direction (WDmean). 

 
Phenotype modeling 
Recently there have been successful developments of statistical phenotype modeling by 
employing G×E interactions for technological advances in genotyping, phenotyping, and 
envirotyping (Van Eeuwijk et al., 2016). The G×E concept describes how different geno-
types may respond differently to similar environmental changes (Fig. 3). In other words, 
the phenotypes are not only influenced by genetic information, but they are outcomes of 
the complex gene and environment interactions (Fig. 3A). Figure 3B symbolizes hypothetical 
examples of the phenotypic responses from cultivars 1 to m exposed to the same environ-
mental changes from environments 1 to n without conceptualization of G×E interactions. 
On the other hand, Fig. 3C indicates the phenotypic responses of cultivars with diverse 
G×E interactions. The complexity of modeling G×E stems from the high nonlinear (see Fig. 
3C) and high-dimensional (genotype 1 to m and environment 1 to n) nature of the G×E 
interactions. Several statistical modeling efforts have been developed to increase the pre-
diction skill of the crop phenotype models by incorporating high-dimensional genotypes 
and environmental information to capture G×E interactions (for a review, see Van Eeuwijk 
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et al., 2016). Jarquin et al. (2014) showed that incorporating genetic and environmental co-
variance matrices improved crop performance predictability. The covariance matrices pro-
vide the genetic similarity criterion between each pair of genotypes (in a genetic covariance 
matrix) and the environmental similarity criterion between each pair of environments (in 
an environmental covariance matrix). Thus, in this study, we use the model developed by 
Jarquin et al. (2014) to predict maize yields using the multienvironment G2F datasets. The 
following paragraphs present the development process of modeling traits of complex 
crops, the main and interaction effects, and developed equations in more detail. 
 

 
 

Figure 3. (A) Conceptualization of G×E interactions, and the visualization of phenotypic 
responses of (B) genotype 1 to m not interacting with environment 1 to n, and (C) of gen-
otype 1 to m interacting with environment 1 to n. Note that the rank of the superior gen-
otype varies because of the G×E interactions across the environments. The upright and 
inverted triangle symbols in (C) indicate the change in ranks. If there is no change in the 
genotype’s rank, the symbol remains a circle. In (B), genotype m is the superior genotype 
across environments with the lack of G×E interactions. In (C), the rank of genotype m 
varies across environments and remains superior only in environment 3. 

 
As mentioned earlier, crop yield is generally affected by the crop’s information and 

environmental conditions as well as the complex interactions between gene and environ-
ment (Jarquin et al., 2014; Van Eeuwijk et al., 2016; Bustos-Korts et al., 2018). Therefore, the 
simple baseline equation to model the phenotypes is as in Equation 1: 
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                                              𝑃𝑃𝑚𝑚𝑚𝑚 = 𝜇𝜇 + 𝐸𝐸𝑚𝑚 + 𝐺𝐺𝑚𝑚 + (𝐺𝐺 × 𝐸𝐸)𝑚𝑚𝑚𝑚 + 𝜖𝜖𝑚𝑚𝑚𝑚 
                                                       𝑚𝑚 = 1,⋯ ,𝑀𝑀 and 𝑛𝑛 = 1,⋯ ,𝑁𝑁                                                (1) 
 
where Pmn is the mean of phenotypic response (i.e., yield) of genotype m in environment n, 
µ is the overall phenotypic response from all observations, Gm is the main random effect of 
genome m, En is the main random effect of environment n, (G×E)mn is the interaction effect 
of genome m and environment n, and εmn is residual random error. 

Genotyping technological advances and innovative sequencing methods have enabled 
the extraction of the high-intensity SNP genetic variation of maize lines and analysis of 
segregation effects, which enhances the understanding of the genotype-phenotype rela-
tionship (Cobb et al., 2013). These advances led to incorporation of highintensity SNP var-
iations of parent cultivars for maize hybrid m in the phenotypic simulation. Therefore, the 
Gm term in Equation 1 can be broken down into two terms, GP1,m and GP2,m. Then the up-
dated equation is: 
 
                         𝑃𝑃𝑚𝑚𝑚𝑚 = 𝜇𝜇 + 𝐸𝐸𝑚𝑚 + 𝐺𝐺𝑃𝑃1,𝑚𝑚 + 𝐺𝐺𝑃𝑃2,𝑚𝑚 + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐺𝐺𝑃𝑃2,𝑚𝑚� + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐸𝐸𝑚𝑚� 
                                         +�𝐺𝐺𝑃𝑃2,𝑚𝑚 × 𝐸𝐸𝑚𝑚� + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐺𝐺𝑃𝑃2,𝑚𝑚 × 𝐸𝐸𝑚𝑚� + 𝜖𝜖𝑚𝑚𝑚𝑚                                   (2) 
 
where, GP1,m and GP2,m are the random genomic main effects corresponding to SNPs of par-
ent 1 and parent 2 of genotype m, respectively; GP1,m × GP2,m is the specific combining ability 
of crossing parent 1 and parent 2 of genome m, GP1,m × En is the interaction effect of parent 
1 and the nth environment, GP2,m × En is the interaction effect of parent 2 and the nth envi-
ronment, and GP1,m × GP2,m × En is the interaction effect of the combined SNPs of parents and 
the nth environment. 

