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Previous efforts in using genome-wide analysis of transcription factor binding 

sites (TFBSs) have overlooked the importance of ranking potential significant 

regulatory regions, especially those with repetitive binding within a local region. 

Identifying these homogenous binding sites is critical because they have the 

potential to amplify the binding affinity and regulation activity of transcription 

factors, impacting gene expression and cellular functions. To address this issue, 

we developed an open-source tool Motif-Cluster that prioritizes and visualizes 

transcription factor regulatory regions by incorporating the idea of local motif 

clusters. Motif-Cluster can rank the significant transcription factor regulatory 

regions without the need for experimental data by applying a density-based 

clustering approach combined with flexible binding gaps and binding affinities.  

Motif-Cluster uses an algorithm which effectively filters out the noise from 

weak binding sites by balancing region size and binding instances based on 

binding site gaps and binding affinities. As a result, the algorithm can effectively 

cluster local binding sites and identify crucial regulatory areas. The tool has 



 

   

 

been tested under multiple strategies on local binding sites and has successfully 

recovered key regulatory regions for ZNF410 discovered previously for its 

binding clusters in the CHD4 promoter. It provides a useful interface to analyze 

densely packed binding sites and to visualize prioritized regulatory regions. 

Overall, Motif-Cluster provides a more efficient and comprehensive solution 

to identifying significant transcription factory binding sites in genome-wide 

analyses than previous solutions. With improved efficiency and visualization 

capabilities, Motif-Cluster empowers researchers to gain new insights and 

design novel experiments through a new way of discovery.  
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Chapter 1  
Introduction 

1.1 Basic Definitions 

1.1.1 Introduction of Transcription Factor and Transcription 

Factor Binding Sites (TFBS) 

Transcription factors [1]-[4] are proteins that play a key part in gene regulation 

by controlling transcription (the process of converting DNA into RNA) of 

specific genes.  

Transcription factors can bind to specific DNA sequences on the genome 

called Transcription Factor Binding Sites (TFBSs) [5]-[8] for which they 

correspond to. When this binding takes place, a transcription factor can either 

activate or repress the expression of the associated gene depending on the 

context of the binding site and transcription factor itself.   

TFBSs typically contain recognizable DNA sequences called motifs. These 

motifs are short, usually around 6 to 20 nucleotides long, and aid in the 

identification of binding sites. Identifying these binding sites is crucial for 

understanding gene regulation and deciphering the complex regulatory 

networks within cells. 
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1.1.2 Importance of Transcription Factor Binding Sites 

Transcription factors regulate which genes are active in different cells of the body 

(gene expression) by binding to TFBSs. Recent research shows that transcription 

factors may search through vast expanses of the DNA sequence to identify these 

binding sites and that they can recognize a wide variety of DNA sequences with 

varying affinities [9]. Affinity refers to how strongly a transcription factor binds to its 

corresponding binding site, which therefore determines how strongly and specifically 

a transcription factor interacts with DNA to control the expression of genes. 

Some local regions of DNA may contain a dense sequence of binding sites 

characterized by a repetitive nature but diverse affinities. These dense local binding 

regions play a major role in the process of transcription, which is the first step of 

transforming DNA sequences into functional proteins. Transcription factors regulate 

gene expression by controlling how genes are converted into RNA sequences. 

 

1.1.3 Typical Way to Generate Genome-Wide Transcription 

Factor Binding Sites 

There are extensive databases which collect and catalog motifs within the genome. 

These databases use reliable and reviewed experimentation and sources to document 

existing and newly discovered motif locations. JASPAR is one such motif database 

which tracks TFBSs collected with an internal ChIP-seq method as well as from 

external sources [10]. TRANSFAC is a highly curated collection of motifs and 
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MATCH Suite as a tool to identify potential binding sites [11]. For more focused 

applications, HOCOMOCO (Homo sapiens Comprehensive Model Collection) is a 

motif collection that focuses exclusively on binding sites for humans and mice [12]. 

In this research, we support data generation using PWM (.pwm) files and the 

FIMO (Find Individual Motif Occurrences) tool [13], which is part of the MEME 

Suite [14]. Motif databases typically curate motifs in a format representable with 

PWMs, and FIMO can take these PWM files to identify genome-wide or 

chromosome-wide TFBSs to generate FIMO (.fimo) files. Previous methods 

typically stopped here, but we further rank and analyze these FIMO files which serve 

as the input to Motif-Cluster. 

An important challenge for researchers to note is that predicting TFBSs is a 

difficult task due to the short length and degeneracy of motifs, as well as the inherent 

complexity of gene regulation. Experimental validation is a necessary step in 

prediction and can be used to improve the accuracy of binding site predictions made 

by tools like Motif-Cluster. 

1.2 Motivation for Ranking Transcription Factor 

Binding Regions 

1.2.1 Current Techniques: Individual Motif Ranking 

Current techniques for identifying significant regulatory regions in a genome-wide search 

of TFBSs have underestimated repetitive binding sites in local regions [5]. These 
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methods typically only consider the individual affinity of motif binding sites rather than 

the overall affinity of binding regions. There are several existing methods for identifying 

and predicting TFBSs in this naïve way, which we outline below.  

 Positional Weight Matrices: Positional Weight Matrices (PWMs) model the 

frequencies of each nucleotide at each position in a set of known binding 

sites in a positional weight matrix. In scanning a genome sequence, scores 

are assigned to each possible binding site and stored positionally within a 

PWM. In the end, high-scoring regions may be considered to predict 

potential binding sites. 

 Motif Based Methods: Motif based methods take advantage of the fact that 

binding sites often contain repeated patterns of DNA sequences called motifs. 

By searching for similar sequences/motifs with the genome, one can identify 

TFBSs. Tools like the MEME Suite, FIMO (Find Individual Motif 

Occurrences) are commonly used for motif-based binding site prediction. 

 ChIP-seq: Chromatin Immunoprecipitation followed by sequencing (ChIP-

seq) [15] is an experimental technique that can directly identify TFBSs. In 

this novel technique, antibodies are used to transcription factors bound DNA 

fragments (i.e., binding sites) and then sequence them to determine their 

genomic locations. 
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1.2.2 Improvements to Overall Binding Affinity of Regulatory 

Regions 

These current methods of ranking single binding sites by their individual binding 

affinities fail to consider the overall binding affinity present in local regions of 

binding sites. An increased overall binding affinity of these local regions has the 

potential to indirectly increase the effects of transcription factors on gene expression.  

Consequently, current methods of ranking single binding sites by their 

individual scale may fail to rank regulatory regions accurately and efficiently in 

genome-wide searches. To solve this essential problem, we designed Motif-Cluster, 

an open-source tool to rank and visualize the local binding regions of transcription 

factors [16].  

1.3 Challenge Tasks in this Thesis 

Current TFBS scanning tools such as FIMO only consider the individual affinity of motif 

binding sites and fail to incorporate the overall binding affinity of binding regions. 

Although individual binding affinity is one indicator of significant regulatory regions, 

including the affinity of TFBS clusters can improve the efficiency and accuracy of 

ranking regulatory regions.  

