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Abstract

Weather is responsible for approximately 70% of air transportation delays in the National Airspace System, and delays resulting from
convective weather alone cost airlines and passengers millions of dollars each year due to delays that could be avoided. This research
sought to establish relationships between environmental variables and airport efficiency estimates by data mining archived weather and
airport performance data at ten geographically and climatologically different airports. Several meaningful relationships were discovered
from six out of ten airports using various machine learning methods within an overarching data mining protocol, and the developed
models were tested using historical data.
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I. Introduction

The Federal Aviation Administration (FAA, 2015) outlines the major causes of delays in the National Airspace System
(NAS). These sources of delay (by the percentage of total delay) are attributed to weather (69%), traffic volume (19%),
equipment failures (e.g., navigation, communications, surveillance equipment; 1%), runway unavailability (6%), and other
miscellaneous causes (5%). As documented by a review of NAS performance data collected over six years (from 2008 to
2013), adverse weather is the single largest cause of NAS delays, accounting for almost 70% of all delays (Sheth et al.,
2015).

Delays generate enormous costs to both the flying public and airlines. In an FAA-sponsored National Center of
Excellence for Aviation Operations Research (NEXTOR) report, Ball et al. (2010) estimated the total cost of flight delays in
2007 was $32.9 billion. This estimate combined the direct costs borne by airlines and passengers as well as the more subtle
indirect costs that ripple through the U.S. economy resulting from flight delays. In 2014, flight delay costs were estimated to
be $25 billion for U.S. air carriers by AviationFigure (2015). As weather is responsible for the majority of flight delays
in the NAS (Sheth et al., 2015), a great deal of effort has been spent trying to predict and estimate the effects of weather
on the NAS.
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The key components necessary to enhance airspace
efficiencies are accurate weather prediction and correctly
converting these anticipated environmental conditions into
expected impacts on scheduled traffic flows. A key metric
in translating weather conditions and other impacts
affecting air traffic flows at each major terminal is the
aircraft arrival rate (AAR). Per the FAA (2016), the AAR is
‘‘a dynamic parameter specifying the number of arrival
aircraft that an airport, in conjunction with terminal air-
space, can accept under specific conditions throughout a
consecutive sixty (60) minute period’’ (sec. 10-7-3). FAA
tactical operations managers along with terminal facility
managers establish primary airport runway configurations
and associated AARs on at least a yearly basis for each
facility or as required (e.g., as a result of airport construction
or terminal airspace redesign). The AAR establishes maxi-
mum airport capacity as a function of aircraft separation
(miles-in-trail) on approach to the runway as determined
by aircraft approach speeds. Based on a simple equation,
average aircraft approach speeds (in knots) are divided by
the desired miles-in-trail aircraft separation distance (with
fractional remainders from this division conservatively
rounded down to the nearest whole number).

It is fortunate that both the FAA and the National
Oceanic and Atmospheric Administration (NOAA) have
maintained historical databases that can be applied to better
understand how these variable relationships may contribute
to AAR values. Most notably, the FAA has assembled a
comprehensive set of NAS performance and weather data
over the last decade. For the most part, this information has
been used in hindsight to assess previous day, week,
month, and year airspace performance statistics to reac-
tively improve airspace efficiency problems. While this
information is useful, what is needed are predictive tools
that can assess the impacts of weather-based NAS con-
straints before they occur.

Previous research has set the stage to create these tools.
A great deal of this effort has been spent establishing
the relationships between various input variables and air-
port arrival rates or runway configurations using evolving
modeling approaches and statistical tools, e.g., support
vector machines (Smith, 2008), bagging decision trees
(Wang, 2011), Bayesian networks (Laskey et al., 2012),
and logistic regression (Dahl et al., 2013). More recently,
Hughes (2016) examined NAS performance data and
NOAA National Centers for Environmental Information
(NCEI, formerly the National Climate Data Center) data
archives using data mining techniques to better understand
how external constraints, such as weather, alter airport and
terminal operational efficiencies. Explored in this study
was the potential use these data have in understanding how
the airspace system responds to flow constraints, and if
correctly interpreted, how this knowledge can be used to
predict future NAS reaction and performance by applying
numerical predictive weather guidance.

