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Any use of trade, firm, or product names is for descriptive 

purposes only and does not imply endorsement by the U.S. 

Government. 

Supporting Text 

Text S1. Detailed description of candidate predictor data and preprocessing 

steps. 

The climate predictors included nineteen bioclimatic variables representing 

summary statistics (mean, min, max, range, isothermality, etc.) for decadal 

temperature and precipitation (WorldClim 2.0; Fick and Hijmans, 2017), MODIS snow 

cover (Hall and Riggs, 2016) and MODIS nighttime surface temperature (MOD11A2; 

Wan et al. 2015). Biometeorology predictors included data from 14 tower-measured 

or-derived variables (air temperature, gross primary production, incoming 

shortwave radiation, etc.) which were filtered and gap-filled during tower data pre-

and post-processing (Knox et al., 2019) and computed as weekly means or sums 

(precipitation). Flux-tower associated soil temperature and water table depth were 

only available at 24 sites and thus were not included, however, other proxies for soil 

moisture were included (see below). Other biometeorological predictors included 

observed values and the annual range and normalized seasonality for an actual 

evapotranspiration product (Terraclimate; Abatzoglou et al. 2018) and a global 

nitrogen and sulfur deposition product for the year 2000 (Lamarque et al., 2013).  

Land cover predictors included the annual range and normalized monthly 

seasonality of the inundated fraction from a microwave-based wetland product 

(WAD2M) (Zhang et al. 2021); fractional tree, shrub, and bare earth cover (Sexton et 

al., 2013); global forest canopy height (Simard et al., 2011); and fraction of human 

agricultural and urban development (EarthEnv Cover; Tuanmu and Jetz, 2014). 

Greenness predictors included 14 measures of land surface heterogeneity (EarthEnv 

Habitat Heterogeneity; Tuanmu and Jetz, 2015) and MODIS vegetation indices 

(MCD15A2H; Myneni et al., 2015; Vermote, 2015). Soil and relief predictors consisted 

of six static soil properties (SoilGrids250m; Hengl et al., 2017), a monthly soil water 

product (TerraClimate; Abatzoglou et al., 2018), 11 topographic properties (EarthEnv 

Topography; Amatulli et al., 2018), and compound topographic index 

(GeoMorpho90m; Amatulli et al., 2019). The generic predictor was computed 

https://paperpile.com/c/q74kld/nLou
https://paperpile.com/c/q74kld/dXaX
https://paperpile.com/c/q74kld/2n2h
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potential radiation at the top of the atmosphere; found to be useful in high latitude 

CH4 flux upscaling (Peltola et al., 2019).  

Remote sensing indices (included in land cover and vegetation greenness classes) 

including normalized difference vegetation index (NDVI) and enhanced vegetation 

index (EVI) (Huete et al., 2002), and surface water indices including simple ratio 

water index (SRWI) (Zarco-Tejada and Ustin, 2001), land surface water index (LSWI) 

(Xiao et al., 2002), and normalized difference water index (NDWI) (Gao, 1996) were 

computed from 8-day, 500 m resolution Terra MODIS surface reflectance products 

(MOD09A1; (Myneni et al., 2015; Vermote, 2015). These indices together can reflect 

various biophysical conditions that are correlated to canopy coverage, surface and 

canopy water content, and soil background. Quality control was applied to exclude 

bad observations under cloudy, high view angle, or high solar zenith angle 

conditions based on MODIS data quality flags. Additionally, when snow cover is 

present, values of these indices become meaningless, and are therefore excluded. 

QC-created short gaps (1 to 2 8-day periods) which were linearly interpolated and 

long gaps (>3 8-day periods) were filled using the 2000-2018 mean seasonal cycles. 

Occasionally, in some northern sites where good values of water indices were not 

available in the winter season due to long-term snow cover, the site 5th percentile 

values were assigned. MODIS remote sensing data, when computed for training 

data at the tower locations, were based on time-series surface 

reflectance/temperature extracted at the 500-m MODIS pixel that overlap with the 

tower location using the AppEEARS platform 

(https://lpdaac.usgs.gov/tools/appeears/) provided by the U.S. Geological Survey 

(USGS) and the National Aeronautics and Space Administration (NASA).  

Further information about predictor datasets is provided in Table S3 and a 

processed training dataset and code used in our model development will be made 

available via the McNicol Lab Github (https://github.com/McNicol-Lab). 