There are no current methods which can rank clusters or regions given a list of 

TFBSs that we know of. While naïve methods may find individual TFBSs which have a 

strong binding affinity by themselves, they may miss TBFS clusters which have many 
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TBFSs that are weaker but can work together. There are several important factors that 

indicate a cluster’s overall binding affinity, including the sizes of the clusters, the 

distribution of “gaps” between TFBSs, and the individual binding affinities of the TFBSs 

in the cluster. 

Our challenge for this thesis is to combine all the above factors in ranking and 

visualizing transcription factors to improve the efficiency of and accuracy of 

searching for significant regulatory regions. 

1.4 Contribution to this Thesis: Design a New Tool 

to Predict and Rank Transcription Factor Binding 

Site Clusters 

Predicting and ranking TFBSs poses an important but challenging task to researchers. 

Traditional techniques such as ChIP-seq, while powerful, rely on the presence of 

high-affinity antibodies in TFBSs and may overlook binding sites with low 

individual binding affinities. Alternative methods like Cut and Run rely on the 

presence of experimental data, which is not always available across transcription 

factors, organisms, tissues, and cell types [17].  

To overcome these challenges, we designed Motif-Cluster: a tool which can 

identify and prioritize significant regulatory regions despite low individual binding 

affinity. To test and demonstrate the accuracy of our method, we used it on examples 

like the ZNF410 transcription factor and PHB1 example, where binding clusters play 
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a crucial role in gene regulation but may be undetected by conventional methods.  

 

1.4.1 Introduction to ZNF410 binding sites  

The ZNF410 transcription factor was chosen as a target for cross-validation for its 

compelling example of binding clusters within the CHD4 promoter region [18]. 

Characterized as a pentadactyl DNA-binding protein, ZNF410 regulates gamma-

globin repressors and demonstrates a unique activation pattern in human erythroid 

cells by directly targeting the NuRD [19] component CHD4. 

This direct targeting and specificity relate to two highly conserved binding 

clusters (mouse and human) situated near the CHD4 gene. These binding site clusters 

were independently validated through multiple studies, including Chip-seq, cut-and-

run, and further binding motif analysis. ZNF410 [20], being a highly targeted and 

experimentally validated transcription factor, will serve as the object of evaluation to 

validate the accuracy of the Motif-Cluster method throughout Chapters 2-5. 

 

1.4.2 Introduction of PHB1 

Prohibitin 1 (PHB1) [21] is a highly conserved protein with multiple functions. 

Recent studies have found that FL3, a synthetic derivative called flavaglines, targets 

PHB1 as a ligand. More information on the new and novel applications of this effect 

are explored in Chapter 6. In short, because PHB1 binds to the (TGYCC) motif, we 

can predict the binding sites using the Motif-Cluster method in a novel way. 
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Chapter 2  
Exploration of DBSCAN and Spatial 
Clustering Approaches 

2.1 Introduction to Density-Based Clustering 

Density-based clustering [22] is an approach used in data analysis that groups 

together nearby data points into “clusters” based on how dense they are with respect 

to each other. Unlike other clustering methods which cluster data points into pre-

defined shapes, density-based clustering can group points into arbitrarily shaped and 

sized clusters. Furthermore, minimal domain knowledge such as the number of 

clusters is necessary to cluster points based on density. For this reason, this method is 

particularly effective in identifying clusters of arbitrary shapes in large spatial 

datasets and is widely used in various domains, from machine learning to genomic 

analysis. 

The density-based clustering techniques we will consider analyze the 

“neighborhoods” around each data point to group them together: if two data points 

are found to be within a maximum distance from each other (called epsilon, 𝜀𝜀), those 

points belong in the same “neighborhood.” This process can be repeated for each 

data point to form disjoint sets that represent all the neighborhoods. Finally, clusters 
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are identified by neighborhoods which have a minimum number of points (minPts) in 

them, which is given by a parameter to the algorithm. Points belonging to 

neighborhoods that don’t contain this threshold for minimum number of points are 

said to be outliers or noise. 

 

2.2 Basic DBSCAN Method 

2.2.1 Introduction of DBSCAN 

Density-based spatial clustering of applications with noise (DBSCAN) is a 

commonly used algorithm to achieve density-based clustering introduced in 1996 by 

Martin Ester et al. [23]. Unlike previous clustering algorithms such as GMM and K-

Means, DBSCAN is more flexible and practical in use because it requires minimal 

domain knowledge about the data point space. Specifically, DBSCAN has 

parameters only for epsilon (𝜀𝜀) and minPts, where other algorithms require 

parameters such as the number of clusters. 

The algorithm classifies points as either core, non-core, or outliers. Core points 

are those which can reach at least minPts other points directly (i.e., at least minPts 

are within the epsilon (𝜀𝜀) distance). Non-core points are those which are in the 

neighborhood of other core points but may not be directly reachable by core points. 

Outlier points (noise) are those which are not in a cluster. 

Consider Figure 2.1 which has 9 points. Circles are drawn around each point 
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with a radius of epsilon (𝜀𝜀) to illustrate which points belong to the same 

neighborhood. The minPts argument for this example is 4, so neighborhoods must 

have at least 4 points to be considered a cluster. Red points denote core points, while 

yellow points are non-core points (that still belong to the same cluster as the core 

points). The blue point N  is an outlier. 

 

 

Figure 2.1: Illustration of DBSCAN Method in identifying density-based clusters in 

data point space as given in [32] 

 

2.2.2 Considering DBSCAN Alternatives 

In considering a clustering method to use for Motif-Cluster, we compared DBSCAN 

to a number of other clustering algorithms. DBSCAN excels at recognizing clusters 

of high density from those of low density which is crucial in clustering motif 

matching sites along a linear genomic sequence. However, DBSCAN relies on fixed 
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parameters epsilon (𝜀𝜀) and minPts which presents problems for motif clustering, 

since the gaps between binding sites can vary considerably across genomic locations. 

To overcome this barrier, we considered other algorithms including HDBSCAN 

[24] and OPTICS [25]which can consider multiple or hierarchical epsilon (𝜀𝜀) values. 

In effect, these dynamic algorithms can adapt to differently sized neighborhoods 

across genome locations. Unfortunately, HDBSCAN and OPTICS do not consider 

individual weights of data points in calculating neighborhoods, which makes it 

unsuitable for consider motif matching sites with different affinities. An alternate 

algorithm which can incorporate weights or signal strength is imperative, so neither 

dynamic algorithm is viable. 

In the next chapter, we will develop a method of applying DBSCAN such that 

we can consider dynamic values of epsilon (𝜀𝜀) to enable motif clustering across 

genomic locations with varying gaps between binding sites. 

 

2.3 Application of Basic DBSCAN Method to Motif 

Clustering 

2.3.1 Clustering Method 

A basic method of scoring and ranking motif clusters is to apply the DBSCAN 

method to cluster motif binding sites based on their density. The first step in this  
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method 𝛆𝛆 (epsilon) 
min_sample 

(total weight) motif_weight 

DBSCAN Gmean 8 10 

Table 2.1: Parameters in DBSCAN method. 

process is to prepare the data, which comes from a sorted .bed file which includes 

sorted chromosome start and end positions, and either their p-value indicating motif 

matching significance OR an equivalent binding affinity score. 

