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Abstract

We develop a theory of existence of minimizers of energy functionals in vectorial prob-

lems based on a nonlocal gradient under Dirichlet boundary conditions. The model shares

many features with the peridynamics model and is also applicable to nonlocal solid me-

chanics, especially nonlinear elasticity. This nonlocal gradient was introduced in an earlier

work, inspired by Riesz’ fractional gradient, but suitable for bounded domains. The main

assumption on the integrand of the energy is polyconvexity. Thus, we adapt the corre-

sponding results of the classical case to this nonlocal context, notably, Piola’s identity, the

integration by parts of the determinant and the weak continuity of the determinant. The

proof exploits the fact that every nonlocal gradient is a classical gradient.

Keywords: Nonlocal hyperelasticity, Nonlocal gradient, Polyconvexity, Peridynamics, Non-
local Piola Identity
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1 Introduction

In nonlinear elasticity, and, specifically, in the static theory, a fundamental problem is the
existence of minimizers of the elastic energy

∫

Ω

W (x, u(x), Du(x)) dx (1)

of a deformation u : Ω → R
n. Here Ω is an open bounded subset of Rn representing the reference

configuration of the body (of course, only n = 3 is physicallly relevant), and W : Ω× R
n×n →

R ∪ {∞} is the elastic stored-energy function of the material. In fact, the dependence on u(x)
in (1) is not significant. The usual approach for finding such minimizers is the direct method
of the Calculus of variations. As shown in the pioneering paper of Ball [3], the weak continuity
of the determinant of the deformation gradient Du, and the assumption of polyconvexity of
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W are the key ingredients to make the direct method work. The property of polyconvexity
essentially means that W can be expressed as a convex function of the minors of the matrix
Du.

This theory is by now well established. On the other hand, nonlocal models in solid me-
chanics have experienced a huge development in the last two decades, especially since the
introduction of the peridynamics model by Silling [32]. This prominence is due among other
things to the fact that their formulation usually allows for less regular functions, in particular
functions exhibiting singularity phenomena. Many refinements have been introduced since then
and, particularly, nonlocal models based on a nonlocal gradient have received a great atten-
tion as an adequate substitute of local models. In general, a nonlocal gradient of a function
u : Ω → R takes the form

Gρu(x) =

∫

Ω

u(x)− u(y)

|x− y|

x− y

|x− y|
ρ(x− y) dy,

for a suitable kernel ρ, usually with a singularity at the origin. The choice of ρ determines the
nonlocal gradient, which, in turn, specifies the functional space.

The most popular nonlocal gradient is possibly Riesz’ s-fractional gradient, which is denoted
by Dsu and corresponds to the choices Ω = R

n and ρ(x) = cn,s

|x|n−1+s for some constant cn,s; see

[29, 30]. Here 0 < s < 1 is the degree of differentiability. While Riesz’ fractional gradient enjoys
many desirable properties (it is invariant under rotations and translations, it is s-homogeneous
under dilations; see [31]), it has the drawback that the integral defining it is over the whole
space, which makes it unsuitable for solid mechanics where the body is represented by a bounded
domain Ω ⊂ R

n. An adaptation of Riesz’ s-fractional gradient for bounded domains was done
by the authors in [11]. Precisely, for a C∞

c function u, its nonlocal gradient is defined as

Ds
δu(x) = cn,s

∫

B(x,δ)

u(x)− u(y)

|x− y|

x− y

|x− y|

wδ(x− y)

|x− y|n−1+s
dy,

where wδ is a fixed function in C∞
c (B(0, δ)) satisfying some natural properties to be a truly

cut-off function. The parameter δ > 0, called horizon in the context of peridynamics, indicates
the maximum interaction distance.

Although the definition of the Riesz gradient is rather old, it was the study [29, 30] that
initiated the attention in the community of nonlocal problems in partial differential equations
and Calculus of variations. In fact, they showed that the functional space consisting of the
closure of smooth functions under the natural norm (given by the Lp norms of a function u and
its fractional gradient Dsu) is the Bessel potential space Hs,p(Rn). They also proved a series
of embeddings mimicking those of Sobolev spaces. As a consequence of their analysis, they
proved the existence of minimizers for functionals of the form

∫

Rn

W (x, u(x), Dsu(x)) dx, (2)

where u : R
n → R is scalar and W is convex in the last variable. The vectorial case, for

u : Rn → R
m, was treated in [9] under the assumption of polyconvexity of W , and in [25] under

the assumption of quasiconvexity.
In [11] we developed a framework for the nonlocal gradient Ds

δu over bounded domains and
its associated function space Hs,p,δ(Ω), which roughly can be defined as the set of Lp functions
u with Lp gradients Ds

δu. In this paper we use that analysis and, additionally, take advantage
of the large body of knowlegde on hyperelasticity based on polyconvexity developed in the last



four decades for functionals of the form (1). With these two ingredients we show the existence
of minimizers of functionals

∫

Ω

W (x, u(x), Ds
δu(x)) dx, (3)

for u : Rn → R
n under the assumption of polyconvexity of W . This article can be seen as the

goal of the path shown in the thesis [15], following the articles [8, 9, 10, 11]: we first showed
that the nonlinear bond-based description of peridynamics does not fit in solid mechanics, then
we studied the energy functionals (2) based on the Riesz fractional gradient as an alternative
(instead of the double integrals present in peridynamics), and finally we presented this similar
framework over bounded domains (see (3)).

In order to obtain the theory of polyconvexity in this framework, one can follow two ap-
proaches. One is to obtain directly the necessary tools and follow the steps from the proofs of
the local case, as was done by the authors in [9], where we developed the theory of polyconvex-
ity for Riesz’ fractional gradient. This procedure requires the validity of Piola’s identity and
the integration by parts of the determinant as preliminary steps to prove the weak continuity
of minors, all in the fractional context.