Previous research has been encouraging, but the results
have been difficult to apply operationally. Further, the
actual impact of weather on operations is often complicated
by the accuracy of forecasts issued by the National Weather
Service (NWS), traffic metering inconsistencies, and
scheduled airspace loadings. Therefore, the present study
asked two fundamental questions:

N First, can data mining methods be used to discover
significant relationships between various meteorolo-
gical variable inputs and airport efficiencies recorded
in the FAA and NCEI databases?

N Second, what factors can then be used as inputs to
estimate AARs?

The outcomes resulting from the first question fed
directly into the second question. Any consistencies in
modeling results were noted across the ten airports selected.

As a result, this research sought to translate predictive
weather guidance into NAS performance impact. Foun-
dational to this study was the use of data mining techniques
to detect patterns in the behavior of the airspace system
through its airport terminals as they react to changing
weather conditions and traffic demands. With an airport’s
response to various weather conditions better understood,
arrival rates could then potentially be estimated with some
degree of skill (perhaps out to several days) using
predictive numerical weather guidance. The ability of
national airspace managers to set realistic airport arrival
rates during the early planning phases of NAS operations
could enhance airport efficiencies, lower operational costs,
and improve flight safety.

II. Methodology

2.1. Data Collection

In this study, two datasets were collected from two
different sources and consolidated into one final dataset. The
Aviation System Performance Metrics (ASPM) database is
the FAA Operations and Performance data that consists of
airport performance statistics and limited weather variables
archived at 15-minute and hourly intervals. In order to add
additional weather parameters to the analysis, meteorological
hourly station data from NOAA NCEI were collected for
the same airports. This dataset was merged with the ASPM
data to increase the number of environmental variables (e.g.,
precipitation type and amount). Additionally, the NWS
provided Localized Aviation MOS (Model Output Statistics)
Program (LAMP) as a third source of data that supplied
predictive numerical weather guidance.

Ten specific airports were chosen for the data mining:
(a) Hartsfield-Jackson Atlanta International Airport (ATL),
(b) Los Angeles International Airport (LAX), (c) O’Hare
International Airport (ORD), (d) Dallas/Fort Worth
International Airport (DFW), (e) John F. Kennedy Inter-
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national Airport (JFK), (f) Denver International Airport
(DEN), (g) San Francisco International Airport (SFO),
(h) Charlotte-Douglas International Airport (CLT), (i)
LaGuardia Airport (LGA), and (j) Newark Liberty
International Airport (EWR).

For each of the ten airports, a two-year sample of 15-
minute-interval ASPM performance metrics and weather
observations were extracted from the FAA database in
2014 and 2015. This sampling resulted in 70,080 observa-
tions (rows of data) with 83 variables within each
observation (or row) for each of the ten airports selected.
This sample size is large enough for the data mining
purpose in this study.

2.2. Demographics

All ten airports selected for this study are part of the
FAA’s ‘‘Core 30’’ and are located in major metropolitan
areas that see exceptionally high passenger and/or air cargo
demands. Some of the airports are capacity constrained
by physical airport layout or by geographical location and
associated weather and climate conditions. A summary of
the airport demographics is provided in Table 1.

2.3. Variables

Tables 2 and 3 present variables and descriptions from
two different datasets. The number of available weather
variables increases from the 15-minute, to the hourly, and
then hourly merged datasets. The hourly merged dataset
encompasses all the weather variables contained in the 15-
minute and hourly data and adds weather variables beyond
those two datasets.

The 15-minute (quarterly hour) data contain a simple
set of weather data. These are CEILING (measured in
hundreds of feet), TEMP (or temperature, measured in
degrees Fahrenheit), VISIBLE (or visibility, measured
in statue miles), WIND_ANGLE (or wind angle, measured
in degrees), and WND_SPED (or wind speed, measured
in knots). A categorical variable, MC (meteorological

conditions) completes the weather variables contained in
the 15-minute dataset and reports if the terminal weather
conditions were IFR (I) or VFR (V).

The hourly data introduces three new variables beyond
those contained in the 15-minute datasets. These are
NEARBYTS which counts the number of thunderstorms
detected by nearby ASOS stations within 50 miles of the
terminal, SEVERITY which assesses local weather impacts
on airport operations, and WTHR_TYPE which describes
weather conditions impacting traffic flow.