The DBSCAN takes parameters for epsilon (𝜀𝜀) and min_sample. For clustering 

TFBSs, ε denotes the radius of the neighborhood for individual TFBSs which we 

wish to “cluster” together (we also refer to this as the “gap”). ε takes on the value of 

the average distance of all motif gaps such that TFBSs closer together than average 

will be clustered.  

 min_sample: denotes the minimum number of samples which must be included 

in a neighborhood to be considered a cluster, but here we use the other possible 

value for this parameter which denotes the threshold for the total weight of all 

items in a neighborhood before being considered a cluster.  

 motif_weight: represents the binding affinity for a single motif binding site. 

Both values were experimentally found but are unimportant to this basic 

application of DBSCAN. Their exact derivation and importance will be 

explained in later sections which expand upon the basic DBSCAN method. 

The parameters are summarized by Table 2.1: Parameters in DBSCAN method 

epsilon (𝜀𝜀) is the most important parameter, which takes on the value Gmean (the 
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average distance between motif gaps). 

 

2.3.2 Scoring Method 

The basic DBSCAN method does not “score” clusters in the traditional sense, but a 

score may be derived for each cluster based on the number of motif binding sites it 

contains. 

2.4 Results 

We applied the basic DBSCAN method to find and rank motifs in the genome region 

chr12:6,716,600-6,724,000 which are the ZNF410 binding clusters on the CHD4 

promoter region.  

A few example lines from the input .bed file containing information about the 

human genome chr12 are show below: 

Figure 2.2 summarizes the results found by applying the basic DBSCAN method 

for the ZNF410 transcription factor in the CHD4 promoter region. Each cluster is 

assigned a different color, which is derived based on proximity/density of binding 

sites. The x-axis covers the coordinate domain in chr12 (6,716,600-6,724,000), and 

the y-axis denotes the weight of each peak (which is consistently 10 for the basic 

application of DBSCAN). 
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Table 2.2: An example of two lines of a sorted bed file. 

 

Figure 2.2 : DBSCAN Method performance for ZNF410 binding clusters. 



 

15 

 

   

 

Chapter 3  
Method Development with Group-
Aware Approach 

3.1 Motivation 

The first method of applying the basic DBSCAN to cluster motif regions resulted in our 

region of interest being ranked very low. The uneven distribution and highly variable 

distance (epsilon (𝜀𝜀)) between the motif binding sites does not pair well with the basic 

DBSCAN method because it uses fixed parameters.    

The basic DBSCAN does not differentiate between gap sizes, which leads to 

less meaningful clustering in the context of motif binding sites. It is not able to 

heuristically filter out binding site gaps belonging to different regions. Furthermore, 

the basic method does not account for the strength of each binding site; DBSCAN 

applies a uniform weight to everything and does not factor density into the weight of 

each binding site. 

Thus, we are motivated to create a group-aware approach that improves the 

original DBSCAN method to address these issues. The group-aware method uses the 

Gaussian Mixture Model (GMM) to identify probable Gaussian components for the 

binding gaps and to calculate their mean and variance. The number of the 
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components are based on their observed Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) metrics, which result in a more accurate 

representation of the biological data and distribution of gaps.  

 

3.2 Methodology 

3.2.1 Basic Knowledge  

A Gaussian mixture model (GMM) is parametric probability density function that is 

expressed as a weighted sum of Gaussian component densities [26]. These models 

are frequently used to represent the probability distributions for continuous 

measurements or features within a biometric system and are a good candidate for 

motif clustering. The GMM parameters are found through iterative learning 

algorithms such as expectation-maximization (EM) or maximum a posteriori (MAP) 

[27],[28]. These algorithms take advantage of well-trained prior data and tweak the 

parameters to best-fit the data at hand.  

The EM algorithm comprises of two distinct steps which are repeated iteratively 

until the model converges: Expectation and Maximization. The Expectation step (E 

step) involves calculating the probability of each data point belonging to each 

distribution then assessing the likelihood function based on the current estimation of 

the parameters. The Maximization step (M step) updates the running mean, 

covariance, and weight parameters to maximize the expected likelihood derived in 
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the E step. By repeating these steps, the expected parameters will converge to a point 

which maximizes the likelihood function. 

The Akaike information criterion (AIC) [29] helps balance the accuracy and 

complexity of model by quantifying the goodness-of-fit of the model while 

penalizing the model for its complexity. AIC is calculated using Equation (3.1). 

 
 AIC =  −2 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝐿𝐿) + 2 × 𝑘𝑘                                                  (3.1) 

 
Bayesian information criterion (BIC) [30] is similar to AIC but uses Bayesian 

principles to apply a different formula for the penalty for model complexity. BIC is 

calculated using Equation (3.2): 

 
BIC =  −2 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝐿𝐿) +𝐾𝐾 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)                                                   (3.2) 

 
In both Equation (3.1) and Equation (3.2), 𝐿𝐿  is the maximum likelihood 

estimate given by the likelihood function; 𝐾𝐾  is the number of parameters in the 

model (which is the number of groups in our application); and 𝑛𝑛 is the sample size 

which refers to the number of data points used to estimate the model. 

 

3.2.2 Methodology Overview 

To apply the group-aware approaches which take advantage of learning models to 

parameterize the DBSCAN algorithm, the .bed files must be preprocessed first. 

Binding gap sites exceeding 500 base pairs must be filtered out to enable us to focus 
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on repetitive binding regions with sufficiently long gaps, while avoiding excessively 

long gaps that decrease the potential significance of regulatory sites. 

The second step is to identify the optimal number of Gaussian mixture 

components using the iterative BIC or AIC algorithms. These algorithms balance the 

trade-off between the time cost and score of the likelihood function to find a suitable 

number of Gaussian mixture models for the GMM algorithm. Using this method, we 

have experimentally found that 10 is the ideal number of Gaussian components; 

incorporating more components into the model will not significantly increase the 

metrics for the BIC and AIC models. 

Armed with the ideal number of Gaussian components (10), we then perform 

the union method and apply DBSCAN across each component using the group’s 

group-wise mean and standard deviation as parameters. This achieves variation in the 

DBSCAN parameters across the components to identify motif clusters. 

To identify the motif clusters and account more accurately for different types of 

gaps in the genome, the groups need to be combined (union) and subdivided in cases 

of overlap between groups. This results in the final clusters being more finely tuned 

to account for different types of gaps.  

Once the final clusters are identified, we can finally score and rank them. The 

final score of each cluster is derived from the posterior probabilities of both peak 

intensity and gap significance. 
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3.2.3 Method Details and General Example 

 Clustering Method: 

In the example outlined below, we explore applying the group-aware approach to the 

whole human genome chr12 data. 

We have experimentally found that 10 is the optimal number of groups based on 

both the AIC and BIC scores, as depicted by Figure 3.1. This step only needs to be 

completed once, and henceforth 10 is always used as the number of components. 

 

 

Figure 3.1: Akaike information criterion (AIC) and Bayesian information criterion 
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(BIC) performance scores vs. Gaussian mixture component number for identifying 

groups for motif binding gaps. 