The other approach starts from the observation that every nonlocal gradient is in fact a local
one. This method was exploited in [25] for Riesz’ fractional gradient to develop the theory of
quasiconvexity in that context. In the fractional case, every fractional gradient coincides with
the classical one of a locally Sobolev function: Dsu = D(Is ∗ u), being Is the Riesz potential,
which is Is(x) = 1

γ(s)|x|n−s , for some constant γ(s). However, the fact that the property of
compact support is not preserved under convolution, as well as the non-integrability of the
Riesz potential makes it difficult to use this observation for obtaining fundamental results in
the polyconvexity theory based on Riesz gradients. On the contrary, these two disadvantages
are not present in the context of this paper, and that is why we adopt this approach here.
Indeed, the starting point is the equality Ds

δu = D(Qs
δ ∗ u) for a suitable kernel Qs

δ, which is
integrable and of compact support. Therefore, this second method is fully operative for the
polyconvexity theory in the context of the nonlocal gradient Ds

δ. In fact, we have found two
advantages: first, that it is simpler and provides shorter proofs, whenever available. Second, and
more importantly, that it gives rise to better integrability exponents, which results in weaker
assumptions in the existence theorem. This second reason is supported by the sharp results
that are available for the weak continuity of the determinant in the classical case, notably due
to [28]. This sharpness of the exponents actually comes from the integration by parts of the
determinant, since here it is written completely in terms of Qs

δ ∗ u, as opposed to the fractional
case.

In a nutshell, the existence theory of polyconvexity is based on the weak continuity of the
determinant, which in turn depends on the integration by parts of the determinant, which, in
fact is founded on Piola’s identity. In order to develop our existence theory we could just start
from the weak continuity of the determinant, but we have preferred to prove Piola’s identity
and the integration by parts of the determinant as well, for the sake of completeness and also
for comparison with the local case.

The structure of this paper is as follows. In Section 2 we recall from [11] the main results
about the nonlocal gradient Ds

δu, as well as its associated functional space Hs,p,δ(Ω). In Section
3 we prove some properties of the nonlocal gradient and divergence, notably, the product
formula. In Section 4 we comment on the fact that every nonlocal gradient is, in fact, a local
one. This property is exploited in Section 5, where we prove the nonlocal versions of Piola’s
identity, the integration by parts of detDs

δu and the weak continuity of detDs
δu. Finally, in

Section 6 we prove the existence of minimizers of functionals (3) with W polyconvex. We also



show the corresponding Euler–Lagrange equation.

2 Nonlocal gradient, divergence and associated space

This section is a compendium of the definitions and results taken from [11] on the nonlocal
gradient and divergence, as well as their associated space Hs,p,δ(Ω).

Throughout the article, Ω is a non-empty bounded open set of R
n. We fix 0 < s < 1

(the degree of differentiability) and δ > 0 (the horizon distance). We also define the sets
Ωδ = Ω+B(0, δ), which plays the role of nonlocal closure, and ΩB,δ = Ωδ \ Ω, which plays the
role of nonlocal boundary. We write B(x, r) to denote the open ball centred at x of radius r.
The set Ω−δ := {x ∈ Ω : dist(x, ∂Ω) > δ} will also be relevant, where δ is chosen small enough
so that Ω−δ is not empty.

Let wδ : R
n → [0,+∞) be a cut-off function, and ρδ : R

n → [0,+∞) defined as

ρδ(x) =
1

γ(1− s)|x|n−1+s
wδ(x),

with 0 < s < 1, where the constant γ(s) is given by

γ(s) =
π

n
2 2sΓ

(

s
2

)

Γ
(

n−s
2

)

and Γ is Euler’s gamma function. The precise assumptions over wδ are as follows:

a) wδ is radial and nonnegative.

b) wδ ∈ C∞
c (B(0, δ)).

c) There are constants a0 > 0 and 0 < b0 < 1 such that 0 ≤ wδ ≤ a0, and wδ|B(0,b0δ) = a0.

d) wδ(x1) ≥ wδ(x2) if |x1| ≤ |x2|.

Note that ρδ ∈ L1(Rn).
The definitions of the nonlocal gradient and divergence for smooth functions are the follow-

ing.

Definition 2.1. Set

cn,s :=
n− 1 + s

γ(1− s)
.

a) Let u ∈ C∞
c (Rn). The nonlocal gradient Ds

δu is defined as

Ds
δu(x) = cn,s

∫

B(x,δ)

u(x)− u(y)

|x− y|

x− y

|x− y|

wδ(x− y)

|x− y|n−1+s
dy, x ∈ R

n.

b) Let u ∈ C1
c (R

n,Rn). The nonlocal divergence is defined as

divsδ u(x) = cn,s

∫

B(x,δ)

u(x)− u(y)

|x− y|
·
x− y

|x− y|

wδ(x− y)

|x− y|n−1+s
dy, x ∈ R

n,

and the nonlocal gradient is defined as

Ds
δu(x) = cn,s

∫

B(x,δ)

u(x)− u(y)

|x− y|
⊗

x− y

|x− y|

wδ(x− y)

|x− y|n−1+s
dy, x ∈ R

n.



Notice that the three integrals in Definition 2.1 are absolutely convergent because u is
Lipschitz and ρδ ∈ L1(Rn). It is also immediate from the definition that suppDs

δu ⊂ supp u+
B(0, δ), where supp denotes the support of a function.

The operators of Definition 2.1 are dual operators in the sense of integration by parts.
Several versions of integration by parts formulas for related fractional or nonlocal operators
have appeared in the literature [18, 27, 13, 31]. The integration by parts formula of interest in
this investigation is the following [11, Th. 3.2].

Theorem 2.1. Suppose that u ∈ C∞
c (Rn) and φ ∈ C1

c (Ω,R
n). Then Ds

δu ∈ L∞(Rn,Rn) and
divs

δ φ ∈ L∞(Rn). Moreover,
∫

Ω

Ds
δu(x) · φ(x) dx =−

∫

Ω

u(x) divsδ φ(x) dx

− (n− 1 + s)

∫

Ω

∫

ΩB,δ

u(y)φ(x)

|x− y|
·
x− y

|x− y|
ρδ(x− y) dy dx

and these three integrals are absolutely convergent.

We now extend Definition 2.1 a) to a broader class of functions.

Definition 2.2. a) Let u ∈ L1(Ωδ) be such that there exists a sequence of {uj}j∈N ⊂ C∞
c (Rn)

converging to u in L1(Ωδ) and for which {Ds
δuj}j∈N converges to some U in L1(Ω,Rn).

We define Ds
δu as U .

b) Let φ ∈ L1(Ωδ,R
n) be such that there exists a sequence of {φj}j∈N ⊂ C∞

c (Rn,Rn) con-
verging to φ in L1(Ωδ,R

n) and for which {divsδ φj}j∈N converges to some Φ in L1(Ω). We
define divsδ φ as Φ.

It was shown in [11, Lemma 3.3] that the above definitions of Ds
δu and divs

δ φ are independent
of the sequence chosen.

Similarly to the definition of Bessel spaces Hs,p(Rn) [9, 13], we define the space object of
our study.