By introducing covariance matrices, Jarquin et al. developed, validated, and recom-
mended Equation 3 to predict a crop’s yield: 
 
                   𝑃𝑃𝑚𝑚𝑚𝑚 = 𝜇𝜇 + 𝐸𝐸𝑚𝑚 + 𝐺𝐺𝑃𝑃1,𝑚𝑚 + 𝐺𝐺𝑃𝑃2,𝑚𝑚 + 𝑊𝑊𝑚𝑚𝑚𝑚 + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐺𝐺𝑃𝑃2,𝑚𝑚� + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐸𝐸𝑚𝑚� 
                                  +�𝐺𝐺𝑃𝑃2,𝑚𝑚 × 𝐸𝐸𝑚𝑚� + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐺𝐺𝑃𝑃2,𝑚𝑚 × 𝐸𝐸𝑚𝑚� + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝑊𝑊� 
                                         +�𝐺𝐺𝑃𝑃2,𝑚𝑚 × 𝑊𝑊� + �𝐺𝐺𝑃𝑃1,𝑚𝑚 × 𝐺𝐺𝑃𝑃2,𝑚𝑚 × 𝑊𝑊𝑚𝑚� + 𝜖𝜖𝑚𝑚𝑚𝑚                                  (3) 
 
where W is the main effect of the environmental factors modeled by using environmental 
covariables (ECs), GP1,m × Wn is the interaction effect of parent 1 and the environmental 
factors, GP2,m × Wn is the interaction effect of parent 2 and the environmental factors, GP1,m × 
GP2,m × W is the interaction effect of the combined SNPs of parents and the environmental 
factors, with the following assumptions: 
 
                                                                      𝐸𝐸~𝑁𝑁(0,𝜎𝜎𝐸𝐸2)                                                                           (4) 
                                                    𝑊𝑊~𝑁𝑁(0,∙ 𝜎𝜎𝑤𝑤2), where ∙= 1

𝑄𝑄
𝑊𝑊𝑊𝑊′                                                  (5) 

                                                   𝐺𝐺𝑃𝑃1~𝑁𝑁�0,𝐺𝐺𝜎𝜎𝑔𝑔2�, where G = 1
𝑃𝑃1
𝑋𝑋𝑋𝑋′                                               (6) 

                                                   𝐺𝐺𝑃𝑃2~𝑁𝑁�0,𝐺𝐺𝜎𝜎𝑔𝑔2�, where G = 1
𝑃𝑃2
𝑋𝑋𝑋𝑋′                                               (7) 

                                                                     𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝜀𝜀2)                                                                    (8) 
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where Ω is the covariance matrix describing the environmental similarities between pairs 
of environments using ECs, Q is total number of ECs, W is random regression on ECs, G is 
the covariance matrix describing the similarities between maize lines using molecular 
markers, P1 and P2 are the total number of maize molecular markers of parent 1 and parent 
2 (in our case P1 = P2), respectively, and X is the genomic value of each maize marker. N (,) 
denotes a normal distribution. 

For model fitting and simulation, the G2F database trials split into training and testing 
ensembles. The training set is observations used to train the G×E model, while the testing 
set is unobserved samples used to test the accuracy of the constructed model in the training 
step. The procedure for the G×E train and test for the simulation of yields uses the BGLR 
(Bayesian Generalized Linear Regression) R-package. BGLR has analyzed highly dimen-
sional data where a predictand (here, maize yield) needs to be regressed on a large number 
of predictors (here, genotypes, environments, and their interactions) (Perez and Campos, 
2014). 
 
G×E train-test set selection design 
The accuracy of the statistical model’s performance relies on training datasets (Lobell and 
Burke, 2010; Gianola, 2021). Thus, we have designed three different trial selection schemes 
to evaluate the change rate of G×E predictive performance for the train-test set size in each 
scheme. Figure 4 provides a step-by-step flowchart of these three approaches of selection 
of train-test experiments. 

 
 

Figure 4. Trial selection design for “random-based,” “covariance-based,” and “climate-
based” approaches. Note: The total number of experiments used for G×E simulation is 84, 
which is explained in the text. Env., environments; No., number. 
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The first approach is “random-based” experiment selection, through which the model 
is implemented in several iterations. In each iteration, the number of the test set is in-
creased by five random environments. The rest of the trials become the training set. This 
procedure will continue until all experiments have been covered in the test dataset, and at 
least one experiment remains in the training set. After each iteration, the G×E model is 
implemented, and its efficiency is evaluated. 