Text S2. Forward feature selection 

A preliminary predictor subset was selected at the performance inflection point, 

where the cost function stopped decreasing. Within each FFS iteration, a random 

forest model (Breiman, 2001) was trained for each data fold (all-but-one clusters), 

and validated on the held-out cluster. Predictions were aggregated across all held-

out data and were compared to observations to compute the mean absolute error 

(MAE) as the cost function metric. MAE was chosen, rather than squared error 

metrics, for its lower sensitivity to outliers and highly skewed data, which are 

characteristic of CH4 flux data (Morin, 2019). Limited hyperparameter tuning was 
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performed during FFS iterations and tree depth was kept relatively shallow during 

FFS (mtry = 2; min.node.size = 50) to reduce computation time and avoid overfitting. 

All modeling was performed using R (R Core Team 2022) using the ‘caret’ (Kuhn, 

2020) and ‘ranger’ packages (Wright and Ziegler, 2017).  

 

Text S3. Technical description of two global wetland extent products used in 

this methane flux upscaling study. 

Description of WAD2M wetland extent: The global Wetland Area and Dynamics for 

Methane Modeling (WAD2M, version 1.0) is a dataset representing surface inundation at 

a 0.25deg resolution (∼25 km at the Equator) at a monthly time step over 2000–2018 

(Zhang et al. 2021). WAD2M was generated by combining a time series of surface 

inundation estimated from active and passive microwave remote sensing (SWAMPS; 

Schroeder et al. 2015; Jensen and Mcdonald 2019) with six static datasets that 

discriminate inland waters, agriculture, shoreline, and non-inundated wetlands. 

Through this data fusion, WAD2M was tailor made to represent exclusively vegetated 

wetlands, and enable modeling of their methane fluxes without confusion with other 

aquatic ecosystems. WAD2M was used to scale the methane fluxes predicted by a 

bottom-up land surface model ensemble in the most recent Global Carbon Project 

global methane budget (Saunois et al. 2020), making them directly comparable to the 

WAD2M-scaled emissions from the upscaling in the present analysis. 

Description of GIEMS v2 wetland extent: GIEMSv2 represents global inundation 

across the world (Prigent et al. 2020). We subset the time-series of GIEMSv2 to its 

overlapping period with WAD2M of 2001-2015. To provide a comparison to the 

estimates of vegetated wetland from WAD2M, we performed similar correction steps 

as were done for WAD2M. We supplemented the wetland cover by offsetting the long-

term maximum (Fmax) to match that from static maps. Diverging from the WAD2M 

methodology, we subtracted the monthly water cover estimated by Pekel et al. (2016) 

instead of using the static average water cover. Using this dynamic water cover 

removed the need to use a coastal water mask. The correction of GIEMSv2 lowered 

the global mean annual maximum inundated area from 8.98 Mkm2 down to 7.73 

Mkm2 (Figure S3).  

 

Text S4. Global dissimilarity analysis description.  

https://paperpile.com/c/q74kld/LFw5
https://paperpile.com/c/q74kld/OPiu+BmBP
https://paperpile.com/c/q74kld/FF3o
https://paperpile.com/c/q74kld/bnje
https://paperpile.com/c/q74kld/MBUR
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Evaluation of the global representativeness of the network data with respect to the 

multivariate predictor space of the model can provide insight into the likelihood and 

severity of extrapolation from machine learning training conditions (Villarreal et al. 

2018, 2019; Villarreal and Vargas 2021). Moreover, evaluating the extrapolation 

domain can inform model selection between two or more candidates that perform 

equally well during cross validation, but that differ in the plausibility of their 

extrapolations, even when cross validation is designed to avoid overfitting. For 

example, Behrens et al. (2018) identified unrealistic rectangular patterns in decision 

tree model predictions when geolocation predictors, such as XY coordinates, are 

included.  

Distances were computed with the ‘dist’ function in the ‘proxy’ R package (Meyer and 

Buchta, 2020). Predictors were first rescaled (to between zero and one), and weighted 

in proportion to their average unscaled variable importance in the random forest 

ensemble. We partially accounted for temporal representativeness (Chu et al., 2017) 

by computing dissimilarity for each month of the MSC. Predictor vectors were 

extracted for each site-month from gridded data and therefore sometimes differ 

from the weekly model training data, but are consistent with the global product 

forcing data. Global dissimilarity was evaluated at each 0.25° pixel with non-zero 

wetland cover at a monthly time-step. In each evaluation, all site-month vectors were 

available for distance computations. This method resembles the random forest 

training conditions whereby the model was trained on all training data at once and 

means that the closest tower-month for a given pixel may be of a different month. 

For instance, a pixel in northern Alaska during July could hypothetically be found to 

be very similar to a tropical site (e.g., BR-Npw) in January and thus would be assigned 

a low dissimilarity score in spite of the geographic distance and time between these 

observation sites. 