Definition 2.3. Let 1 ≤ p < ∞. We define the space Hs,p,δ(Ω) as the closure of C∞
c (Rn) under

the norm

‖u‖Hs,p,δ(Ω) =
(

‖u‖pLp(Ωδ)
+ ‖Ds

δu‖
p

Lp(Ω)

)
1
p

.

Thus, functions in Hs,p,δ(Ω) are defined a.e. in Ωδ, while its gradient (Definition 2.2) is
defined a.e. in Ω. Definition 2.3 was introduced in [11]. There is an alternative definition of
these spaces, based on a distributional notion of Ds

δu; accordingly, Hs,p,δ(Ω) is also the set of
functions u ∈ Lp(Ωδ) whose distributional Ds

δu is in Lp(Ω); see [16], where one can find the
equivalence with the current one. The situation is, thus, similar to what happens with the
Bessel potential spaces Hs,p(Rn): they can be defined as the closure of smooth functions [29]
and as the set of functions u ∈ Lp(Rn) whose distributional gradient Dsu is in Lp(Rn) [13].

The case p = ∞ is avoided in Definition 2.3. Nevertheless, one can give the following
definition based on a type of closure: u ∈ Hs,∞,δ(Ω) when there exists a sequence {uj}j∈N
in C∞

c (Rn) such that uj → u uniformly in Ωδ, Ds
δuj → Ds

δu a.e. in Ω and ‖Ds
δuj‖L∞(Ω) →

‖Ds
δu‖L∞(Ω). This definition is inspired by the density properties of Sobolev functions in the

case p = ∞; see, e.g., [26, Exercise 10.21]. It is not difficult to show that all theorems stated
here for p < ∞ can be proved with slight adaptations to the case p = ∞.

The space Hs,p,δ(Ω) satisfies reflexivity and separability properties. See [11, Prop 3.4].



Proposition 2.2. Let 1 ≤ p < ∞. Then Hs,p,δ(Ω) is a separable Banach space. If, in addition,
p > 1, it is reflexive.

The following continuous inclusion holds immediately.

Proposition 2.3. The continuous inclusion Hs,p,δ(Ω) ⊂ Hs,q,δ(Ω) holds whenever 1 ≤ q ≤ p <

∞.

In order to describe the boundary condition, we recall the set Ω−δ = {x ∈ Ω : dist(x, ∂Ω) >
δ} and define the subspace H

s,p,δ
0 (Ω−δ) as the closure of C∞

c (Ω−δ) in Hs,p,δ(Ω). It is immediate
to check that any u ∈ H

s,p,δ
0 (Ω−δ) satisfies u = 0 a.e. in Ωδ \ Ω−δ. Finally, given g ∈ Hs,p,δ(Ω)

we define the affine subspace Hs,p,δ
g (Ω−δ) as g +H

s,p,δ
0 (Ω−δ).

An essential tool for obtaining existence of minimizers for integral functionals is a Poincaré-
type inequality. Given p > 1 and 0 < s < 1 with sp < n we define p∗s :=

np

n−sp
.

Theorem 2.4. Let 1 < p < ∞. Then there exists C = C(|Ω|, n, p, s) > 0 such that

‖u‖Lq(Ω) ≤ C‖Ds
δu‖Lp(Ω)

for all u ∈ H
s,p,δ
0 (Ω−δ), and any q satisfying











q ∈ [1, p∗s] if sp < n,

q ∈ [1,∞) if sp = n,

q ∈ [1,∞] if sp > n.

Proof. The case sp < n corresponds to [11, Th. 6.1]. The case sp = n is a consequence of [11,
Th. 6.4] (or else of the previous case and Proposition 2.3). The case sp > n is a particular case
of [11, Th. 6.3].

The following result decides which of the embeddings of Theorem 2.4 are compact. We will
indicate by ⇀ weak convergence.

Theorem 2.5. Let 1 < p < ∞ and g ∈ Hs,p,δ(Ω). Then for any sequence {uj}j∈N ⊂ Hs,p,δ
g (Ω−δ)

such that
uj ⇀ u in Hs,p,δ(Ω),

for some u ∈ Hs,p,δ(Ω), one has u ∈ Hs,p,δ
g (Ω) and

uj → u in Lq(Ω),

for every q satisfying










q ∈ [1, p∗s) if sp < n,

q ∈ [1,∞) if sp = n,

q ∈ [1,∞] if sp > n.

The case p = 1 is not covered by Theorem 2.4, since the result [11, Th. 6.1] was not able
to deal with that case. On the contrary, there is a version of Theorem 2.5 for p = 1 in [11, Th.
7.3], but, for simplicity, we have not mentioned it since it will not be used, as the existence
theory of Section 6 deals with the reflexive case.



3 Calculus in Hs,p,δ

In this section we present a product formula for the nonlocal derivative and divergence.
We start with the embeddings from Sobolev spaces W 1,p to Hs,p,δ, as well as an inequality

between the norms of the classical and the nonlocal gradient. Although this result is not
actually needed in the sequel, we have included it in order to locate the regularity of Hs,p,δ in
comparison with that of W 1,p. At the end of this article we will comment on functions in the
latter functional spaces that are not in the corresponding Sobolev ones.

Lemma 3.1. Assume that Ωδ has a Lipschitz boundary. Then:

a) Let 1 ≤ p < ∞. The continuous embedding W 1,p(Ωδ) ⊂ Hs,p,δ(Ω) holds. Moreover, for
all u ∈ W 1,p(Ωδ),

‖Ds
δu‖Lp(Ω) ≤ (n− 1 + s) ‖ρδ‖L1(Rn) ‖Du‖Lp(Ωδ)

. (4)

b) The continuous embedding W 1,∞(Ωδ) ⊂ Hs,p,δ(Ω) holds for all p ∈ [1,∞). Moreover, for
all u ∈ W 1,∞(Ωδ),

‖Ds
δu‖L∞(Ω) ≤ (n− 1 + s) ‖ρδ‖L1(Rn) ‖Du‖L∞(Ωδ). (5)

Proof. We start with a). We first assume u ∈ C∞
c (Rn). Applying Minkowski’s integral inequal-

ity (see, e.g., [33, App. A.1]) to the Lp norm of Ds
δu, we have

(
∫

Ω

∣

∣

∣

∣

∫

B(x,δ)

u(x)− u(y)

|x− y|

x− y

|x− y|

wδ(x− y)

|x− y|n+s−1
dy

∣

∣

∣

∣

p

dx

)
1
p

≤

∫

B(0,δ)

(
∫

Ω

(

|u(x)− u(x− h)|

|h|n+s
wδ(h)

)p

dx

)
1
p

dh.