The following strategy for trial selection is built upon the ranked environmental simi-
larities among the trials. As described earlier in Equation 3, the environmental covariance 
values computed based on DNN-enhanced weather covariates between each pair of the 
experiments are considered as environmental similarities criteria. The covariance is calcu-
lated as shown in Equation 9: 
 

                                       cov �𝐸𝐸𝐸𝐸𝑥𝑥,𝐸𝐸𝐸𝐸𝑦𝑦� = ∑�𝐸𝐸𝐶𝐶𝑥𝑥,𝑡𝑡−𝐸𝐸�𝐶𝐶�̅�𝑥��𝐸𝐸𝐶𝐶𝑦𝑦,𝑡𝑡−𝐸𝐸�𝐶𝐶�̅�𝑦�
𝑇𝑇

                                                (9) 
 
where, cov(ECx, ECy) is the environmental covariance value of EC time series between ex-
periment x and y, ECx,t is the standardized values of ECs in experiment x on day t, ECy,t is 
the standardized values of ECs in experiment y on day t, 𝐸𝐸�𝐸𝐸�̅�𝑥 is the average of standardized 
ECs in experiment x, 𝐸𝐸�𝐸𝐸�̅�𝑦 is the average of standardized ECs in experiment y, and T is the 
total number of time steps in day. 

For the “covariance-based” trial selection scheme, first we select one random trial and 
then calculate the environmental covariance between the chosen trial and the other remain-
ing experiments: the more covariance values, the stronger the environmental relationship 
(i.e., similarities). In the next step, experiments are sorted by the calculated environmental 
covariance values by size. In the first model-run iteration, the first four trials with the larg-
est covariances (i.e., the first four most similar trials with the selected experiment) are cho-
sen and assigned as the test set along with the first randomly selected experiment (i.e., five 
experiments), and the remaining experiments are kept as the training set. In the next iter-
ation, the following five similar experiments are added on to the test set, and the remaining 
experiments are allocated to the training set. This process will continue until it covers all 
experiments as a test set and at least one in the training set. 

The last train-test selection scheme focuses on the selection trials based on one single 
climate gradient in each experiment. Here we chose accumulative rainfall (Racc) during the 
growing season at each G2F trial location. In this approach, the experiments will first be 
sorted in decreasing order based on the growing season Racc values. Then, in each training 
G×E iteration, five sorted experiments with larger Racc values will be added to the test set. 
The remaining experiments will be considered as the training set. In other words, the size 
of the test and train samples will increase and decrease by five experiments, respectively, 
based on Racc values in the arranged experiments until they cover all experiments as the 
test set and at least one in the training set. This approach aims to identify the effect of a 
single climate driver such as Racc on G×E performance and the predictability of yields. 

To evaluate the G×E model simulation on the test set in each iteration, four performance 
metrics will be discussed, which are coefficient of determination (R2), RMSE, mean squared 
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error (MSE), and mean absolute error (MAE), each of which is formulated as below (Will-
mott, 1982; Chai and Draxler, 2014): 
 

                                               𝑅𝑅G×E,𝑚𝑚
2 =

∑ �𝑦𝑦obs𝑛𝑛,       𝑚𝑚−𝑦𝑦sim𝑛𝑛,       𝑚𝑚�
2𝐿𝐿

𝑙𝑙=1

∑ �𝑦𝑦obs       𝑛𝑛,       𝑚𝑚−𝑦𝑦�𝑛𝑛,𝑚𝑚�
2𝐿𝐿

𝑙𝑙=1

                                             (10) 

 

                                            RMSEG×E,𝑚𝑚 = �1
𝐿𝐿
∑ �𝑦𝑦obs𝑛𝑛,𝑚𝑚 − 𝑦𝑦�sim 𝑚𝑚,𝑚𝑚�

2𝐿𝐿
𝑙𝑙=1                                    (11) 

 
                                                 MSEG×E,𝑚𝑚 = 1

𝐿𝐿
∑ �𝑦𝑦obs𝑛𝑛,𝑚𝑚 − 𝑦𝑦�sim 𝑚𝑚,𝑚𝑚�

2𝐿𝐿
𝑙𝑙=1                                     (12) 

 
                                                MAEG×E,𝑚𝑚 = 1

𝐿𝐿
∑ �𝑦𝑦obs𝑚𝑚,𝑚𝑚 − 𝑦𝑦�sim 𝑚𝑚,𝑚𝑚�𝐿𝐿
𝑙𝑙=1                                       (13) 

 
where, 𝑅𝑅G×E,𝑚𝑚

2 , RMSEG×E,𝑚𝑚, MSEG×E,𝑚𝑚, and MAEG×E,𝑚𝑚 are calculated G×E model R2, RMSE, 
MSE, and MAE for environment n, respectively; 𝑦𝑦obs𝑛𝑛,𝑚𝑚 and 𝑦𝑦�sim𝑛𝑛,𝑚𝑚 is observed and simu-
lated yield values for recorded individual genotype m in environment n, respectively; and 
L is total number of recorded m in environment n. 
 
Results and discussion 
 
G2F-E improvement 
Among 112 G2F hybrid experiments in 2014–2017, the location information (e.g., latitude 
and longitude) of 15 experimental fields is missing. In addition, yield values of 11 trials 
have not been recorded. The G2F-E datasets from the remaining experiments (i.e., 86) are 
integrated into the evaluation-improvement sequence. Figure 5 illustrates the proportion 
of each category for each G2F-E variable. Among the environmental variables, G2F-E-RH 
is the most complete, with 80% completeness (i.e., 69 experiments), while there are several 
missing records in the G2F-E-SR published time series, with 49% completeness (i.e., 42 ex-
periments). 
  