 

 

Figure 3.2: Density vs. gap size for ten Gaussian groups distributions. 

Figure 3.2 depicts the 10 Gaussian mixture components precisely. Gap size is  

between 0-500, as gaps greater than 500 were not present in the data and therefore 

hold no research value. For each component, the corresponding covariance is plotted 

along the y-axis.  

Table 3.1 summarizes the DBSCAN parameters used for each Gaussian 

component (𝐺𝐺i) based on the group-wise mean (𝜇𝜇(𝐺𝐺i)) and standard deviation (𝜎𝜎(𝐺𝐺i)) 

of gap groups. To loosen the neighborhood radius in DBSCAN, we use the group-

wise mean plus twice the standard deviation from each gap group as the radiuses (ε). 

The min_sample and motif_weight have not been modified from Chapter 2. 
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method 𝛆𝛆 (epsilon) 
min_sample 

(total weight) motif_weight 

Group-Aware Approach 𝜇𝜇(𝐺𝐺i) + 2𝜎𝜎(𝐺𝐺i) 8 10 

Table 3.1: Internal parameters in group-aware DBSCAN. 

 

Figure 3.3: Combining three groups of clustering (union) while also subdividing 

them into smaller clusters in cases of overlap (split). 

Gaps are calculated using a bed (.bed) file format, which is commonly used in 

bioinformatics to represent genomic coordinates and associated features. The format 

we use comprises the following columns: 

 

We use the ‘union_bedgraphs’ function of the ‘pybedtools’ which is a Python 

package to combine multiple BED (.bed) files into a single file which generates 

coverage comparisons between the files. The function assumes that each file is sorted 
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by chromosome and start, and that the intervals are non-overlapping. 

Usage is shown as below: 

 

Figure 3.3 illustrates how the groups of clustering are combined (union) and 

subsequently subdivided into smaller clusters in cases of overlap (split). In the real 

algorithm, we would have 10 groups of clustering instead of 3. 

 

 Scoring Method: 

The final score for each cluster is derived from the posterior probabilities of both 

peak intensity and gap significance. Regions with higher-intensity peaks are ranked 

higher, however regions with lower-intensity peaks can also hold significance if they 

contain many TFBSs.  

The GMM is incorporated into the score to disfavor atypical gaps that deviate 

from chromosome or genome-wide statistics, such as those that are unusually short 

or long. To this end, the mean gap distance for the group is used to calculate the best-

fitted gap group according to the GMM using Equation (3.3). 

 
𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃(𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶𝑘𝑘 ,𝐺𝐺𝑖𝑖)                                            (3.3) 

 
       Imean is the mean binding affinity (peak intensity) for cluster 𝐶𝐶𝑘𝑘. We assign the 

cluster to the most probably group 𝐺𝐺𝑖𝑖  by maximum likelihood and build a group-
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specific intensity distribution (empirical distribution 𝑓𝑓(𝐼𝐼|𝐺𝐺𝑖𝑖)) to accommodate the 

varying contributions of the motif binding intensity given a specific group. As a 

result, the final score of each cluster is computed as the cumulative sum of the log-

likelihoods of the peak intensities and posterior gap probabilities, given by Equation 

(3.4): 

𝑆𝑆𝑆𝑆𝑙𝑙𝑎𝑎𝑒𝑒(𝐶𝐶𝑘𝑘 ) = −log (𝑃𝑃(𝐶𝐶𝑘𝑘|𝐼𝐼j, 𝐺𝐺i)) = − ∑j log (𝑃𝑃(𝐼𝐼j|𝐺𝐺i))                          (3.4) 

 
𝐶𝐶𝑘𝑘  refers to the kth motif cluster assigned to the gap group i; 𝑃𝑃(𝐼𝐼j|𝐺𝐺i) is the 

empirical probability for all binding site intensity 𝐼𝐼j within the cluster 𝐶𝐶𝑘𝑘 . This score 

is used to rank and prioritize all motif clusters in order to identify the most 

significant regulatory regions by their top score. In incorporating both peak intensity 

as well as the region metrics, the score function will work for binding sites with 

strong affinities as well as clusters with medium or low binding affinity but a large, 

repetitive cluster size. At the same time, random, low-affinity binding sites that can 

be considered noise yield relatively low scores. 

3.3 Results 

Figure 3.4 visualizes the group-aware DBSCAN performance of ZNF410 bindings 

cluster in the CHD4 promoter region (in the human chr12 between 6717000-

6724000). The genome coordinates are plotted across the x-axis, while the weight of 

each peak is on the y-axis. The first 10 subfigures belong to the 10 components, 
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while the last is comprised of the union-split of the groups. 

 

Figure 3.4: Group-aware DBSCAN Methods performance for ZNF410 binding 

clusters in CHD4 promoter region. 

Figure 3.5 compares the original motif clustering using the basic DBSCAN 

method (as found in Chapter 2) compared to the group-aware DBSCAN clustering. 

The first row depicting the basic DBSCAN clustering has excessive clustering of 

certain binding sites that do not exhibit consistent gap ranges. In contrast, the second 

row depicting the group-aware DBSCAN clustering produces more refined clusters 

with comparable gap patterns.  
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Figure 3.5:  Clustering performance comparison between clustering algorithms for 

the ZNF410 binding clusters in CHD4 promoter region. From top to bottom: (first 

row) the basic DBSCAN clustering; (second row) group-aware DBSCAN method. 
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Chapter 4  
Method Improvement with Cluster 
Merging and Signal Weight 

4.1 Motivation 

In cross-validating the results of the group-aware DBSCAN method with known 

binding site affinities, we identified two issues which we aimed to rectify: first, the 

method fails to properly exclude noise from the data; and second, the high-ranking 

clusters identified were all shown to be low-affinity binding sites which should be 

ranked lower. To fix these two issues, we further refine the clusters through a process 

of merging. 

4.2 Refinement by Merging 

Motif-Cluster incorporates a final step called “merge” to overcome improper ranking 

of potential clusters and the presence of singletons outliers in clusters. Clusters are 

merged if the gap between them shares a common, tolerated gap with the clusters of 

interest. The gap must meet one or two merging criteria: 

 “Merge Strategy 1” allows for the fusion of two nearby clusters if the gap 
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between them can be assigned to the same gap group as one of the nearby 

clusters according to the Gaussian component.  

 “Merge Strategy 2” allows for the fusion of a cluster and one nearby 

singleton if the gap between them can be assigned to the same gap group as 

one of the nearby clusters according to the Gaussian component. One 

exception exists to this criterion: the two can be fused if the gap between 

them belongs to the second most probable gap group, if the first most 

probable gap group is no more than 1.5 times the second probability. 

The parameters for DBSCAN with merging remain the same as the group-aware 

approach, summarized by Table 3.1. 

 

Figure 4.1: the final merge step applied to the results of union-split to combine 

nearby clusters and outliers with similar gaps. 

The final row of Figure 4.1 depicts the merge step as applied to the results of the 

union-split step of group-aware DBSCAN. Here, nearby clusters and outliers are 
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fused together if the gap between them meets the criteria described by the two merge 

strategies. 