(6)

Now, for all h ∈ B(0, δ) \ {0},

(
∫

Ω

(

|u(x)− u(x− h)|

|h|n+s
wδ(h)

)p

dx

)
1
p

=γ(1− s)ρδ(h)

(
∫

Ω

∣

∣

∣

∣

u(x)− u(x− h)

|h|

∣

∣

∣

∣

p

dx

)
1
p

≤ γ(1− s)ρδ(h)‖Du‖Lp(Ωδ),

(7)

where we have used a classic inequality on the Lp estimate of translations [12, Prop. 9.3].
Combining (6) and (7) we obtain inequality (4).

Now we show the inequality for any u ∈ W 1,p(Ωδ) through an extension and density ar-
gument. Let ũ ∈ W 1,p(Rn) be an extension of u, and let {uj}j∈N be a sequence in C∞

c (Rn)
converging to ũ in W 1,p(Rn). Then {uj}j∈N also converges to u in Hs,p,δ(Ω); indeed, this can
be shown by the string of embeddings

W 1,p(Rn) ⊂ Hs,p(Rn) ⊂ Hs,p,δ(Ω);

see [1, Ch. 1] or [10, Prop. 2.7] for the first inclusion, and [11, Prop. 3.5] for the second. By
inequality (4),

‖Ds
δuj‖Lp(Ω) ≤ (n− 1 + s) ‖ρδ‖L1(Rn) ‖Duj‖Lp(Ωδ),

and passing to the limit as j → ∞, we obtain a).



For the proof of b) we rely on a). Let u ∈ W 1,∞(Ωδ). Then u ∈ W 1,p(Ωδ) for all p ∈ [1,∞),
so u ∈ Hs,p,δ(Ω) and

‖Ds
δu‖Lp(Ω) ≤ (n− 1 + s) ‖ρδ‖L1(Rn) ‖Du‖Lp(Ωδ)

≤ (n− 1 + s) ‖ρδ‖L1(Rn) |Ω|
1
p‖Du‖L∞(Ωδ).

Letting p → ∞ we obtain inequality (5), so b) is proved.

Note that one cannot replace ‖Du‖Lp(Ωδ) with ‖Du‖Lp(Ω) in inequality (4), since, if ‖Du‖Lp(Ω) =
0 then u is constant in Ω, hence Ds

δu = 0 in Ω−δ, but Ds
δu is not necessarily zero in Ω \ Ω−δ.

Now we introduce a nonlocal operator similar to the nonlocal gradient and divergence that
plays an essential part in the derivative of a product. The fractional analogue of this operator
was studied in [9]. In truth, the same symbol Ks,δ

ϕ denotes four slightly different operators, but
the notation chosen avoids any risk of confusion. Henceforth, [ϕ]C0,1(Ωδ) denotes the Lipschitz
seminorm of ϕ in Ωδ.

Definition 3.1. Let ϕ ∈ C0,1(Ωδ).

a) For U ∈ L1(Ωδ) or U ∈ L1(Ωδ,R
n×n) we define

Ks,δ
ϕ (U)(x) = cn,s

∫

B(x,δ)

ϕ(x)− ϕ(y)

|x− y|n+s
U(y)

x− y

|x− y|
wδ(x− y) dy, a.e. x ∈ Ω.

b) For U ∈ L1(Ωδ,R
n) we define

Ks,δ
ϕ (U)(x) = cn,s

∫

B(x,δ)

ϕ(x)− ϕ(y)

|x− y|n+s
U(y) ·

x− y

|x− y|
wδ(x− y) dy, a.e. x ∈ Ω

and

Ks,δ
ϕ (UT )(x) = cn,s

∫

B(x,δ)

ϕ(x)− ϕ(y)

|x− y|n+s
U(y)⊗

x− y

|x− y|
wδ(x− y) dy, a.e. x ∈ Ω.

The next result is the analogue of [9, Lemma 3.2] in a bounded domain framework.

Lemma 3.2. Let 1 ≤ p ≤ ∞. Let ϕ ∈ C0,1(Ωδ). Then:

a) The operators

Ks,δ
ϕ : Lp(Ωδ) → Lp(Ω,Rn), Ks,δ

ϕ : Lp(Ωδ,R
n×n) → Lp(Ω,Rn)

and

Ks,δ
ϕ : Lp(Ωδ,R

n) → Lp(Ω), Ks,δ
ϕ : Lp(Ωδ,R

n) → Lp(Ω,Rn×n)

U 7→ Ks,δ
ϕ (U), U 7→ Ks,δ

ϕ (UT )

are linear and bounded, and in all cases we have the estimate

‖Ks,δ
ϕ (U)‖Lp(Ω) ≤ (n+ s− 1)[ϕ]0,1 ‖ρδ‖L1(Rn) ‖U‖Lp(Ωδ)

and analogously for ‖Ks,δ
ϕ (UT )‖Lp(Ω).

b) trKs,δ
ϕ (UT ) = Ks,δ

ϕ (U) for every U ∈ L1(Ωδ,R
n).



Proof. For a) we will do the case for the operator Ks,δ
ϕ : Lp(Ωδ) → Lp(Ω,Rn), as the same proof

is valid for all four operators, which are clearly linear. So let U ∈ Lp(Ωδ). The steps are similar
to the proof of Lemma 3.1. Assume first p < ∞. By Minkowski’s integral inequality

(
∫

Ω

∣

∣

∣

∣

∫

B(x,δ)

ϕ(x)− ϕ(y)

|x− y|n+s
U(y)

x− y

|x− y|
wδ(x− y) dy

∣

∣

∣

∣

p

dx

)
1
p

≤

∫

B(0,δ)

(
∫

Ω

∣

∣

∣

∣

ϕ(x)− ϕ(x− h)

|h|n+s
U(x− h)wδ(h)

∣

∣

∣

∣

p

dx

)
1
p

dh.

Now, for all h ∈ B(0, δ) \ {0},

(
∫

Ω

∣

∣

∣

∣

ϕ(x)− ϕ(x− h)

|h|n+s
U(x− h)wδ(h)

∣

∣

∣

∣

p

dx

)
1
p

≤[ϕ]0,1
wδ(h)

|h|n+s−1

(
∫

Ω

|U(x− h)|p dx

)
1
p

≤[ϕ]0,1γ(1− s)ρδ(h) ‖U‖Lp(Ωδ)
.