S A R Z A E I M  E T  A L . ,  J O U R N A L  O F  E X P E R I M E N T A L  B O T A N Y  7 3  (2 0 2 2 )  

14 

 
 

Figure 5. The rounded portion of completeness, incompleteness, and emptiness in G2F-E. 
The numbers in parentheses indicate the absolute number of datasets in each category for 
each variable: temperature (T), dew point (DP), relative humidity (RH), solar radiation (SR), 
rainfall (R), wind speed (WS), wind direction (WD), and wind gust (WG). 

 
The constructed evaluation-improvement pipeline shown in Figure 2 categorizes and 

improves the environmental datasets, enabling the advantage of an enhanced three-
dimensional database consisting of improved environmental data and genotypes and phe-
notypes from a more significant number of G2F experiments for yield prediction. The pipe-
line found that 32 out of 86 G2F experiments contain all the climate variables completely 
assigned to the “complete” category, meaning that 480 datasets (= 32 experiments × 15 var-
iables) are transferred to the final improved G2F-E database directly. The variables included 
are minimum temperature (Tmin), average temperature (Tmean), maximum temperature (Tmax), 
minimum dew point (DPmin), average dew point (DPmean), maximum dew point (DPmax), 
minimum relative humidity (RHmin), average relative humidity (RHmean), maximum rela-
tive humidity (RHmax), minimum solar radiation (SRmin), average solar radiation (SRmean), 
maximum solar radiation (SRmax), accumulative rainfall (Racc), average wind speed (WSmean), 
and average wind direction (WDmean). Since the NSRDB, DayMet, and NWS do not provide 
wind gust data, the improvement of the G2F-E-WG datasets was not performed and was 
not considered for further processing. In some cases, imperfect wind gust values are re-
ported in the NWS database. However, they cannot be used in this study because of several 
missing values in NWS. Among the remaining G2F datasets associated with other experi-
ments (86 – 32 = 54), 442 more “complete” datasets are directly transferred to the final da-
tabase. The DNN has used additional 181 “incomplete” datasets for data gaps simulation 
(see the Materials and methods and Sarzaeim et al., 2022), and the subsequent datasets are 
“empty” which have been filled as described earlier (Sarzaeim et al., 2022). 

To complete the “empty” experiments, the RMSE metric has been calculated (Sarzaeim 
et al., 2022) between each of the observed nonempty time series (including “complete” and 
“incomplete”) and the associated time series of available sources for variable m. For illus-
tration, since DP values are accessible from NSRDB and NWS sources, the RMSE has been 
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calculated between observed G2F-E-DP and each of NSRDB-DP and NWS-DP measure-
ments at each G2F trial location. Then, the kernel density of the calculated pairwise RMSE 
values is plotted to recognize the best-fitted source to the G2F-E-DP measurements (see 
Fig. 6). The lower RMSE values (i.e., the x-axis) with higher probability (i.e., the y-axis), the 
better the source is fitted to the observed G2F-E-DP. By selecting the option with a greater 
probability of smaller deviation from G2F-E, we minimize the error introduced to the en-
hanced G2F-E database by other source replacements. Therefore, the source with more 
probable, lower RMSE values is selected to replace the data gaps in “empty” G2F-E-DP. 
The same procedure has been applied for other variables as well. Figure 6 illustrates the 
kernel density for the calculated RMSE between G2F-E and each NSRDB, DayMet, and 
NWS option for given climatic variable m. Based on the probability of RMSE values, the 
NSRDB was selected for gap fulfillment in “empty” DP, SR, WS, and WD datasets. In con-
trast, DayMet was selected only to fulfill the R dataset, and NWS was not selected for any 
variable. This selection process based on the RMSE criterion indicates that observed G2F-E 
datasets are more consistent with the NSRDB database in general. 

From the RMSE probability plots in Figure 6, it is also worth mentioning that although 
G2F weather station devices located at experimental fields are initially calibrated with the 
nearest ASOS-NWS stations by G2F collaborators (McFarland et al., 2020), and low RMSE 
values are expected between G2F and NWS time series, the NWS databases (station-based 
data) have remarkable deviations from the observed G2F-E time series compared with 
NSRDB and DayMet (gridded data). In other words, the gridded NSRDB and DayMet da-
tabases are in better agreement with G2F-E in terms of RMSE values (Fig. 6). It is notewor-
thy that G2F is a station-based database. Lowering the deviation between NWS and G2F 
records through regular calibration is required due to the sensitivity of the devices for ac-
curate long-term measurements (Bojanowski et al., 2014). 
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Figure 6. Kernel density of pairwise calculated RMSE values between observed G2F-E-m 
and NSRDB-m, DayMet-m, and NWS-m for variable m. Note: Temperature (T) and rela-
tive humidity (RH) presented no data gaps, but the RMSE values are presented together 
with those for dew point (DP), solar radiation (SR), rainfall (R), wind speed (WS), wind 
direction (WD), and wind gust (WG). 
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For “incomplete” time series improvement, we implemented DNNs for 58 SR, 30 T, 30 DP, 
30 RH, 13 WS, 11 R, and 10 WD datasets. Table 2 shows the DNN’s performance based on 
the RMSE metric for the test DNN population in the associated G2F experiment. The aver-
age, minimum, maximum, and SD of the RMSE performance metric have also been calcu-
lated and are presented in Table 2 for the given variable m. The calculated statistics shown 
in Table 2 indicate the low RMSE values in the DNN test population. The constrained di-
vergence indicates a high capability of DNN for the imputation of G2F-E missing records, 
particularly in Tmax, DPmean, RHmean, and SRmean time series regarding their associated aver-
age performance metric values. The percentage improvement in increasing the number of 
complete trials before and after the improvement process is 26% for T, 41% for DP, 25% for 
RH, 105% for SR, 30% for R, 26% for WS, and 26% for WD. The number of complete obser-
vations after the improvement is 86 for each variable, and the associated numbers of com-
plete experiments before the improvement are listed in Figure 5. 