Finally, the hourly merged dataset joins the hourly FAA
ASPM data with the near-hourly NCEI meteorological
station data, adding both redundant and new weather
variables into the modeling analyses. The two datasets are
not perfectly time matched, and the NCEI data times
needed to be advanced or retarded in time to synchronize
the variables to the nearest hour, as well as to adjust the
GMT times to local time to match the FAA ASPM data
formats. As an example, CEILING is found in both the
ASPM and NCEI (as CLG, or ceiling) datasets, but
unlimited ceilings are reported as the numeric character
999 in the ASPM data, while unlimited ceilings in the
NCEI data are reported as 722, making the two datasets
appear to be more different than they actually are.

2.4. Data Analysis Procedure

As previously stated, this study used all available 2014
and 2015 ASPM records to train and validate each model
created and 2016 ASPM records to then score these
models. Decision tree (DT), linear regression (REG), and
neural network (NN) models were created using combined
2014 and 2015 ASPM data sampled. Cases between
midnight and 0600 were removed (per Dhal et al., 2013,
and others) to eliminate periods of light airport traffic
demands in the model analyses. These are the data used for
reporting the results of this study.

The combined 2014 and 2015 datasets were partitioned
60% and 40% respectively to train and validate the
performance of all of the models. The 2016 data were

Table 1
Airport demographics summary.

Airport
Number of

runways
Arrival/departure

configs
Max.
AAR

Min.
AAR

Passenger enplanements
(millions)

Cargo moved
(metric tons)

ATL 10 17 132 18 50.5 1,200,000
CLT 8 13 92 35 21.5 211,944
DEN 12 19 152 32 28.2 646,566
DFW 14 7 120 30 31.3 1,800,000
EWR 6 9 48 16 19.9 1,300,000
JFK 8 12 60 26 29.2 1,500,000
LAX 8 10 80 12 39.6 3,100,000
LGA 4 11 40 24 14.7 7,586
ORD 16 11 114 32 37.5 4,200,000
SFO 8 19 54 25 25.7 590,110

Note. 2016 data provided by FAA (2017a, 2017b).
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then used to score the models by using the Score node
within the SASH EMTM. The 2016 scored data results
yielded predicted arrival rates that were then compared with
the actual arrival rates observed that year. Finally, as a
demonstration, a ‘‘present-day’’ case was run using NWS
24-hour predictive weather guidance to predict future
AARs, and this estimate was then compared with the actual
arrival rate observed in hindsight. A summary of the data
analysis is shown in Figure 1.

Three different analyses were conducted for each airport
to produce more meaningful results, as follows.

The first analysis used the entire two-year (2014–2015),
15-minute interval ASPM data. The second analysis used
the two-year FAA ASPM dataset extracted at hourly

intervals, allowing comparison of the results at each airport
using different sampling rates with several additional
meteorological variables. In the third analysis, merging
FAA ASPM and hourly NOAA NCEI surface meteorolo-
gical data added even more weather information variables
(beyond those found in the ASPM data) into the model. In
all three analyses, the AAR is the target variable, and date,
hour, and weather variables are the predictors.

The performance of each model (decision tree, linear
regression, and neural network) was assessed for each
airport. The goal was to create a predictive system where
estimated input variables could then forecast airport
efficiency. The 2014–2015 15-minute and hourly ASPM
datasets, as well as the hourly merged ASPM and surface

Table 2
FAA ASPM variable definitions.

Name Level Definition

ARR_RATE Interval Airport-supplied arrival rate for capacity
CEILING Interval Ceiling measure in hundreds of feet
MC Nominal Meteorological conditions (IFR or VFR)
NEARBYTS Interval Number of nearby thunderstorms within 50 miles per ASOS
N_CEILING Interval Nearby ceilings within 50 miles per ASOS
SEVERITY Interval Assessed weather impact by category
TEMP Nominal Temperature ( ˚F)
VISIBLE Interval Visibility in nautical miles
WIND Interval Wind impact categories (airport specific)
WND_ANGL Nominal Wind direction (degrees from magnetic north)
WND_SPED Nominal Wind speed (knots)
WTHR_TYPE Nominal Predominant weather categorized by type

Note. Bolded variables are contained in the hourly ASPM, but not in the 15-minute dataset.