4.3 Refinement by Adding Signal Weight 

4.3.1 Introduction to Signal Weight 

In the context of our BED (.bed) files, we will introduce the idea of “p-values” and 

signal weights to incorporate into our ranking. The p-value refers to the statistical 

significance of a particular peak, where a low p-value suggests that the peak has high 

statistical significance. We define the signal weight as -log (p-value) which provides 

a measure of the signal intensity or level of enrichment for a specific feature across 

the genome. 

We incorporate signal weight into our algorithm in order to properly weigh 

binding sights with differing affinities. All very low-affinity binding sites will be 

removed from the high ranking. 

Finally, we introduce a non-static motif_weight parameter to DBSCAN 

according to the signal weight. Complete parameters to DBSCAN are summarized by 

Table 4.1. 

method 𝛆𝛆 (epsilon) 
min_sample 

(total weight) motif_weight 

With signal weight 𝜇𝜇(𝐺𝐺i) + 2𝜎𝜎(𝐺𝐺i) 8 − log10 (p-value) 

Table 4.1: Internal parameters in DBSCAN for signal weight for motif_weight 

parameter. 
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4.4 Results 

4.4.1 Group-Aware DBSCAN Method with Merge Strategy  

 

Figure 4.1: Results of group-aware DBSCAN Methods with cluster merging for 

ZNF410 binding clusters in CHD4 promoter region. 

Figure 4.1 depicts the results of a group-aware DBSCAN with merging applied to the 

human genome region chr12:6,716,600-6,724,000 which are the ZNF410 binding 

clusters on the CHD4 promoter region. The first 10 rows depict the individual 

Gaussian component clustering. The 11th row depicts the results of union-and-split. 

The 12th row depicts the final merged result of the union-and-split clusters. 
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Figure 4.2 compares the final clustering result between the basic DBSCAN 

method (Chapter 2), the group-aware DBSCAN method (Chapter 3), and the group-

aware DBSCAN with merging (Chapter 4) as applied to the human genome region 

chr12:6,716,600-6,724,000 which are the ZNF410 binding clusters on the CHD4 

promoter region. Compared to the group-aware DBSCAN without merging, the 

merging results in better clustering by merging some single peaks to nearby clusters. 

 

 

Figure 4.2: Compare performance for ZNF410 binding clusters in CHD4 promoter 

region. From top row to bottom. (First row) DBSCAN Method, (second row) group-

aware DBSCAN Method, (third row) group-aware Method DBSCAN with merging. 

4.4.2 Group-aware DBSCAN with Signal Weight 

Figure 4.3 depicts the results of a group-aware DBSCAN with added signal weight 

applied to the human genome region chr12:6,716,600-6,724,000 which are the 

ZNF410 binding clusters on the CHD4 promoter region. The first 10 rows depict the 

individual Gaussian component clustering. The 11th row depicts the results of union-

and-split. The y-axis represents the signal weight of each binding site. Outliers are 
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illustrated as dotted lines. 

 

 

Figure 4.3: Group-aware DBSCAN Methods with added Signal Weight for ZNF410 

binding clusters in CHD4 promoter region. 

4.4.3 Motif-Cluster Method (with Merging and Added Signal 

Weight) 

 Clustering Method: 

Finally, we find and compare the results of the Motif-Cluster Method, which we 
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Figure 4.4: Motif-Cluster method results for ZNF410 binding clusters in CHD4 

promoter region. 

define as the group-aware DBSCAN method with merging and added signal weight. 

Figure 4.4 depicts the Motif-Cluster method applied to the human genome region 

chr12:6,716,600-6,724,000 which are the ZNF410 binding clusters on the CHD4 

promoter region. The first 10 rows depict the individual Gaussian component 

clustering. The 11th row depicts the results of union-and-split. The 12th row depicts 

the final merged result of the union-and-split clusters. The y-axis represents the 

signal weight of each binding site. Outliers are illustrated as dotted lines. 
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 Scoring Method: 

Scoring method is used the same as the Chapter 3’s scoring method. 

 

4.5 Motif-Cluster Method 

Here we will examine the Motif-Cluster Method, which we define as the group-

aware DBSCAN method with merging and added signal weight. 

4.5.1 Motif-Cluster Performance: 

 Anti-Noise Performance: 

Figure 4.5 depicts the rank for ZNF410 for two different p-values, identifying them 

as high-affinity sites. The ideal p-value threshold for finding reliable binding scores 

is a complex task that varies for different transcription factors. The list of p-values 

less than 0.005 are more precise, while the broader set with p-values less than 0.01 

include more noise. Figure 4.5 demonstrates that the top 20 significant regions 

identified in the high-affinity category (p<0.001) are preserved in the set with more 

noise (p<0.01). Of 20 regions identified with p<0.001, 7 were found in the p<0.01 set. 

Figure 4.6 shows that of the 20 regions identified with p<0.001, 9 were found in 

the p<0.005 set. This suggests that increasing the p-value threshold increases the 

noise, but this effect is not critically detrimental. This likely demonstrates that the 

Motif-Cluster method is effective in accounting for both binding affinity and 

clustering patterns.  
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Figure 4.5: Performance with and without noise. Prioritized top 100 regions in both 

p<0.001 and p<0.01. 
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Figure 4.6: Performance with and without noise. Prioritized top 100 regions in both 

p<0.001 and p<0.005 

 Running-Time performance: 

Figure 4.7 shows after running different number of peaks: 10000, 50000, 100000, 

150000, 200000, 227307, the corresponding running time in Step 1 (cluster and 

merge) and Running time in Step 2 (score and rank).  
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Figure 4.7: Motif-Cluster running time. 

4.6 Compare Motif-Cluster with Previous Methods 

In some parts of this section, we will introduce a shorthand for referencing the 

various methods discussed in this paper. You may reference Table 4.2 for a 

description of each method. 



 

37 

 

   

 

 

Method Description 
Merging Signal 

Weight 

a Basic DBSCAN with neighborhood No No 

b1 With groups for binding site gap (Group-aware) No No 

b2 Group-aware with merge Yes No 

c Group-aware with signal weight No Yes 

d Motif-Cluster Method Yes Yes 

Table 4.2: Shorthand descriptions of clustrering and ranking methods. 

4.6.1 Comparison for Clustering Visualization 

Figure 4.8 compares the clustering figures generated by various methods applied to 

the human genome region chr12:6,716,600-6,724,000 which are the ZNF410 binding 

clusters on the CHD4 promoter region. The first row depicts the basic DBSCAN 

approach which results in excessive clustering of certain binding sites and a lack of 

uniformity in gap ranges. This lack of uniformity is solved in row two (as well as 

subsequent rows), which includes group-aware DBSCAN in the clustering. The third 

and fifth row include the merge step, which results in less isolated singletons or 

clusters. The fourth and fifth row include the addition of signal weight to effectively 

exclude low-affinity TFBSs. The final row, then, is the Motif-Cluster method which 

includes both merging and the addition of signal weight. 
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Figure 4.8: Methods performance for ZNF410 binding clusters in CHD4 promoter 

region. (First row) DBSCAN; (second row) group-aware DBSCAN; (third row) 

group-aware DBSCAN with merge; (fourth row) group-aware DBSCAN with signal 

weights; (fifth row) Motif-Cluster. 