Therefore,
∥

∥Ks,δ
ϕ (U)

∥

∥

Lp(Ω)
≤ (n + s− 1)[ϕ]0,1 ‖ρδ‖L1(Rn) ‖U‖Lp(Ωδ)

,

which completes the proof in this case.
The proof for p = ∞ is even simpler: for U ∈ L∞(Ωδ) and a.e. x ∈ Ω,

∣

∣Ks,δ
ϕ (U)(x)

∣

∣ ≤ |cn,s|[ϕ]0,1 ‖U‖L∞(Ωδ)

∫

B(x,δ)

wδ(x− y)

|x− y|n+s−1
dy = (n+s−1)[ϕ]0,1 ‖U‖L∞(Ωδ)

‖ρδ‖L1(Rn) .

Therefore,
∥

∥Ks,δ
ϕ (U)

∥

∥

L∞(Ω)
≤ (n + s− 1)[ϕ]0,1 ‖ρδ‖L1(Rn) ‖U‖L∞(Ωδ)

,

which concludes the proof of a).
As a consequence of the previous argument, the integrals of Definition 3.1 are absolutely

convergent for a.e. x ∈ Ω. For such x and U ∈ L1(Ωδ,R
n) we have

trKs,δ
ϕ (UT )(x) = cn,s

∫

B(x,δ)

tr

(

ϕ(x)− ϕ(y)

|x− y|n+s
U(y)⊗

x− y

|x− y|
wδ(x− y)

)

dy

= cn,s

∫

B(x,δ)

ϕ(x)− ϕ(y)

|x− y|n+s
U(y) ·

x− y

|x− y|
wδ(x− y) dy = Ks,δ

ϕ (U)(x),

which proves b).

Now we introduce a product formula for the nonlocal gradient.

Lemma 3.3. Let 1 ≤ p < ∞ and ϕ ∈ C∞(Ω̄δ).

a) If g ∈ Hs,p,δ(Ω) then ϕg ∈ Hs,p,δ(Ω) and

Ds
δ(ϕg) = ϕDs

δg +Ks,δ
ϕ (g).

b) If g ∈ Hs,p,δ(Ω,Rn) then ϕg ∈ Hs,p,δ(Ω,Rn) and

Ds
δ(ϕg) = ϕDs

δg +Ks,δ
ϕ (gT ).



Proof. We show a); the proof of b) follows from an application of a) componentwise. The
function ϕ has a C∞

c (Rn) extension, so we can suppose ϕ ∈ C∞
c (Rn). First we assume g ∈

C∞
c (Rn). For all x ∈ R

n we have

Ds
δ(ϕg)(x) = cn,s

∫

B(x,δ)

ϕ(x)g(x)− ϕ(x)g(y) + ϕ(x)g(y)− ϕ(y)g(y)

|x− y|n+s

x− y

|x− y|
wδ(x− y) dy

= ϕ(x)Ds
δg(x) +Ks,δ

ϕ (g)(x).

(8)

Now we consider g ∈ Hs,p,δ(Ω) and a sequence {gj}j∈N ⊂ C∞
c (Rn) converging to g in

Hs,p,δ(Ω). Then {ϕgj}j∈N is a sequence in C∞
c (Rn) that clearly converges to ϕg in Lp(Ωδ). Let

us check that {Ds
δ(ϕgj)}j∈N converges in Lp(Ω,Rn). Owing to (8) we have

Ds
δ(ϕgj) = ϕDs

δgj +Ks,δ
ϕ (gj), j ∈ N.

Since Ds
δgj → Ds

δg in Lp(Ω,Rn) as j → ∞, we also have that ϕDs
δgj → ϕDs

δg in Lp(Ω,Rn). By
Lemma 3.2, as gj → g in Lp(Ωδ) as j → ∞, we obtain that Ks,δ

ϕ (gj) → Ks,δ
ϕ (g) in Lp(Ω,Rn).

This shows the conclusion of a).

For φ ∈ Hs,p,δ(Ω,Rn) there is a natural relation between Ds
δφ and divsδ φ. We also state the

product formula for the divergence. As usual, the divergence of a matrix is the vector whose
components are the divergence of the rows.

Lemma 3.4. Let 1 ≤ p < ∞. Let φ ∈ Hs,p,δ(Ω,Rn). Then divsδ φ ∈ Lp(Ω) and trDs
δφ = divsδ φ

a.e. in Ω. Moreover, for any ϕ ∈ C∞(Ω̄δ),

divsδ(ϕφ) = ϕ divsδ φ+Ks,δ
ϕ (φ),

and for any Φ ∈ Hs,p,δ(Ω,Rn×n),

divsδ(ϕΦ) = ϕ divsδ Φ +Ks,δ
ϕ (Φ).

Proof. By extension, we can assume ϕ ∈ C∞
c (Rn). Let {φj}j∈N ⊂ C∞

c (Rn,Rn) be a sequence
converging to φ in Hs,p,δ(Ω,Rn). Having in mind that the integrals of Definition 2.1 are abso-
lutely convergent, we obtain, for each x ∈ Ω and j ∈ N,

trDs
δφj(x) = cn,s tr

(
∫

B(x,δ)

φj(x)− φj(y)

|x− y|n+s
⊗

x− y

|x− y|
wδ(x− y)dy

)

= cn,s

∫

B(x,δ)

tr

(

φj(x)− φj(y)

|x− y|n+s
⊗

x− y

|x− y|
wδ(x− y)

)

dy

= cn,s

∫

B(x,δ)

φj(x)− φj(y)

|x− y|n+s
·
x− y

|x− y|
wδ(x− y)dy = divsδ φj(x).

Since Ds
δφj → Ds

δφ in Lp(Ω,Rn×n), we obtain, succesively, that trDs
δφj → trDs

δφ in Lp(Ω),
divs

δ φ ∈ Lp(Ω) and trDs
δφ = divsδ φ in Lp(Ω).

Now we prove the product formula. By the result above and applying Lemmas 3.3 b) and
3.2 b), we obtain

divsδ(ϕφ) = trDs
δ(ϕφ) = tr

(

ϕDs
δφ+Ks,δ

ϕ (φT )
)

= ϕ divsδ φ+Ks,δ
ϕ (φ).

The formula for Φ is immediate by applying componentwise the above formula.