By applying the G2F-E evaluation-improvement methodology described above (and in 
Sarzaeim et al., 2022), the number of total “complete” G2F-E experiments increased from 
32 to 86 experiments. This means that we increased the environmental degrees of freedom 
(DF) by 54 (DFafter – DFbefore = 54). Now it is possible to feed a further 54 experimental trials 
and their datasets, including genomic, phenotypic, and environmental information, into 
the G×E model simulation process. In other words, the environment DF improvement is 
~169%. Increasing the number of experiments by gap filling of “empty” and “incomplete” 
environmental time series provides the opportunity of using not only the enhanced G2F-E 
but also G2F-G and G2F-P associated with those time series in the simulation process, 
which were not capable of being processed in the simulation previously. Before the im-
provement process, we had 32 environments, 372 genotypes, and 3,169 phenotypic obser-
vations, which could be fed into the simulation. After improving the dataset, we increased 
the number of environments, genotypes, and phenotypic observations up to 86, 376, and 
8,171, respectively. Below, we will evaluate the effect of this significant improvement in 
the number of total experiments in a multidimensional database reflected on G×E predict-
ability performance. 
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G×E simulation and predictability evaluation 
The enhanced DNN-G2F-E database (consisting of 86 experiments) along with G2F-G mo-
lecular markers and G2F-P yield measurements are consistently controlled in terms of data 
availability in all three types of datasets for each trial before feeding into the G×E model 
and simulation process (see Fig. 2). After this consistency control, we have 84 experiments 
capable of being employed as G×E’s model input. The criterion is to keep those experi-
ments in the simulation process that all required that G2F-E, G2F-G, and G2F-P data are 
available in the database. In other words, there are two experiments that either their associ-
ated G2F-G or G2F-P information for all tested cultivars are not recorded in the G2F database. 

The G×E model has been simulated by feeding 32 complete experiments from the not 
improved (N.I.) database and 84 DNN-improved (I.) environments. For model yield pre-
dictability evaluation, four model performance metrics, namely R2, RMSE, MSE, and MAE, 
have been calculated for each environment. The performance of the results of 32 common 
“complete” experiments are compared in Figure 7 from N.I. and I. G×E implementations. 
The results generally show more accurate G×E predictability from I. in comparison with 
N.I. (see the dashed horizontal lines). The mean R2 in all 32 common experiments is im-
proved ~12.1%. The RMSE, MSE, and MAE measurements are also improved by 2.2%, 
11.4%, and 1.4%, respectively (Table 3). The improvement in the predictability of yields 
proves the hypothesis that G×E predictability increases with the DF of the environment 
data (in this case, from DFbefore = 32-1 to DFafter = 84-1). While the efficiency metrics in Table 
3 are spatiotemporal aggregates, Figures 7–10 illustrate how, for example, R2 varies across 
the study area. The improvement in the G×E model performance has been reported by 
Jarquin et al. (2014), who showed that the average model R2 increased 12.9% when the 
interaction genotype by environment is included. Acosta-Pech et al. (2017), Crossa et al. 
(2017), and Lopez-Cruz et al. (2015) have reported improvements in R2 between 5% and 
29% for maize yield prediction. These findings support the thesis that enhancing climate 
data integrated into the environmental covariance matrices increases the predictive skill of 
G×E models. Further, a nonparametric t-test is applied to evaluate the metrics of the model’s 
performance between N.I. and I. The associated null hypothesis expresses that there is no 
significant difference between performance metrics of N.I. and I. implementations. The 
operation of the t-test evaluation uses the “stat.ttest_rel” function from Python, setting a 
default P-value of 0.05. For an estimated significance level larger than the P-value, the null 
hypothesis is accepted. In other words, it can be concluded that there is no significant dif-
ference between N.I. and I. performance metrics. The calculated t-value and P-value for 
each performance metric are illustrated in Figure 7. Since the calculated P-value is larger 
than the significance level (0.05) in all metrics, it is concluded that the enhancement is not 
statistically significant, despite predictability improvement in I. compared with N.I. sce-
narios. The possible reason for this insignificant predictability improvement may rely on 
the unbalanced G2F experimental design. This experimental unbalancing refers to the un-
uniform distribution of experimental sample units (observations) among the trials. The 
number of observations varies between five (in 2014GAH1, 2014NCH1, 2014TXH1, and 
2014TXH2 trials) and 201 (in the 2014ONH2 trial). Thus, the model fitting is more affected 
by the trials with a larger number of observations. 
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Figure 7. G×E-based predictability comparing the initial 32 (N.I. = not improved) experi-
ments and the completed 84 (I. = improved) experiments after filling all data gaps. Both 
N.I. and I. databases have been evaluated based on the efficiency indices: (A) R2, (B) RMSE, 
(C) MSE, and (D) MAE metrics. The vertical black lines show the difference between the 
efficiency indices before and after the improved data. The size of the markers is directly 
proportional to the improvement level for R2, and indirectly proportional to the other 
metrics. The t-value and P-value are based on the t-test statistic and significance level, 
respectively. Note: M.N.I. = mean of not improved (dashed orange line) and M.I. = mean 
of improved (dashed blue line). 
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Table 3. The mean G×E model performance metrics in the N.I. and I. datasets, the minimum and 
maximum difference of G×E model performance metrics between N.I. and I. datasets, and the 
mean improvement percentage of the G×E model performance metrics 
Performance 
metric 