To sum up, Motif-Cluster method can have clusters with consistent gap range, 

and at the same time expansion of clusters in some certain ways. And also can 

remove the low-affinity sites when cluster size does not meet the requirement. 

 

4.6.2 Comparison for Clustering Size 

Table 4.4 demonstrates that Motif-Cluster (method d) generates clusters with a size 

of 3 in 46.83% of cases. Compared to other methods in Table 4.3 and Table 4.4, 

Motif-Cluster generates isolated data points (singletons) much less which indicates 

that Motif-Cluster’s approach, which combines signal weight and group-aware 

strategies, is more effective in identifying clusters of binding sites, rather than 
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isolated TFBSs. 

Cluster size 
Methods (number of clusters) 

a b1 b2 c d 
1 104990 195980 60053 95107 12257 
2 32763 13559 71870 10432 11858 
3 10751 1083 6676 27362 27443 
4 3400 116 642 5895 5987 
5 1158 23 89 790 807 
6 413 5 10 174 177 
7 144 5 9 31 32 
8 58 7 10 15 17 
9 23 4 4 10 10 
10 9 3 4 4 5 

>10 49 12 12 13 13 
    total 153758 210797 139379 139833 58606 

Table 4.3: Number of clusters for different cluster size using various methods. 

Cluster size 
Methods (percentage)  

a b1 b2 c d  
1 68.28% 92.97% 43.09% 68.02% 20.91%  
2 21.31% 6.43% 51.56% 7.46% 20.23%  
3 6.99% 0.51% 4.79% 19.57% 46.83%  
4 2.21% 0.06% 0.46% 4.22% 10.22%  
5 0.75% 0.01% 0.06% 0.57% 1.38%  
6 0.27% 0.00% 0.01% 0.12% 0.30%  
7 0.09% 0.00% 0.01% 0.02% 0.06%  
8 0.04% 0.00% 0.01% 0.01% 0.03%  
9 0.02% 0.00% 0.00% 0.01% 0.02%  
10 0.01% 0.00% 0.00% 0.00% 0.01%  

>10 0.03% 0.01% 0.01% 0.01% 0.02%  
    total 100.00% 100.00% 100.00% 100.00% 100.00%  

Table 4.4: Percentage of clusters for different cluster size using various methods. 
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4.6.3 Comparison for Rank of the CHD4 Promoter Region 

Method Description 

Rank of the 
CHD4 

promoter 
region 

a Basic DBSCAN with neighborhood 14 
b1 With groups for binding site gap (Group-aware) 20 
b2 Group-aware with merge 21 
c Group-aware with signal weight 8 
d Motif-Cluster Method 2 

Table 4.5: Comparison for rank of the CHD4 promoter region for all methods. 

From Table 4.5, notably the cross-validated region identified experimentally for 

CHD4 attains a rank 2 out of a total of 58,606 clusters. Compared to other 

methods, Motif-Cluster is able to effectively filter out the many putative binding 

sites and rank CHD4 near the top. 
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Chapter 5  
Motif-Cluster Package and Usage 

5.1 Introduction to Motif-Cluster 

In order to make a tool which implements the procedures described in the previous 

chapters and facilitate the user to rank and visualize motif regions, we developed a 

comprehensive Python package “Motif-Cluster” [16]. 

5.2 Design Ideas/Procedure 

We partition the Motif-Cluster method into two major steps: Cluster and Merge (step 

1), and Score and Rank (step 2). By separating these into distinct steps, one can 

visualize the results of step 1 without having to redo clustering. There are various 

visualization functions which visualize both the results of step 1 and step 2. 

Each command by default utilizes default parameters which define the Motif-

Cluster method. For comparison purposes, you may pass in parameters that alter the 

algorithms used by step 1 and step 2. These arguments and alternative commands are 

described in section 5.8   

5.3 Installation Instructions 
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5.3.1 Installation 

Begin by downloading the code and activating a new Conda environment: 

 

Install the necessary packages: 

 

5.3.2 Command Overview 

Run the program without any arguments to view sub-commands. More detailed 

information may be viewed in the project’s README.md. 

 

 

5.4 Input and Output files 

See Table 5.1 where most of the main commands take in input files as arguments and 

will output predefined files to the output folder specified by the -output_folder 
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argument. The order you run the commands is important because the output of some 

commands must serve as the input files to subsequent commands. 

 

Table 5.1: Input and output files for the main program commands. 

It should be noted that the output files for cluster_and_merge are different for 

Method b1 and Method c. The output files are documented in their respective 

sections.  

TSV (.tsv) refers to the tab-separated-value FIMO file output from The MEME 

Suite.  We may refer to an instance of this file as ‘fimo.tsv’ , but they may have other 

names. Each line describes a significant match to a motif, and lines are sorted in 

decreasing order of statistical significance. 

Here are a few sample lines from one such input file shown in Table 5.2: 
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Table 5.2: fimo.tsv example file. 

 

 

Table 5.3: A sorted .bed file example. 

 
A fimo.tsv file must be preprocessed into a sorted bed (.bed) file before it may 

be used as an input to the main program commands. Bed files should be stored in the 

input_files folder, which is where they are output during the preprocess step by 

default. Here is an example of the sorted bed file sorted_chr16.bed shown in Table 

5.3. 

Other output files are described in more detail in the section they are generated 

during. For example, results.csv is described in the section on preprocessing. 

5.5 Preprocessing Functions                                                                                 

The preprocessing functions are used to convert .tsv files into a sorted bed file 

suitable for the main program commands. The general command and program 

arguments are documented below: 
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Here is an example of preprocessing fimo_chr16.tsv to produce the 

sorted_chr16.bed file: 

 

 

5.6 Motif-Cluster Method 

5.6.1 Step 1: Cluster and Merge 

The cluster and merge command identifies local motif clusters by utilizing the Motif-

Cluster Method. The various command parameters are documented below: 
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Here are a few examples in which we cluster and merge the 

human_chr12_origin.bed input file. The second command specifies that -start and -

end command to only process part of the input bed file:  

 

There are several output files from the cluster and merge step which will be 

generated in the output folder specified by -output_folder: 

 Temporary processing files 

 results.csv 

 results_middle.csv 

 results_draw.csv 

 
The temporary output files should not be directly used but serve as input to the 

Score and Rank step. You may ignore the format of these files for the meantime, as 

they are described in later steps. 

See Table 5.4 where the first output file results.csv (previously referenced to as 

cluster-union.csv in this paper) is formatted such that each line is the nth line (peak) 

from the original bed file's information. Each column describes some property of the 

peak, such as the center position (center_pos) or weight. The class_id column 
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indicates the group the peak belongs to. When consecutive peaks have the same 

class_id and group, they may be aggregated into a single cluster 

 

Table 5.4: results.csv output from cluster and merge. 

See Table 5.5 where the second output file result_middle.csv file is formatted 

such that each line is the nth cluster from the original bed file. The number of peaks 

and the group for the cluster in the original bed file are indicated by  

‘data_count_new’ and ‘cluster_belong_new’, respectively. ‘data_count_sum’ may be 

ignored, and is only used internally. 