 

Text S5. Description of unweighted UpCH4 flux products and flux patterns 

The intermediate output of the upscaling was a global surface of wetland CH4 flux 

predictions, produced after forcing the model with globally gridded predictor data, 

but prior to wetland area weighting. Thus, the spatial pattern of these “potential” 

wetland CH4 fluxes is interpreted with attention to the fact that wetland extent in 

many regions could be very small or non-existent, despite the model predicting high 

fluxes. Nonetheless, the potential flux output can be used to: 1) visualize model 

behavior during global grid extrapolation using the same scale and units as the 
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training flux data; and 2) provide further model validation by comparing gridded 

predictions against training and additional test sites (pixel-to-tower comparisons).  

For regions and months with non-zero WAD2M wetland cover, global 2001-2018 

predicted wetland CH4 fluxes followed a long-tailed distribution (Figure S8) with a 

mean of 63.4 nmol m-2 s-1 and median of 42.2 nmol m-2 s-1, interquartile range of 

16.3 - 93.5 nmol m-2 s-1, and min-max range of 0.8 - 282.3 nmol m-2 s-1. Regional 

flux patterns (Figure S8) largely reflected the dominance of air temperature as a 

model predictor with the highest mean fluxes (> 200 nmol m-2 s-1) predicted for hot 

and arid or semi-arid tropical or subtropical regions (e.g., the Sahel, Australia, 

southwestern United States and northern Mexico, and the Arabian peninsula), while 

cooler temperatures in tropical forested regions (e.g., Amazon and Congo Basins, and 

southeast Asia) displayed lower fluxes (< 50 nmol m-2 s-1). Tall canopy heights in 

tropical forests may also have lowered flux predictions in these regions due to the 

negative model functional relationship between canopy height and CH4 flux (Figure 

S6).  
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Supporting Figures 

 

Figure S1. (a-c) (Adapted from Irvin et al. 2021) Examples of gap-length distributions 

for eddy covariance methane flux data at three distinctive sites (BR-Npw, tropical 

swamp; NZ-Kop, temperate bog; SE-Deg, boreal fen) included in the FLUXNET-CH4 

dataset Version 1.0 and upscaling. The distributions show that the large majority of 

gaps are very short (1 half-hour) or short (2-8 half-hours), thus, (d) most weekly 

averaged training data included some gap-filled data, and the imputed fraction was 

almost evenly distributed from from zero to 0.857 (upper 1-day threshold). A large 

proportion of the total dataset was excluded which consisted of gaps longer than 1 

week. 

 

https://paperpile.com/c/q74kld/5kuM
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Figure S2. Example of QAQC plots (here, flux tower-measured weekly mean air 

temperature) generated for each site and candidate predictor combination used to 

identify and filter outliers or other erroneous data. Grey circles are data excluded by 

the imputation filter imposed on methane flux values. 
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Figure S3. Comparison of monthly wetland area (Mkm2) for January 2001 to 

December 2015 according to the two wetland maps used (GIEMSv2 (Prigent et al. 

2020) and WAD2M (Zhang et al. 2021)). 

 

 

 

https://paperpile.com/c/q74kld/bnje
https://paperpile.com/c/q74kld/bnje
https://paperpile.com/c/q74kld/LFw5
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Figure S4. Evolution of model cost function (mean absolute error) during forward 

feature selection. The best-performing feature pair was added first (far left of x axis) 

then single additional predictors were added in a stepwise fashion. The horizontal 

bar length encompasses the 6 final model predictors, after which model 

performance improvements were marginal. TA = tower-measured air temperature 

at 2 m; canopy height = global vegetation canopy height; wc_pwtm = WorldClim 2.0 

precipitation of the wettest month; EVI_LAG3 = MODIS enhanced vegetation index 

with a three week lag; wc_mtdq = WorldClim 2.0 mean temperature of the driest 

quarter; TA_LAG2 = tower-measured air temperature at 2 m with a two week lag; 

NDSI_LAG3; MODIS normalized difference snow index with a three week lag; 

EVI_min = MODIS enhanced vegetation index annual minimum value; GPP_LEAD2 = 

MODIS gross primary production with a two week lead; wc_pwtq = WorldClim 2.0 

precipitation of the wettest quarter; P_LEAD3 = tower-measured precipitation with a 
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three week lead; aet_LAG12 = TerraClimate actual evapotranspiration with a 12 

week lag. Predictor abbreviations and data sources are detailed in Table S3. 