Table 3
NCEI meteorological station data variable definitions.

Name Level Definition

ALT Nominal Altimeter setting
A.W. Nominal Auto-observed present weather
CLG Nominal Ceiling (hundreds of feet)
DEWP Nominal Dew point ( ˚F)
DIR Nominal Wind direction in 36 compass degrees 990 is variable
GUS Nominal Wind gust (MPH)
H Nominal High cloud type
L Nominal Low cloud type
M Nominal Middle cloud type
MAX Nominal Maximum temperature ( ˚F)
MIN Nominal Minimum temperature ( ˚F)
M.W. Nominal Manually observed present weather
PCP01 Nominal One-hour liquid precipitation (inches to nearest 100th)
PCP06 Nominal Six-hour liquid precipitation (inches to nearest 100th)
PCP24 Nominal 24-hour liquid precipitation (inches to nearest 100th)
PCPXX Nominal 3- or 24-hour liquid precipitation (inches to nearest 100th)
S.D. Nominal Snow depth (inches)
SKC Nominal Sky cover (by octal)
SLP Nominal Sea level pressure (millibars to nearest tenth)
SPD Nominal Wind speed (MPH)
STP Nominal Station pressure (millibars to nearest tenth)
TEMP Nominal Temperature ( ˚F)
VSB Nominal Visibility (statute miles to nearest tenth)
W Nominal Past weather indicator
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meteorological weather datasets, were used to create and
validate the models, and these models were then scored
using actual 2016 observed weather and airport AARs.

Three datasets were assembled for each of the 10
selected airports: (a) a 15-minute ASPM dataset with a
limited number of meteorological variables, (b) an hourly
dataset that essentially takes the information contained
from the 15-minute ASPM dataset at the top of each hour
and introduces several more meteorological variables not
contained in the 15-minute data, and (c) a merged dataset
containing the hourly ASPM data and NCEI meteorological
station data that introduce even more weather variables

(beyond the hourly ASPM) into the model decision-making
process. As a result, 90 models were trained, validated, and
scored (ten selected airports using three different datasets
using three models per dataset).

III. Results

3.1. Model Comparison

To directly compare the models, the square roots of the
validated model average square errors, or ASE, were
compared. The ASE is the sum of all squared errors (SSE)

Figure 1. Data analysis schematic.
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divided by the number of cases (N); hence, ASE 5 SSE/N.
ASE allows comparison of model performance in both
linear and nonlinear models. In the cases of the 15-minute
models, to account for a full hourly error, the square root of
the ASE was multiplied by four. Using this method, the
lowest value found amongst the nine validated models
constructed for each airport determined the best model.
These results are presented in Table 4, and the bolded text
indicates the best single model selected for scoring using
the fresh 2016 data for each airport. The 2016 scored
results are presented in the Scoring section.

Of the ten best airport models selected, four used the
hourly data, four used the hourly merged data, and two
used the 15-minute data. Seven models were decision
tree models, while the remaining three were neural network
models. While the linear regression models perfor-
med comparatively well, none were selected for scoring
using this process. In general, all the validated model
square root ASEs were very close in value for each airport
studied.

3.2. Variable Importance

Variable importance was identified in the splitting
decisions made by the decision tree models. In examining
the 15-minute variable importance, there is little similarity
of variable importance between airports, but it was found
that ceilings and temperatures are of slightly more
importance than visibilities and wind speeds (Table 5).
Of more interest is how the variables are added to the
decision processes. Several changes or replacements of
variable importance between the 15-minute and hourly
datasets (as shown in Table 6) are noteworthy within each
airport.

The first is that the weather impact variable SEV, or
severity, has displaced other variables found in the 15-
minute data as a top-five variable in five out of the ten
airports (it actually occurs as a top-eight or better variable
in all ten airports). NBTS, or nearby thunderstorms, also
moves into the top five most important variables for ATL,
CLT, DEN, and DFW and becomes the sixth most

Table 4
Comparison of square root of validated 2014–2015 model ASE.