 

Table 5.5: results_middle.csv output from cluster and merge. 

See Table 5.6 where the third output file result_draw.csv file is used to store 

color information for the draw command. Each row is one peak for a different group 

and contains color information for the subfigures generated by the draw command. 

Given that the Motif-Cluster Method generates 12 subfigures, there are 12 

corresponding columns ranging from ‘draw_input0’ to ‘arr_final_draw’ to represent 

these 12 subfigures. The weight column is used to visualize the weight in each figure.  
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Table 5.6: result_draw.csv output from cluster and merge. 

5.6.2 Step 2: Score and Rank 

The second step in the Motif-Cluster Method is the Score and Rank command. Score 

and Rank scores each cluster and ranks them based on their final score. The various 

command parameters are documented below: 

 

 

 
Score and Rank must be done after Cluster and Merge, as it relies on the input 

files result.csv and result_middle.csv generated by Cluster and Merge.  

Here is an example in which we run the command based on the output of 

Cluster and Merge. We set the weight switch with the -weight_switch flag to indicate 
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the program will include weight information: 

 

There are several output files from the score and rank step which will be 

generated in the output folder specified by -output_folder. 

 result_cluster_weight.csv 

 result_score.csv 

 
See Table 5.7 where the first output file result_cluster_weight.csv file lists 

cluster length information for each group. The first row is special in that it contains 

the total number of peaks for every row. Each subsequent row contains the peaks for 

a particular group. In this example, columns ‘cluster0’ to ‘cluster9’ list the weights of 

all peaks in the first group, and columns ‘cluster_length0’ to ‘cluster_length9’ list the 

weights of all peaks in the first group. Other information in the file is not useful to 

the user. 

 

Table 5.7: result_cluster_weight.csv output file from score and rank. 

See Table 5.8 where the second output file "result_score.csv" is formatted such 

that each row contains information about the nth highest-scoring cluster. Each 
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column is described below: 

 ‘start_pos_head_axis' and 'end_pos_head_axis' denote the start and end 

coordinates of the cluster, respectively. 

 'cluster_size' column indicates the number of peaks within the cluster. 

 'belong_which_class' specifies the group to which the cluster is assigned. 

 'max_weight' identifies the highest weight of the peaks in the cluster. 

 'average_gap' calculates the average gap of each cluster. 

 'score' represents the final score of the cluster. 

 

Table 5.8: result_score.csv output file from score and rank. 

5.7 Drawing Functions 

5.7.1 draw 

The draw command can generate an image about a region of interest and show the 

distinctively colored clusters.  

The various command parameters are documented below: 
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Figure 5.1: ZNF410 binding clusters on the CHD4 promoter region. (Mouse genome 

chr6: 125,087,000-125,097,000). 
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Here is an example in which we draw the graphic using the sorted bed file and 

the output from the cluster and merge step:  

 

 

 
The output graphic draw_figure.pdf shows ZNF410 binding clusters on the 

CHD4 promoter region shown in Figure 5.1. 

 

5.7.2 draw_rank 

The draw_rank command can generate an image about the ranks (performance) of 

the top 100 clusters. It compares the clusters with and without noise data. The 

various command parameters are documented below: 

 

 

 
Here are two examples of running the command with half noise and whole noise 

results scores. 
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The output file is normal_vs_noise_rank.pdf in the output folder you defined 

and will look similar to Figure 4.5 and Figure 4.6. 

 

5.7.3 draw_score_size 

The draw_score_size command can generate an image about corresponding cluster 

scores and sizes for the top 100 clusters in specific genomes. The various command 

parameters are documented below: 

 

 

 
In this example, we use the command on the results_score.csv file as input and 

output to the drawing_f3 folder: 

 

The resulting graph image has the rank id as the x-axis, the corresponding score 

as the left y-axis, and the corresponding cluster size as the right y-axis shown in 

Figure 5.2. 
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Figure 5.2: Cluster size and score for top 100 regions in chr6 on Human genome. 

Each color in cluster graph represents one cluster. On the curve plot, blue curve 

means the score and red curve means the cluster size. 

5.7.4 draw_cluster_weight 

The draw_cluster_weight command is used to visualize every Gaussian component 

whose peaks are best fitted according to how far each peak lies from its neighbor. 

The resulting peaks are graphed for each Gaussian component they belong to and 

distributed from 0 to 9 with an interval of 1. The various command parameters are 

documented below: 
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In this example, we use result_cluster_weight.csv as the input and output to the 

drawing_f4 folder: 

 

 

See Figure 5.3 which consists of 10 subfigures, each corresponding to a 

Gaussian component. For each subfigure, the weight value is on the x-axis and the 

cluster count is on the y-axis.  

 

 

Figure 5.3: Weight distribution of peaks that best fit the corresponding 10 Gaussian 

components. 

Here is a closer view of one of the subfigures depicting a single Gaussian 

component shown in Figure 5.4: 
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Figure 5.4: Weight distribution of peaks that best fit the corresponding nth Gaussian 

component. 

5.7.5 draw_GMM 

The draw_GMM command is used to visualize the GMM distributions of all 

Gaussian components. The various command parameters are documented below: 

 

 

 
The command must be run after the calculate_score command, as it relies on 

temporary files generated by the score and rank step. Specifically, it expects 

three .npy files to be in the tmp_output folder, which is done automatically by 

calculate_score: GMM_covariances.npy, GMM_means.npy, GMM_weights.npy. 
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You may also use a different input folder instead of tmp_output. In this 

following example, we use the example_output_step1_1 folder. 

 

 

 
Figure 3.2 is one example of the output from draw_GMM. 

 

5.8 Methods Comparison by Motif-Cluster                                                                

Motif-Cluster can be used to apply variations of the method for comparison purposes. 

By default, Motif-Cluster recommends the best practice by using gap and weight 

information. 

 

5.8.1 Method a: Direct DBSCAN without Groups 

The cluster_and_merge_simple_dbscan command uses the direct DBSCAN method 

and displays the results. 

The various command parameters are documented below: 
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In these command examples, the first command processes the whole .bed file, 

while the second command only processes part of the .bed file.  

 

The rest of the process is similar to the Motif Cluster method, and only the 

command arguments differ. For the calculate_score command, you must pass the “-

weight_switch off” argument: 

 

For the draw command, you must pass the “-method 2” argument: 

 

 
5.8.2 Method Group-based, Group-based with Merge, & Group-

based with Weight 

The Motif-Cluster Method may be modified to use weight and cluster information, 

which we describe as Method b1, b2, and c shown in Table 5.9. The process and 

commands are the same but vary in the values for the -merge_switch and -

weight_switch program arguments. The output files are of the same format as the 

base command, but may differ in the file name.  
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Table 5.9: Overview of alternate methods according to -merge_switch and -

weight_switch arguments. 

Here is the general format for the commands utilized by Method b1, b2, and c: 

 

 

 

Method b1 uses a union-split only, without merge or weight information. To 

visualize the output files, you can pass the “-method 3” argument to the draw 

command as following: 

 

 

Figure 3.4 depicts an example of a figure generated by Method b1. 