Mean 
in N.I. 

Mean 
in I. 

Minimum 
difference 

Maximum 
difference 

Mean percentage 
change (%) 

R2 0.33 0.37 –0.10 0.95 12.1 
RMSE 26.86 26.25 –23.09 1.75 2.2 
MSE 848.72 751.58 –3089.18 91.16 11.4 
MAE 20.93 20.63 –14.49 1.73 1.4 

Note that the negative values for RMSE, MSE, and MAE show the improvement of the G×E model performance. 

 
The geospatial distribution of the I. scenario predictability is represented by the R2 met-

ric in Figure 8. The map shows that the G×E predictive skill is more accurate (represented 
by point size) in the northern part of the G2F layout, where, in most cases, the number of 
observations (represented by point color) is large. 
 

 
 

Figure 8. Spatial distribution of G×E model predictability (R2) based on 84 DNN-based 
improvements in the G2F-E experiments. The color gradient represents the number of 
observations, and the size of the circles represents the R2 at each trial. The colored circles 
are transparent to distinguish multiple trials at the same location. Note: The circles with 
a black perimeter represent negative correlation values. No perimeter means positive cor-
relation. 
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In summary, the improvement in the environmental dataset provides the opportunity 
to increase the number of experimental sites and their associated “omics” information con-
sideration for simulation procedure. Although this three-dimensional data improvement 
led to a marginal enhancement in G×E predictability, it revealed that the database improve-
ment is reflected by more accurate G×E yield prediction skills in terms of all R2, RMSE, 
MSE, and MAE performance metrics. This result suggests the G×E can predict the pheno-
types more accurately by expanding the number of observed sites. This result is also in line 
with previous findings regarding the increase in “omics” sample size, which led to better 
model performance (Auinger et al., 2021; Lopez-Cruz and de los Campos, 2021). The data 
enhancement enables the robustness of the G×E model to capture the gene by environment 
interactions more effectively. 
 
G×E predictability in selection of train-test trial scenarios 
We provide evidence of the contribution of the DNN-driven enhancement of climate data 
to the improvement of “omics” databases and the predictability of maize yields. Three trial 
selection designs, called “random-based,” “covariance-based,” and “climate-based,” are 
implemented to quantify and identify the factors that control the increase in phenotype 
predictability. Varying iterations formed the scenarios that emerged from a dominant test 
scenario to a prevailing training scenario. The scenarios gradually increase by five test sets 
(where the number of training set observations decreases by the same number) (see Fig. 4). 

In the first iteration (iteration 1), five selective trials were allocated for testing, and the 
rest (84 – 5 = 79) remained in the training set. The largest training set is in iteration 1, and 
the smallest training set is associated with the last iteration (iteration 16); the train and test 
set size is 4 and 80, respectively. 