4 From nonlocal to local

In this section we show that nonlocal gradients are in fact gradients of another function. This
idea was exploited in [25] in the fractional context, whose fully analogue result in this nonlocal
case (nonlocal gradients are gradients, and vice versa) is shown in [16]; here we also see one
implication: nonlocal gradients are gradients (Lemma 4.2).

We first recall from [11, Lemma 4.2] that Qs
δ is a radial L1(Rn) function with support in

B(0, δ) such that

∇Qs
δ(x) = −(n− 1 + s)

ρδ(x)

|x|

x

|x|
, x ∈ R

n \ {0}.

We will do convolutions with Qs
δ with functions defined in Ωδ. Thus, with a small abuse of

notation, given u : Ωδ → R we will write Qs
δ ∗ u as the function defined in Ω by

Qs
δ ∗ u(x) =

∫

B(x,δ)

Qs
δ(x− y)u(y) dy,

whenever the integral is well defined. In truth, Qs
δ ∗ u is the restriction to Ω of the convolution

Qs
δ ∗ ū, where ū : Rn → R is the extension by zero of u. We show the boundedness of this

operator.

Lemma 4.1. For any 1 ≤ p ≤ ∞, the map u 7→ Qs
δ ∗ u is linear and bounded from Lp(Ωδ) to

Lp(Ω).

Proof. Given any u ∈ Lp(Ωδ), we denote by ū its extension to R
n by zero and use Young’s

inequality, so as to obtain that

‖Qs
δ ∗ u‖Lp(Ω) = ‖Qs

δ ∗ ū‖Lp(Ω) ≤ ‖Qs
δ ∗ ū‖Lp(Rn) ≤ ‖Qs

δ‖L1(Rn) ‖ū‖Lp(Rn) = ‖Qs
δ‖L1(Rn) ‖u‖Lp(Ωδ)

.

The first part (the smooth case) of the following lemma was essentially proved in [11]. We
provide the necessary details to arrive at the precise formulation we need, as well as to prove
the Hs,p,δ version. As mentioned before, the result is akin to that simultaneously proved in [16,
Prop. 2.15].

Lemma 4.2. a) For all u ∈ C∞
c (Rn) we have that Qs

δ ∗ u ∈ C∞
c (Rn) and

Ds
δu = D(Qs

δ ∗ u) = Qs
δ ∗Du.

Moreover, for all φ ∈ C∞
c (Rn,Rn) we have that

divsδ φ = div(Qs
δ ∗ φ) = Qs

δ ∗ div φ.

b) Let 1 ≤ p < ∞. Then the map u 7→ Qs
δ ∗ u is linear and bounded from Hs,p,δ(Ω) to

W 1,p(Ω). Moreover, for all u ∈ Hs,p,δ(Ω),

Ds
δu = D(Qs

δ ∗ u) in Ω,

and for all φ ∈ Hs,p,δ(Ω,Rn),

divsδ φ = div(Qs
δ ∗ φ) in Ω.



Proof. We start with a). We have from [11, Prop. 4.3] that Ds
δu = Qs

δ ∗ Du. In fact, owing
to a classic result in convolution (see, e.g., [12, Props. 4.18 and 4.20]), Qs

δ ∗ u ∈ C∞
c (Rn) and

D(Qs
δ ∗ u) = Qs

δ ∗Du.
We now apply the equality Qs

δ ∗Dφ = Ds
δφ as well as Lemma 3.4 to conclude that

Qs
δ ∗ div φ = Qs

δ ∗ (trDφ) = tr(Qs
δ ∗Dφ) = trDs

δφ = divs
δ φ

and, additionally,
tr(Qs

δ ∗Dφ) = trD(Qs
δ ∗ φ) = div(Qs

δ ∗ φ).

Now we show b). Let {uj}j∈N be a sequence in C∞
c (Rn) converging to u in Hs,p,δ(Ω). Since

uj → u in Lp(Ωδ), by Lemma 4.1, Qs
δ ∗ uj → Qs

δ ∗ u in Lp(Ω). On the other hand, Ds
δuj → Ds

δu

in Lp(Ω,Rn) and, by a), Ds
δuj = D(Qs

δ ∗ uj) for each j ∈ N. By the locality and closedness of
the derivative operator, Qs

δ ∗ u ∈ W 1,p(Ω) and D(Qs
δ ∗ u) = Ds

δu. The same proof also shows
the boundedness of the operator u 7→ Qs

δ ∗ u from Hs,p,δ(Ω) to W 1,p(Ω). Moreover, by Lemma
3.4,

divs
δ φ = trDs

δφ = trD(Qs
δ ∗ φ) = div(Qs

δ ∗ φ).

5 Nonlocal Piola’s Identity, integration by parts of the de-

terminant and weak continuity

In this section we adapt three classical results in the theory of polyconvexity to the nonlocal
context: Piola’s identity, integration by parts of the determinant and weak continuity of the
minors.

Recall that the classical Piola identity asserts that, for smooth enough functions u : Ω ⊂
R

n → R
n one has div cofDu = 0. Of course, cof denotes the cofactor matrix, which satisfies

cof AAT = (detA) I for every A ∈ R
n×n.

Proposition 5.1. a) For all u ∈ C∞
c (Rn,Rn),

divsδ cofD
s
δu = div cofDs

δu = divs
δ cofDu = 0.

b) For all u ∈ Hs,p,δ(Ω,Rn) with p ≥ n− 1 and all ϕ ∈ C∞
c (Ω−δ),

∫

Ω

cofDs
δuD

s
δϕdx = 0,

while for all ϕ ∈ C∞
c (Ω),

∫

Ω

cofDs
δuDϕdx = 0.

Proof. For a), using Lemma 4.2 we find that divsδ cofD
s
δu = Qs

δ ∗ div(cofD
s
δu), with

div(cofDs
δu) = div(cof(D(Qs

δ ∗ u))) = 0,

since div(cof(D(Qs
δ ∗ u))) = 0 by the classical Piola identity, having in mind that Qs

δ ∗ u ∈
C∞

c (Rn,Rn). Similarly, divs
δ cofDu = Qs

δ ∗ div cofDu = 0.



For b) we have, by Lemma 4.2 and Piola’s identity for Sobolev functions (see, e.g., [3,
Lemma 6.1] or [21, Prop. 3.2.4.1]), that, for any ϕ ∈ C∞

c (Ω−δ),
∫

Ω

cofDs
δuD

s
δϕdx =

∫

Ω

cofD(Qs
δ ∗ u)D(Qs

δ ∗ ϕ) dx = 0,

since Qs
δ ∗ u ∈ W 1,p(Ω,Rn) and Qs

δ ∗ ϕ ∈ C∞
c (Ω). Similarly, for ϕ ∈ C∞

c (Ω),
∫

Ω

cofDs
δuDϕdx =

∫

Ω

cofD(Qs
δ ∗ u)Dϕdx = 0.