 

Method b2 uses a union-split with merging clusters, without weight 

information. To visualize the output files, you can pass the “-method 4” argument to 
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the draw command: 

 

 

Figure 4.1 depicts an example of a figure generated by Method b2. 

 

Method c uses a union-split with weight information, but without merge 

clusters. To visualize the output files, you can pass the “-method 5” argument to the 

draw command: 

 

 

 
Figure 4.3 depicts an example of a figure generated by Method c. 
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Chapter 6  
More Applications: Putative Effects 
of PHB1 Binding 

6.1 Introduction  

One other application of Motif-Cluster is based on the work of Jackson et al. [21], 

which demonstrates a model for the invivoanti-cancer mechanism of FL3 involving 

PHB1-induced Axin1 expression and β-catenin degradation.  

FL3 is a synthetic derivative called flavaglines which is being tested in intestinal 

cells in pre-clinical models for the first time. Consequently, it is also the first time to 

verify that flavaglines target Prohibitin 1 (PHB1) as a ligand in the intestines, where 

PHB1 is a highly conserved protein with multiple functions.  

PHB1 is as a novel factor able to bind to the (TGYCC) motif which is like the 

underlined portion of the p53 binding site (RRRCWWGYYY; R = A or G, W = A or 

T, Y = C or T) which repeats this motif with a 0-21 base pair spacer in-between.  

The figure on the left is the one in the original paper which is a heat map of 

genes implicated in regulating Wnt/β-catenin signaling identified by RNAseq 

analysis using total RNA from tumoroids treated with FL3. Figure 6.1 on the right 

displays the chromosomes that each gene regulating Wnt/β-catenin signaling in the 
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left figure belongs to. It shows among the genes identified by RNAseq, the 

expression of Axin1 was most significantly altered by FL3 and Axin1 is in chr16. 

 

 

Figure 6.1: The significant shown Chromosome. 

  

ChIP assays demonstrated that PHB1 associates with a sequence: 

5′GGCCTGGGCTTCGGCGCTCTGGCTCGGGCTCTGGCTC-3′ located -5668 to -

5631 from the transcriptional start site (TSS) in the 5′UTR which is contained in 

Axin1 promoter. Our Motif-Cluster package can predict the motif in that location is 

most or relatively essential by ranking all the meaningful motifs in Axin1 area in 
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chr16.  

 

By using the following method, we found that 

5′GGCCTGGGCTTCGGCGCTCTGGCTCGGGCTCTGGCTC-3′ is truly the 

second place in the Axin1 area of chr16. It means our package has a good prediction 

in essential motif finding. 

 

6.2 Method 

The paper reports the potential RGYYY motif. R=(A,G) Y=(C,T) W=(A,T). 

Specifically, we finished the experiments using three steps: 

 Step 1: We search for double motif RGYYYNRGYYY sites. 

 Step 2: We rank the sites by the repetitive numbers and potential binding 

affinity of the RGYYYNRGYYY by applying the Motif-Cluster package. 

 Step 3: We filtered the regions overlapping the repetitive features to get 

nontrivial regions. 

6.3 Results 

The results are summarized by Table 6.1 which ranks all predicted TFBS in the 

Axin1 area. Chromosome 16 is shown with parameter total-weight = 4.3, the local 
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rank in Axin1 area(chr16:336440-403676) and global rank in chr16. Then in the gene 

Axin1 area is in 337440-402676.  The second place of motif in the Axin1 area on the 

ranking list is located in 402683-402694 which is among 

5′GGCCTGGGCTTCGGCGCTCTGGCTCGGGCTCTGGCTC-3′.  

Local Rank in 
Axin1 area 

Global rank in 
chr16 

Start position End position 

1 111 Start:337736 End:337747 
2 895 Start:402683 End:402694 
3 1013 Start:343281 End:343297 
4 1920 Start:390518 End:390529 
5 2132 Start:347844 End:347854 
6 2133 Start:358492 End:358502 
7 2134 Start:375705 End:375715 
8 2135 Start:387726 End:387736 
9 2136 Start:395014 End:395024 
10 3318 Start:337381 End:337391 
11 3319 Start:340666 End:340676 
12 3320 Start:346356 End:346366 
13 3321 Start:354131 End:354141 
14 3322 Start:356863 End:356873 
15 3323 Start:396465 End:396475 
16 5320 Start:359622 End:359633 
17 5321 Start:402657 End:402673 
18 5446 Start:362776 End:362786 

Table 6.1: The local and global ranking of Motif-Cluster predicted clusters. 

6.4 Limitations 

RGYYYNRGYYY is a very general motif that occurs universally. It would be better 

to obtain a more specific motif from ChIP-seq. Also, we would like to link with high 
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throughput experimental data such as RNA-seq to test and improve our scoring 

function for motif occurrence.
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Chapter 7  
Conclusions and Future Work 

7.1 Conclusions 

In this thesis, the fusion of density-based clustering with flexible binding gap 

parameters and affinities offers a robust technique for the effective ranking of 

transcription factor regulatory regions, even without relying on experimental data. 

Motif-Cluster emerges as an advanced and adaptable tool, effortlessly utilizing this 

algorithm to analyze genome-wide binding site data, thereby identifying key 

regulatory areas for various transcription factors.  

By arming researchers with this essential tool, Motif-Cluster not only promotes 

groundbreaking discoveries but also inspires the design of cutting-edge experiments, 

enhancing our comprehension of transcriptional regulation in diverse biological 

scenarios. It enables scientists to explore the complexities of gene expression control 

more thoroughly, uncovering new insights and potentially revealing regulatory 

patterns that might go unnoticed with traditional methods. Motif-Cluster, with its 

extensive and flexible structure, paves the way for new research opportunities, 

advancing the field of transcription factor analysis and marking a new phase of 

precision and depth in the study of regulatory genomics. 
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7.2 Shortcomings 

The work have fewer cases as validation data. There are not many experimentally 

discovered important motif clusters. 

We haven’t integrated other biological data, such as ChIP-seq to improve the 

ranking strategy. Current work is purely computational. 

We only consider one motif at a time. Currently we don’t consider multiple 

motifs on a genome-wide analysis. 

The cluster and merge step of Motif-Cluster is a bottleneck when compared to 

the score and rank step. Future efforts should be made to optimize the efficiency of 

core processes within cluster and merge through using BEDTools or pybedtools in a 

parallelized (multi-process) way. We can parallelize these operations on different 

segments of the genome by local dependency of the binding sites to improve overall 

performance and responsiveness of the tool.  

Motif-Cluster requires slightly more computational time for the cluster and 

merge step compared to the score and rank phase. Future efforts should focus on 

optimizing the efficiency of these bottleneck functions within the clustering and 

merging processes by using BEDTools or pybedtools in a multi-process way [31]. 

Optimizing these operations by local dependency of the binding sites and conduct a 

genomic segmentwise parallel computing would further enhance the tool’s overall 
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performance and expeditiousness. 

7.3 Future Work (Integration with Other Tools) 

Our TFBS cluster prediction and ranking tool can be used in any biological analysis. 

We can rank more TF regulation networks, and the network can be used in tools such 

as NETBID2. 

This work can be improved cluster ranking scores by integrating biological 

experimental data.     
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