Airport Model type
Square root of

15-minute data ASE
Square root of

hourly data ASE
Square root of

merged data ASE

ATL DT 8.776 8.051 7.937
REG 9.208 8.365 8.287
NN 10.431 18.460 8.205

CLT DT 9.429 13.009 9.608
REG 9.611 12.931 9.807
NN 9.426 12.997 9.661

DEN DT 17.919 17.497 17.447
REG 18.082 17.449 17.544
NN 17.856 17.398 17.287

DFW DT 13.744 13.566 13.521
REG 13.975 13.635 14.249
NN 13.836 13.566 13.918

EWR DT 3.810 3.868 3.823
REG 3.954 3.862 9.210
NN 5.296 3.882 3.813

JFK DT 8.977 9.070 8.792
REG 9.053 9.064 9.057
NN 9.979 10.347 9.095

LAX DT 14.298 8.101 8.125
REG 14.761 8.131 8.550
NN 14.766 8.755 8.162

LGA DT 4.870 4.497 4.694
REG 4.956 4.680 4.843
NN 5.295 6.108 4.717

ORD DT 12.276 11.772 11.896
REG 12.484 11.917 13.384
NN 12.592 11.762 12.900

SFO DT 6.537 5.904 5.904
REG 6.761 6.166 6.214
NN 6.771 5.920 5.929

Note. Decision tree (DT), regression (REG), and neural network (NN). Bold/underlined indicates the best model selected overall by airport based on the
square root of ASE. The square root of 15-minute data ASE multiplied by four to account for a full hour of potential error.
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important variable (not shown) for LGA and ORD.
Curiously, out of nine total weather variables examined in
the hourly data, NBTS was not selected at any level of
importance for EWR, JFK, or LGA. Nor was NBTS of
interest for LAX or SFO, but this is understandable given
that the west coast maritime climate patterns prevalent at
these airports inhibit the growth of thunderstorms. WX_
TYP, or weather type, a descriptor of various types of
weather, creeps into the top five as the fifth most important
variable for LGA and ORD. It also is used by DEN (7th),
CLT (8th), DFW (8th), JFK (8th), and SFO (10th).

Finally, WIND has replaced WND_S (or wind speed) at
EWR (4th) and LAX (3rd) as the top five variables of
importance. Recall that the WIND variable appears to have
been created to account for wind speed and direction as a
combined impact variable, but for each airport studied, it
simply mimics the wind speed variable (shown in the
descriptive statistics as WND_SPED). Therefore, these two
variables are considered to be indistinguishable in this study.

Examining the hourly merged data (Table 7), the
combination of the FAA ASPM data with the NCEI

meteorological data is evident as several meteorological
data not found in the ASPM 15-minute or hourly data have
become variables that fall within the top five of importance.
Most notable among these is DEWP, or dew point, which is
listed for ATL, DEN, and DFW. In addition, added as new
variables are A.W., or auto-observed present weather, and
GUS, or gusts. Several of the NCEI meteorological
variables have replaced essentially the same meteorological
variables already found in the FAA ASPM data, and these
are TEMP_1 (that mimics TEMP) and VSB (that mimics
VIS). However, it should be noted these sister variables
may not contain exactly the same values due to the
rounding of the NCEI data to the nearest hour used in
merging these data. That is, the merger between the ASPM
and NCEI datasets may not be precisely time-synchronized.
In any case, if there are differences, the values for these
variables are very close and follow the same trends within
the two individual dataset time series. Other variables can
be found in the 14 variables contained in the hourly merged
data. These are ALT (altimeter), CLG (mimics CEIL, or
ceiling), DIR (mimics WND_A, or wind angle), PCP01
(amount of last hourly precipitation as liquid water in
inches), PCP06 (amount of last six-hour precipitation as
liquid water in inches), and SKC, or sky conditions.

3.3. Model Reliability and Validity

Model reliability begins with the data collected to build
the models, followed by the construction of the models
themselves and the quality of data subsequently collected to
evaluate the models. In general, the ASPM data were found
to be of very high quality with nearly no missing values.
Problems were discovered with outliers; for example, the
2016 15-minute DEN data reported impossible AARs of
800 for 47 cases (out of 26,352 cases scored when the
nighttime cases were removed) that are clearly not pos-
sible with a published AAR maximum of 152 per FAA

Table 5
15-minute data decision tree variable importance.