 

 

Figure S5. Random forest model predictors ranked using the permutation 

importance method and rescaled so that importance of the top variable (TA) was 

equal to 1. TA = tower-measured air temperature at 2 m; canopy height = global 

vegetation canopy height; wc_pwtm = WorldClim 2.0 precipitation of the wettest 

month; EVI_LAG3 = MODIS enhanced vegetation index with a three week lag; 

wc_mtdq = WorldClim 2.0 mean temperature of the driest quarter; TA_LAG2 = 
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tower-measured air temperature at 2 m with a two week lag; Predictor 

abbreviations are also detailed in Table S3. 

 

 

Figure S6. The functional dependency of CH4 flux on each of the top six predictors 

observed in the data (black) and in model predictions (orange). The (c, d) 

temperature dependence appears to be exponential, while the (b) enhanced 

vegetation index-dependency appears to be approximately linear. The structure is 

more complex for the CH4 flux dependence on (a) canopy height, and (e, f) 

climatological products, though CH4 flux is highest with low canopy height 

ecosystems, at intermediate temperature (5-25 C) and moisture (50-200 mm y-1). In 
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all cases, the model reproduces the mean conditions better than the highest and 

lowest values. 
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Figure S7.  UpCH4 did not reproduce the hysteresis between seasonal variation in 

temperature and methane flux reported in (Chang et al. 2021) which was strong in 

the case of the site JP-BBY (shown) but varied widely in magnitude and sign across 

the FLUXNET-CH4 sites. The left column shows frost-free season weekly methane 

flux temperature dependency in the observations at the temperate bog JP-BBY and 

https://paperpile.com/c/q74kld/5dit
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the right column shows temperature dependency reproduced in UpCH4 that lacks 

the hysteresis signal. 

 

Figure S8. Model residuals (errors) computed during cross-validation grouped by 

wetland class. Average errors were centered around zero with dispersion that varied 
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by wetland class and was dominated by large negative outliers from one site (US-

OWC) which exhibits exceptionally large fluxes which the model did not reproduce. 

 

 

Figure S9. (a) The global time series (2001-2018) distribution of predicted freshwater 

wetland CH4 fluxes and (b) map of time series mean flux, which is output during 

upscaling before pixel flux predictions are weighted by wetland area. Therefore, 

these results represent potential fluxes assuming a hypothetical full wetland cover 
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globally, across all regions that have non-zero wetland cover (i.e., excluding 

perennial desert and ice). 

 

 

Figure S10. Six examples of gridded model performance comparing CH4 flux 

predictions pixel-wise to training site fluxes. Observed weekly training fluxes (black 

lines and open circles) and predicted monthly fluxes (red lines) show moderate-high 

agreement at most sites. Note that the model predictions introduce various types of 

errors including (a) leading observations, (b) positive bias, (c) negative bias by 

underestimating the seasonal peak, (d) underestimations within the first 5 years 

after wetland rewetting (2011-2015; Knox et al. 2015), (e) missing seasonal cycles, 
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and (f) not capturing interannual variability. Grey uncertainty ribbons reflect one 

standard deviation around observations and predictions parameterized by CH4 gap-

filling and random uncertainties, and model ensemble dispersion, respectively. The 

overlapping grey ribbons in most cases provide overall confidence in model 

prediction when evaluated alongside uncertainties. 

 

 

 

Figure S11. Global pixel-to-cluster (site) dissimilarity for (a) January, (b) April, (c) July, 

and (d) October, subset from the monthly 2001-2018 mean seasonal cycle. 

Dissimilarity was calculated as the minimum Euclidean distance between predictor 

conditions at a given pixel and all available site-month conditions across all tower 

clusters, normalized by the mean Euclidean distance between towers. Dissimilarity 

is relatively low (lighter shade) globally, and always is below the applicability 

threshold (black) of > 0.3, computed as the 95th percentile of between-tower 

dissimilarity. Zero-wetland cover areas from monthly WAD2M are masked out and 
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appear as a light grey background (e.g., Sahara Desert). Global dissimilarity is lowest 

in mid-to-high latitudes in July, especially in N. America and NE Eurasia, likely due to 

a higher density of training data in this domain and season. Year-round, tropical S. 

America and Africa show higher dissimilarity, likely due to sparse training data. 