The integration by parts of the determinant is as follows.

Proposition 5.2. Let p ≥ n − 1 and q ≥ n
n−1

. Let u ∈ Hs,p,δ(Ω,Rn) be with cofDs
δu ∈

Lq(Ω,Rn×n). Then detDs
δu ∈ L

q(n−1)
n (Ω) and for all ϕ ∈ C∞

c (Ω),
∫

Ω

detDs
δuϕ dx = −

1

n

∫

Ω

Qs
δ ∗ u · cofDs

δuDϕdx.

Proof. By Lemma 4.2 and the classical integration by parts of the determinant [28, Th. 3.2],

we have that detD(Qs
δ ∗ u) ∈ L

q(n−1)
n (Ω) and

∫

Ω

detDs
δuϕ dx =

∫

Ω

detD(Qs
δ ∗ u)ϕdx

= −
1

n

∫

Ω

Qs
δ ∗ u · cofD(Qs

δ ∗ u)Dϕdx = −
1

n

∫

Ω

Qs
δ ∗ u · cofDs

δuDϕdx.

The weak continuity of minors is as follows. As in the previous results, Lemma 4.2 reduces
the analysis to the Sobolev case, and for this we use the sharpest result of the continuity of the
determinant in this context, which is due to [28] and [22].

Theorem 5.3. Let p ≥ n − 1 and q ≥ n
n−1

. Let {uj}j∈N be a sequence in Hs,p,δ(Ω,Rn) such

that uj ⇀ u in Hs,p,δ(Ω,Rn). Then:

a) If k ∈ N with 1 ≤ k ≤ n − 2 and µ is a minor of order k then µ(Ds
δuj) ⇀ µ(Ds

δu) in
L

p

k (Ω) as j → ∞.

b) If cofDs
δuj ⇀ ϑ in L1(Ω,Rn×n) for some ϑ ∈ Lq(Ω,Rn×n) then ϑ = cofDs

δu.

c) If cofDs
δuj ∈ Lq(Ω,Rn×n) for each j ∈ N, cofDs

δuj ⇀ cofDs
δu in L1(Ω,Rn×n) and

detDs
δuj ⇀ θ in L1(Ω) for some θ ∈ L1(Ω) then θ = detDs

δu.

Proof. Define vj = Qs
δ ∗ uj and v = Qs

δ ∗ u. By Lemma 4.2, we have vj ⇀ v in W 1,p(Ω,Rn), as
well as Dvj = Ds

δuj and Dv = Ds
δu. Thus, we can apply a classical result on the convergence of

minors (see, e.g., [3, Th. 6.2] or [17, Th. 8.20]) to conclude that cofDvj ⇀ cofDv in the sense of
distributions and µ(Dvj) ⇀ µ(Dv) in L

p

k (Ω) for every minor µ of order k ∈ {1, . . . , n−2}. This
proves a). Under assumption b), we have cofDvj ⇀ ϑ in L1(Ω,Rn×n) so ϑ = cofDv = cofDs

δu,
which proves b).

Suppose assumption c). As cofDvj ∈ Lq(Ω,Rn×n) for each j ∈ N, we conclude that the
divergence identities of [28, Th. 3.2] hold for vj . This, in turn, is equivalent to the fact that the
surface energy Ē of vj defined in [22, Def. 1] is zero (see [22, Prop. 3]). As observed in [7, Sect.
2.5], the surface energy E of vj defined in [22, Def. 2] is also zero. Thus, we can apply [22, Th.
3] and conclude that θ = detDv = detDs

δu.



6 Existence of minimizers and Euler–Lagrange equations

In this section we prove the existence of minimizers in Hs,p,δ of functionals of the form

I(u) :=

∫

Ω

W (x, u(x), Ds
δu(x)) dx. (9)

under natural coercivity and polyconvexity assumptions. We also derive the associated Euler–
Lagrange equation, which is a partial nonlocal-differential system of equations.

We recall the concept of polyconvexity (see, e.g, [3, 17]). Let τ be the number of submatrices
of an n × n matrix. We fix a function µ : Rn×n → R

τ such that µ(F ) is the collection of all
minors of an F ∈ R

n×n in a given order. A function W0 : Rn×n → R ∪ {∞} is polyconvex if
there exists a convex Φ : Rτ → R ∪ {∞} such that W0(F ) = Φ(µ(F )) for all F ∈ R

n×n.
The existence theorem is as follows. Its proof relies on a standard argument in the Calculus

of variations, once we have the continuity (with respect to the weak convergence) of the minors
given by Theorem 5.3.

Theorem 6.1. Let p ≥ n− 1 satisfy p > 1. Let q ≥ n
n−1

. Let W : Rn ×R
n×R

n×n → R∪{∞}
satisfy the following conditions:

a) W is Ln × Bn × Bn×n-measurable, where Ln denotes the Lebesgue sigma-algebra in R
n,

whereas Bn and Bn×n denote the Borel sigma-algebras in R
n and R

n×n, respectively.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ R
n.

c) For a.e. x ∈ R
n and every y ∈ R

n, the function W (x, y, ·) is polyconvex.

d) There exist a constant c > 0, an a ∈ L1(Ω) and a Borel function h : [0,∞) → [0,∞) such
that

lim
t→∞

h(t)

t
= ∞

and
W (x, y, F ) ≥ a(x) + c |F |p + c |cof F |q + h(|detF |)

for a.e. x ∈ Ω, all y ∈ R
n and all F ∈ R

n×n.

Let u0 ∈ Hs,p,δ(Ω,Rn). Define I as in (9), and assume that I is not identically infinity in
Hs,p,δ

u0
(Ω−δ,R

n). Then there exists a minimizer of I in Hs,p,δ
u0

(Ω−δ,R
n).