The average R2 estimations for the tested experiments (the black line) in each iteration 
were calculated and illustrated in Figure 9 for each selection scenario. Additionally, the 
average predictability of newly selected sets in an iteration through the last iteration is 
represented by the colored lines. The longest line is representative of the average of the 
first five selected test experiments remaining in the test set from iteration 1 through itera-
tion 16. The next longest set is associated with the five newly selected test experiments in 
iteration 2 through iteration 16. Note that in iteration 2, there are 10 test experiments in 
total: five from iteration 1 and five from iteration 2. A similar explanation applies to the 
other lines in the plot. The model performance estimated by R2 shows improvement from 
iteration 16 to 1 in all test sample sizes in all selection scenarios. This result suggests that 
the model predictability improves when more experiments are allocated to the training 
sets, from the smallest training set size in iteration 16 (i.e., Sizetrain = 4) to the largest training 
set size in iteration 1 (i.e., Sizetrain = 79). Thus, a larger number of training samples leads to 
higher environmental variability in the simulations, leading to the improvement of the 
model’s predictability. These observations are also in line with general results from above; 
a larger number of observed environment sets can provide a larger training population 
size and, eventually, G×E predictive skill enhancement. 
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Figure 9. The number of iterations (1–16) versus the averages of the coefficient of deter-
mination, R2, for test ensembles from 5 (in purple) to 80 (in red). The three sampling 
schemes were (A) “random-based,” (B) “covariance-based,” and (C) “climate-based.” The 
number of iterations is explained as follows: if the number of samples equals 5, five ex-
periments belong to the test ensemble, and the rest belong to the training set. The dashed 
line results from applying a linear regression model fitted to the total average values. 
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In addition to the effect of changing training sets, the variability inherent in the envi-
ronmental covariance structures in the training sets can be affected by the train and test 
selection strategy (i.e., random versus ranking versus the precipitation gradient). For gen-
erally comparing the performance of selection scenarios in improvement of predictability, 
the linear model follows the averaged R2 values from iteration 1 to iteration 16. The largest 
absolute values of the slope (m) indicate the largest improvement rate over the iterations. In 
other words, over Sizetrain, the largest improvement is reached in “random-based” (m = 0.012), 
“climate-based” (m = 0.009), and “covariance-based” (m = 0.002) scenarios, respectively. 
The reason behind that stems from the different levels of captured environmental variabil-
ity in training ensembles. In both “climate-based” and “covariance-based” scenarios, the 
selection strategy removes the most similar experiments from the training set and sums 
them to the test population. These strategies are built upon experiments with similar 
ranked Racc values in “climate-based” and similar ranked environmental covariance values 
in “covariance-based” designs. Also, in both approaches, the environmental variation among 
the retained experiments in the training set decreases gradually in response to possible 
climate patterns embedded in the complex structure of the environmental covariance ma-
trices. The climate information is aggregated, and no causality between climate and model 
performance is evident. These results agree with previous studies by Messina et al. (2018). 
These authors attributed the poor crop yield model performance to the low environmental 
variation, which concurs with that proposed here in the second objective. In another study, 
Rogers and Holland (2022) showed that decreasing environmental similarity between train 
and test sets leads to a decrease in the G×E model predictability. Thus, the difference in the 
G×E predictive performance as evidenced by the “random-based,” “covariance-based,” 
and “climate-based” scenarios can be attributed to the skill gained by the training set; also 
found by Gianola (2021). 

The “random-based” and the “covariance-based” scenarios indicate improved predict-
ability due to the consolidation of the climate and “omics” databases. However, these im-
provements cannot build causality or create climate-driven phenotypic diagnostics or 
prognostics, such as geospatial or temporal attributions of maize phenotypes to climate 
variability and change. The “climate-based” scenario introduces climate variability by se-
lecting environmental covariance structures by a gradient of precipitation. This simple 
construction addresses the randomness of the “random-based,” the incremental sequence 
of the “covariance-based” scenarios, and a gradual increase in rainfall, the main driver of 
the hydrologic cycle and an element of both the weather and climate systems. Through this 
scenario design, we suggest that areas and times with high rainfall influence the pheno-
typic prediction. Rojas et al. (2019) predicted that declining rainfall in the coming decades 
will lead to 1% to 14% variability of global cereal production. Maltais-Landry and Lobell 
(2012) associate a high rainfall variability with an increase in the inter-annual variability of 
yields. The Intergovernmental Panel on Climate Change (IPCC, 2001) has suggested the 
scenario of increasing variability in rainfall for > 25 years. However, it is unclear if crops 
will have the ability to adapt at a higher pace. 

The “climate-based” scenario illustrates the opportunity to quantify the improvements 
in predictability as larger variations in rainfall occur. Andresen et al. (2001) identified the 
rainfall and its variability as the major driver of maize inter-annual yield variability. The 
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results in Figure 9C illustrate a relatively consistent improving pattern from Sizetest = 10 to 
Sizetest = 40, which implies that the prediction accuracy of G×E is higher in experiments 
with larger Racc during the growing season. The consistent improvement in the predicta-
bility is observed only in the “climate-based” scenario. The Racc records ranked decreas-
ingly are presented in Figure 10. The vertical dashed line separates the experiments with 
Sizetest ≤ 40 from the rest. The range of Racc is between max(Racc) = 1,525 mm in the 
“2016KSH1” and min(Racc) = 497 mm in the “2014TXH2” experiment. The model’s con-
sistent improvement in performance is reached with the accumulative rainfall value > 497 
mm. The Racc standard deviation for experiments groups with Racc ≥ 497 mm and Racc < 497 
is 229 and 84 mm, respectively. These results show improved G×E predictability by intro-
ducing more variability in the training set. The change rate of R2 obtained by a rainfall 
gradient and the pattern of consistent improvement imply the contribution of a climatic 
variable (here, rainfall) in prediction enhancement, which suggests the exploration of other 
major climate covariates for consideration in the simulation procedure. In Figure 10, it can 
also be seen how geospatial rainfall variability is reflected in model predictability. For ex-
ample, model predictability in South Georgia experiments with smaller rainfall values out-
performs that in the northern portion of the state with higher rainfall. This difference in 
model predictive skill in experiments with different rainfall values is another reason for 
the necessity for sensitivity analysis in order to find the variables with the most influence 
on model performance. While it is beyond the scope of this study to indicate the climate 
and genetic attributions of such variation, it reveals an opportunity to elucidate those at-
tributions as potential sources of predictability. 
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Figure 10. Spatial distribution and decreasingly sorted Racc (colored gradients) and R2 
(same as in Fig. 8). The vertical dashed line separates the experiments with a consistent 
improvement pattern as observed in Figure 9C. The color code (mm) in the lower panel 
matches the color code of the circles in the map. The colored circles are transparent to 
distinguish multiple trials at the same location. Note: As in Figure 8, the circles with a 
black perimeter represent negative correlation values. No perimeter means positive cor-
relation. 