Similarly, central and E. Asia showed elevated dissimilarity in April and October. (e) 

All sites are ranked by dissimilarity illustrating that most dissimilar sites are in 

tropical or temperate regions, with lower dissimilarity in boreal and tundra regions. 
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Figure S12. (a) Global distribution of tower-cluster constituencies for August of the mean seasonal cycle. August was 

chosen as it corresponds with the wetland area maximum, allowing for visualization of the entire terrestrial surface. (b) 

Constituencies are ranked by descending percent global coverage. Several of the largest constituencies are either 

humid tropics and semi-arid temperate or subtropical regions. Site IDs are defined in Table 2 in the manuscript.
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Figure S13. (a) A significant positive correlation is observed between mean 

dissimilarity of a constituency and its spatial extent (expressed as percentage of 

global ice-free land cover) reflecting lower density of towers in semi-arid and humid 

tropics. (b-c) No significant relationships are observed between site-month 

dissimilarity and the mean absolute error (MAE) or prediction variance (i.e., model 

uncertainty). The latter two relationships were explored as a potential means to 
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scale errors or uncertainties in regions of extrapolation as suggested in (Jung et al. 

2020). 

 

https://paperpile.com/c/q74kld/8cn4
https://paperpile.com/c/q74kld/8cn4
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Figure S14. (a) Upscaling mean time series (2001-2018) flux using WAD2M wetland 

area (Zhang et al. 2021), (b) upscaling mean time series (2001-2015) flux using 

Global Inundation Estimate from Multiple Satellites (GIEMS-2) (Prigent et al. 2020), 

and (c) the difference of the two. This figure illustrates clearly how the smaller 

extent of GIEMS-2 corrected for only vegetated wetlands leads to lower global and 

regional total methane emissions than those from using WAD2M wetland area. 

GIEMSv2 was corrected using the same procedure as for WAD2M aside from 

replacing the static water cover by a monthly water cover.  While most of the major 

wetland complexes appear in both (ex. Hudson Bay Lowlands, West Siberian 

Lowlands, Congo and Amazon basins) the outline of their geographic extend differs. 

Moreover, GIEMS-2 does not include widespread wetland coverage in Australia, the 

Sahel, southern Africa, or central Asia, unlike WAD2M. Wetland over Southern Asia 

(e.g., India and Bangladesh) and NE China are larger in GIEMS-2, a region where 

https://paperpile.com/c/q74kld/LFw5
https://paperpile.com/c/q74kld/bnje
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extensive inundation is well documented and whose retrieval are affected by 

vegetation cover. 

 

 

 

 

Figure S15. GIEMSv2 upscaling (A) predictions (B) uncertainties, and (C, E) 

differences and (D, F) seasonal cycle correlation with Global Carbon Project top-

down and bottom-up ensembles.  
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Figure S16. Total wetland emissions per 1 degree latitude across data sources. Both 

the WAD2M and GIEMS2 upscaling do not capture the large contribution centered at 

the equator.  The WAD2M upscaling has higher emissions in the Southern 

hemisphere than all sources.  Across all latitudes, WAD2M upscaling agreed best 

with the GCP ensemble over high Northern latitudes where the wetland cover 

disappearing during winter is the main methodological factor determining fluxes at 

those latitudes. The GIEMS2 upscaling aligns well with WetCHARTS at high Northern 

latitudes, although the range of the WetCHARTS ensemble (not shown) tends to 

suggest higher fluxes.  



 

 

31 

 

 

 

Supporting Tables 

Table S1. (attached separately) Complete metadata table for 81 FLUXNET-CH4 

Version 1.0 sites including DOI, site personnel, and whether they were considered 

for upscaling (Suitable for Upscaling) and used in the upscaling (Used in Upscaling). 

Mean annual temperature and mean annual precipitation were extracted from 

WorldClim 2.0 (Fick and Hijmans 2017).  

 

 

 

Table S2. Summary, and examples, of predictors and predictor classes used in 

forward feature selection as part of the random forest model training. 

 

Table S3. (attached separately) Full predictor details including DOIs for 140 unique 

predictors categorized into different Source Categories (modeled, tower-measured, 

measured, computed, remote sensing), Information Content classes (spatial or 

https://paperpile.com/c/q74kld/nLou
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spatiotemporal), and Classes (biometeorological, generic, climate, land cover, soil 

and topography, and greenness).  

 

Table S4. Monte Carlo parameterization details for simulating 1,000 datasets from 

the original 7 variable (including CH4 flux) model dataset selected by forward feature 

selection and evaluated during cross validation. 
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Table S5. Summary of the 11 predictors selected during forward feature selection 

including the full name, predictor class, and whether the predictor was included in 

the final model. 
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Table S6. A full summary of cross validation performance metrics (coefficient of 

determination (R2), Nash-Sutcliffe Efficiency (NSE), mean absolute error (MAE) and 

normalize MAE (nMAE), and bias) for all data (weeks), and for the site mean, mean 
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seasonal cycles, and monthly anomalies from the mean seasonal cycle. Metrics are 

computed across all data within each component and grouped by wetland class.  
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