Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

6-1987

In-Duct Measurement of Turbocharger Noise

William L. Krasson Purdue University

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Krasson, William L. and Bolton, J Stuart, "In-Duct Measurement of Turbocharger Noise" (1987). *Publications of the Ray W. Herrick Laboratories.* Paper 279. https://docs.lib.purdue.edu/herrick/279

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

IN-DUCT MEASUREMENT OF

TURBOCHARGER NOISE

W. L. Krasson J. S. Bolton

Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907.

INTRODUCTION

Turbocharger

- as used on large diesel truck engines

Noise Control

 noise radiated downstream from turbine side

• Objective

 a measurement technique which indicates effect of modifications and is independent of precise rig geometry

• Approach

- define measurement empirically
- investigate its character theoretically

EXPERIMENTAL PHASE

• Centrifugal Fans

- single mic with flow noise suppressor
- choose radial location so that $W=p_{rms}^2S/\rho c$ is approximately true
- --- technique adapted to broadband sources (uncorrelated modes)

• Problems

- frequency response and directivity of suppressor
- assumption that "typical point" can be found when noise is predominantly tonal and multi-modal

EXPERIMENTAL PHASE

Suggested Solution

 circumferentially average mean squared pressure measured at duct periphery

$$(p_{\rm rms}^2)_{\rm av} = \frac{1}{2\pi} \int_0^{2\pi} p_{\rm rms}^2 d\theta$$

 p²_{rms} measured at duct circumference with flush mounted pressure microphone

Possible Problem

— boundary layer noise

Power Spectra at 25000 RPM

Preliminary 6-Speed Test Cumulative Pressure Distributions at 25000 RPM

Circumferential Pressure Distributions at 25000 RPM

Comparison of 25-Point Tests Before and After Rig Move Circumferential Pressure Distributions at 25000 RPM

Comparison of Average Power Spectra at 20000 RPM

Comparison of Average Cumulative Pressure Distributions at 20000 RPM

THEORETICAL PHASE

• Question

— how is circumferentially averaged mean squared pressure related to downstream radiated sound power?

• Investigate

- sound radiation from an axial dipole located at position of cutoff
- for given source strength, calculate:
 - averaged pressure
 - sound power
 - proportionality between them

$$p(r,\theta,z,t) = j\omega \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\gamma_{mn}r) [A_{mn} \cos(m\theta) + B_{mn} \sin(m\theta)] e^{-jk_{mn}z} e^{j\omega t}$$

$$p(r,\theta,z,t) = \int_{m=0}^{\infty} \sum_{n=1}^{\infty} J_m(\gamma_{mn}r) [A_{mn} \cos(m\theta) + B_{mn} \sin(m\theta)] e^{-jk_{mn}z} e^{j\omega t}$$

CASE 2 - DIPOLE NEXT TO RIGID TERMINATION Boundary Conditions:

$$u_z^{II}(r,\theta,-z_o,t) = 0$$

$$p_1(r,\theta,0,t) - p_2(r,\theta,0,t) = P_0 \delta(\mathbf{R} - \mathbf{R}_0) e^{j\omega t}$$

Coefficients:

$$\mathbf{A}_{\mathbf{mn}} = -\mathbf{j} \frac{\beta_{\mathbf{mn}}}{\omega \rho \Gamma_{\mathbf{mn}}} \mathbf{P}_{\mathbf{0}} \mathbf{J}_{\mathbf{m}}(\gamma_{\mathbf{mn}} \mathbf{r}_{\mathbf{o}}) \mathbf{cos}(\mathbf{m}\theta_{\mathbf{o}})$$

$$\mathbf{B}_{\mathrm{mn}} = -j \frac{\beta_{\mathrm{mn}}}{\omega \rho \Gamma_{\mathrm{mn}}} \mathbf{P}_{\mathbf{0}} \mathbf{J}_{\mathrm{m}}(\gamma_{\mathrm{mn}} \mathbf{r}_{\mathrm{o}}) \sin(\mathrm{m}\theta_{\mathrm{o}})$$

$$\beta_{mn} = \frac{j \sin(k_{mn} z_o)}{\cos(k_{mn} z_o) + j \sin(k_{mn} z_o)}$$

BASIC EXPRESSIONS: Circumferentially Averaged Mean Squared Pressure

$$\overline{\mathbf{p}}_{\mathbf{rms}}^2 = \frac{1}{2\pi \mathbf{a}} \int_{0}^{2\pi} \frac{1}{2} \mathbf{p}(\mathbf{r} = \mathbf{a}) \mathbf{p}^*(\mathbf{r} = \mathbf{a}) \mathbf{a} d\theta$$

$$\overline{p}_{\rm rms}^2 = \frac{\omega^2 \rho^2}{2} \sum_{\rm m=0}^{\infty} \sum_{\rm n=1}^{\infty} \sum_{\rm q=1}^{\infty} J_{\rm m}(\gamma_{\rm mn}a) J_{\rm m}(\gamma_{\rm mq}a) \epsilon_{\rm m}$$

$$[\mathbf{A}_{mn}\mathbf{A}_{mq}^{*} + \mathbf{B}_{mn}\mathbf{B}_{mq}^{*}]\mathbf{e}^{-\mathbf{j}(\mathbf{k}_{mn} - \mathbf{k}_{mq})\mathbf{z}}$$

BASIC EXPRESSIONS: Power

$$I_{z}(r,\theta,z,t) = \frac{1}{2} \operatorname{Re} (pu_{z}^{*})$$

$$W = \int_{\theta=0}^{2\pi} \int_{r=0}^{a} I_{z}(r,\theta,z,t) r dr d\theta$$

$$W = \frac{\rho\omega}{2} \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} k_{mn} \Gamma_{mn} [A_{mn}^2 + B_{mn}^2]$$

$$\mathbf{A}_{\mathrm{mn}}^{2} = \mathbf{A}_{\mathrm{mn}} \mathbf{A}_{\mathrm{mn}}^{*}$$

$$\mathbf{B}_{mn}^2 = \mathbf{B}_{mn} \mathbf{B}_{mn}^*$$

SOUND POWER

$$W = \eta \ \frac{\overline{p}_{rms}^2 \cdot S}{\rho c}$$

$$10 \log_{10} \left[\frac{W}{W_{ref}} \right] = L_{\eta} + 10 \log_{10} \left[\frac{\overline{p}_{rms}^2 \cdot S}{\rho c W_{ref}} \right]$$

where:

 $\mathbf{L}_{\eta} = \mathbf{10} \, \log_{\mathbf{10}} \left(\eta \right)$

Figure 5.2.14 Logarithmic Total Pressure Distribution of Unmodified, Unsplit Turbocharger

UIDRFT PRFSSII

Fundamental Pressure Distributions Resulting From Increased Blade/Cutoff Clearance

-

Average Cumulative Pressure Distribution at 25000 RPM Resulting from Modulated Blade Spacing (48=11°)

CONCLUSIONS

- Circumferential variation of downstream radiated sound pressure is significant
- Experimentally it has been shown that the circumferentially averaged mean squared pressure is independent of small rig changes
- Theory indicates that averaged pressure may be used to calculate sound power to accuracy of several decibels
- Circumferentially averaged mean squared pressure may be used to judge success of noise control modifications