Proof. Assumption d) shows that the functional I is bounded below by
∫

Ω
a. As I is not identi-

cally infinity in Hs,p,δ
u0

(Ω,Rn), there exists a minimizing sequence {uj}j∈N of I in Hs,p,δ
u0

(Ω,Rn).
Assumption d) implies that {Ds

δuj}j∈N is bounded in Lp(Ω,Rn×n). Applying Theorem 2.4 to
uj−u0, we obtain that {uj}j∈N is bounded in Lp(Ω,Rn) and, consequently, also in Hs,p,δ(Ω,Rn).
Using that Hs,p,δ(Ω,Rn) is reflexive (Proposition 2.2) and Theorem 2.5, there exists u ∈
Hs,p,δ

u0
(Ω−δ,R

n) such that for a subsequence (not relabelled),

uj ⇀ u in Hs,p,δ(Ω,Rn) and uj → u in Lp(Ω,Rn).

By Theorem 5.3, for any minor µ of order k ≤ n− 2, we have that

µ(Ds
δuj) ⇀ µ(Ds

δu) in L
p

k (Ω).

Moreover, assumption d) shows that {cofDs
δuj}j∈N is bounded in Lq(Ω,Rn×n), and, as q > 1, we

can extract a weakly convergent subsequence, which by Theorem 5.3 tends to cofDs
δu. Again by



d), together with de la Vallée Poussin’s criterion, we have that {detDs
δuj}j∈N is equiintegrable,

so, for a subsequence, it converges weakly in L1(Ω) to a function that, by Theorem 5.3 has to
be detDs

δu.
The above convergences imply, thanks to a standard lower semicontinuity result for poly-

convex functionals (see, e.g., [6, Th. 5.4] or [20, Th. 7.5]), that

I(u) ≤ lim inf
j→∞

I(uj).

Therefore, u is a minimizer of I in Hs,p,δ
u0

(Ω−δ,R
n).

It is well known that Sobolev functions cannot have discontinuities along (n−1)-dimensional
surfaces (see, e.g., [19, Thms. 4.7.4, 4.8.1 and 5.6.3]). On the other hand, depending on the
exponent of integrability of Du and cofDu, a Sobolev function u can or cannot have discon-
tinuities of cavitation type. In fact, under the assumptions of [28], the deformation cannot
exhibit cavitation. But, as a consequence of the analysis of [9, Sect. 2.1] and [11, Prop. 3.5]
(see also [14, Prop. 1.8]), functions in Hs,p,δ(Ω) can exhibit fracture in the range of exponents
sp < 1, and cavitation in the range of exponents sp < n. Both ranges are compatible with the
assumptions of Theorem 6.1.

This is in contrast with the Sobolev or SBV (special bounded variation) case. Indeed, the
classical space for fracture is SBV and the energy to minimize requires a contribution of the
surface energy (see, e.g., [2]). On the other hand, it was shown in [23, 24] that the divergence
identities of [28] correspond to the absence of cavitation, while these divergence identities were
essential to prove Theorem 5.3. The explanation of this apparent paradox is that the key of the
proof of Theorem 5.3 is that Qs

δ ∗u does not exhibit cavitation or fracture, regardless of whether
u does. In fact, in many proofs of this article we invoke known results to the regularized version
Qs

δ ∗ u of u.
To sum up, Theorem 6.1, which determines the existence of minimizers of a nonlocal hy-

perelastic energy, is compatible with functions exhibiting fracture or cavitation, in opposition
to the case of classical elasticity (see, e.g., [3, 34, 28, 4, 5, 7]). Thanks to the sharpness of
exponents p, q of Theorem 6.1, the range of exponents p, q, s for which fracture or cavitation
are compatible with the existence of minimizers is wider than that of the fractional case [9].

To finish the article, we show the equilibrium (Euler–Lagrange) equations that minimizers
of functional (9) satisfy. The notation for partial derivatives is as follows: DyW (x, ·, F ) is the
derivative of W (x, ·, F ), and DFW (x, y, ·) is the derivative of W (x, y, ·).

Theorem 6.2. Let 1 < p < ∞. Let u0 ∈ Hs,p,δ(Ω). Let W : Ω × R
n × R

n×n → R satisfy the
following conditions:

a) W (·, y, F ) is Ln-measurable for each y ∈ R
n and F ∈ R

n×n.

b) W (x, ·, ·) is of class C1 for a.e. x ∈ Ω.

c) There exist c > 0 and a ∈ L1(Ω) such that some of the following inequalities holds for
a.e. x ∈ Ω, all y ∈ R

n and all F ∈ R
n×n:

c0)
|W (x, y, F )|+ |DyW (x, y, F )|+ |DFW (x, y, F )| ≤ a(x) + c (|y|p + |F |p) ,

c1) sp < n, u0 ∈ Lr(Ωδ,R
n) with 1 ≤ r ≤ p∗s and

|W (x, y, F )|+ |DyW (x, y, F )|+ |DFW (x, y, F )| ≤ a(x) + c (|y|r + |F |p) .



c2) sp = n,
∫

Ωδ

exp (|u0(x)|
r) dx < ∞

for some 1 ≤ r < p′ and

|W (x, y, F )|+ |DyW (x, y, F )|+ |DFW (x, y, F )| ≤ a(x) + exp(|y|r) + c |F |p .

c3) sp > n, u0 ∈ L∞(Ωδ,R
n) and there exists a function f : [0,∞) → [0,∞) sending

bounded sets in bounded sets such that

|W (x, y, F )|+ |DyW (x, y, F )|+ |DFW (x, y, F )| ≤ a(x) + f(|y|) + c |F |p .

Define I as in (9). Let u be a minimizer of I in Hs,p,δ
u0

(Ω−δ). Then, for every ϕ ∈ C∞
c (Ω−δ),

∫

Ω

[DyW (x, u(x), Ds
δu(x))ϕ(x) +DFW (x, u(x), Ds

δu(x)) ·D
s
δϕ(x)] dx = 0.

If, in addition, DzW (·, u(·), Ds
δu(·)) ∈ C1(Ω−δ,R

n) then

DyW (x, u(x), Ds
δu(x)) = divsδ DFW (x, u(x), Ds

δu(x))

for a.e. x ∈ Ω−δ.

Proof. The proof for the scalar case and under assumption c0) was shown in [11, Th. 8.2]. The
proof for the vectorial case requires no essential modification, so we just mention the small
adaptations for cases c1)–c3).

Thanks to Theorem 2.4, u ∈ Lr(Ωδ,R
n) under assumption c1),

∫

Ωδ

exp (|u(x)|r) dx < ∞

under assumption c2), and u ∈ L∞(Ωδ,R
n) under assumption c3). Actually, case c2) requires

the Trudinger inequality of [11, Th. 6.4]. The corresponding bounds of c1)–c3) allow us to apply
dominated convergence to differentiate under the integral sign. This concludes the proof.
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