 
The generally better accuracy achieved by the “climate-based” than the “covariance-

based” scenario illustrates a sequential and consistent improvement in the predictability 
of maize yields. The former shows the effect of the error introduced when all the environ-
mental covariables are introduced in the simulation. In other words, model performance 
does not improve just by adding climatic variables. Based on the elements of the discussion 
above, the environmental heterogeneity strengthens the model performance, but it will be 
more effective when the sensitivity of crop yields comes from environmental variables 
such as rainfall. As explained earlier in this research and other studies, crop yield is af-
fected by climatic variables at different levels (Meyer et al., 1991; Romay et al., 2010; Zhao 
et al., 2015). Yet, this study introduces what climate variability across spatiotemporal scales 
and emerging patterns may offer to the diagnostics and prognostics of a plant’s ability to 
adapt to changes in climate. 
 
Conclusions 
 
In this study, we assessed the performance change of the statistical G×E model for maize 
yield prediction for (i) the train-test population size and (ii) the train-test structure designs. 
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The G2F initiative releases a comprehensive database consisting of genetic, phenotypic, 
and environmental data of several maize hybrids for G×E modeling and simulation. De-
spite the efforts in recording databases without missing elements, there are several gaps 
and missing records throughout the G2F-E time series. The missing data affect all the three-
dimensional data coverage, including environmental and “omics” information in modeling 
and simulation procedures. To tackle this problem, we designed an evaluation-improvement 
pipeline to categorize the environmental datasets into “complete,” “empty,” and “incom-
plete” groups and then replaced the data gaps in the “empty” datasets and simulated miss-
ing samples in the “incomplete” datasets by employing DNNs. Thus, the number of total 
observed experiments for G×E simulation upgrades from 32 to 84, enabling the improve-
ment of genotypes from 372 to 376 and yield observations from 3,169 to 8,171. This im-
provement in three datasets resulted in a 12.1% improvement in predictability of maize 
yield values in terms of R2 measurement. The RMSE, MSE, and MAE measurements im-
proved by 2.2%, 11.4%, and 1.4%, respectively. The data can be found in Sarzaeim et al. (2022). 

In conclusion, any improvement in environmental or “omics” databases will lead to a 
better G×E predictive skill. Additionally, the statistically insignificant G×E predictability 
enhancement suggests more DFs for remarkable simulation accuracy. On the other hand, 
we examined the G×E prediction skill in three train-test selection experiments scenarios 
which are called “random-based,” “covariance-based,” and “climate-based” schemes. The 
model performance is enhanced with a larger Sizetrain in all mentioned approaches due to 
more variability to which the model is exposed in the training set structure. The “random-
based” scenario achieved the best improvement rate of 0.012. This improvement indicates 
that environmental variability is a key driver of phenotype predictability within the train-
ing set experiments as we compared “climate-based” and “covariance-based” scenarios. 
Thus, larger Sizetrain in the “random-based” scenario leads to a larger environmental vari-
ation to the G×E model because of the built train-test selection strategies. Also, the con-
sistent improvement pattern observed in the “climate-based” scenario, in which the trials 
are selected based on ranked accumulative rainfall, evidences the different levels of effec-
tiveness of climate variables in yield predictive skill and the environmental variation in-
troduced to the model by them. Environmental variability contributes to enhancing pre-
dictability through the use of more effective variables such as rainfall. The results suggest 
that environmental variables such as rainfall (i.e., soil moisture) will enhance environmen-
tal covariates, leading to improvements in phenotype predictability. 
 
Future work 
 
The results found in this study can nurture further efforts to improve G×E analytics and 
predictability by enhancing hydroclimate analytics as follows: (i) further analyze multiple 
levels of digital climate and hydrologic data to improve model predictability, coupling a 
Global Sensitivity Analysis with G×E analytics; such a coupling will contribute to elucidat-
ing the environmental variables that increase the predictability of maize yields and to what 
extent; (ii) identify geospatial patterns of variability, designing geospatial visualization 
and aggregation analyses based on climate selection schemes to provide regional G×E yield 
predictability improvements; and (iii) develop robust response software architectures for 
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multidimensional database management and visualization, and multi-lead-time pheno-
type predictive systems. 
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