Airport 1st Var 2nd Var 3rd Var 4th Var 5th Var

ATL MC TEMP CEIL VIS ALH
CLT ALH MC CEIL VIS TEMP
DEN CEIL TEMP VIS ALH WND_S
DFW TEMP MC ALH VIS WND_A
EWR VIS TEMP ALH WND_S CEIL
JFK MC ALH TEMP WND_A CEIL
LAX ALH CEIL WND_A TEMP VIS
LGA WND_A TEMP CEIL VIS WND_S
ORD WND_A TEMP CEIL VIS WND_S
SFO ALH CEIL WND_A VIS WND_S

Note. ALH is adjusted local hour, CEIL is ceiling, MC is met condition,
TEMP is temperature, VIS is visibility, WND_A is wind angle, and
WND_S is wind speed. Importance compares within each airport for the
three datasets.

Table 6
Hourly data decision tree variable importance.

Airport 1st Var 2nd Var 3rd VAR 4th VAR 5th VAR

ATL MC TEMP VIS NBTS CEIL
CLT MC CEIL SEV WND_A NBTS
DEN CEIL TEMP VIS NBTS WIND
DFW MC TEMP ALH NBTS SEV
EWR CEIL TEMP ALH WIND VIS
JFK MC CEIL WND_A VIS TEMP
LAX ALH CEIL WIND VIS SEV
LGA WND_A SEV CEIL TEMP WX_TYP
ORD WND_A SEV CEIL TEMP WX_TYP
SFO ALH CEIL WND_A SEV VIS

Note. ALH is adjusted local hour, CEIL is ceiling, MC is met condition,
NBTS is nearby thunderstorms, SEV is severity, TEMP is temperature,
VIS is visibility, WND_A is wind angle, WIND is wind speed, WND_S is
wind speed, and WX_TYP is weather type.

Table 7
Hourly merged data decision tree variable importance.

Airport 1st Var 2nd Var 3rd VAR 4th VAR 5th VAR

ATL MC DEWP VIS NBTS CEIL
CLT ALH MC CEIL SEV NBTS
DEN CEIL DEWP ALH VSB AW
DFW MC DEWP ALH TEMP_1 AW
EWR CEIL TEMP_1 ALH SPD VSB
JFK MC ALH CEIL WND_A TEMP_1
LAX ALH CEIL VSB WIND VIS
LGA DIR AW CEIL WIND WND_A
ORD DIR AW CEIL WIND WND_A
SFO ALH CEIL SEV GUS VIS

Note. ALH is adjusted local hour, A.W. is auto-observed weather, CEIL is
ceiling, DEWP is dew point, DIR is wind direction, GUS is gust, MC is
met condition, NBTS is nearby thunderstorms, SEV is severity, TEMP_1
is temperature, VIS and VSB are visibility, WND_A is wind angle, WIND
is wind speed, and WND_S is wind speed.
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Operational Information System. Therefore, these 47 cases
were list-wise removed, and the model was scored again.

The NCEI meteorological station data also undergo a
great deal of scrutiny but may suffer from missing or
misleading variable values due to ASOS sensor errors or
station data recording errors. However, the additional NCEI
information was simply appended to the hourly FAA
ASPM data to expand the potential reach of the weather
variables contained in the NCEI database to those already
included in the FAA ASPM hourly datasets in the model
analyses. In addition to adding fresh weather variables to
each analysis, these data mergers for each airport created
redundant variables, e.g., Wind_ANGL (wind angle, FAA
ASPM data) and DIR (wind direction, NCEI meteorologi-
cal station data) found in both datasets. In building the
hourly merged data models, all the weather variables from
both the ASPM and NCEI were used. The time-match
merging of the FAA ASPM and NCEI data offered the
opportunity to compare common variables contained in
both datasets, such as ceiling, wind speed, and visibility.
For the most part, even if the rounded hourly time-merger
of the ASPM and NCEI data was not perfect, across the
10 airports considered (except for CLT, where the hourly
merged validated model results were greatly improved over
the hourly data models), the output results were extremely
close when comparing the hourly and hourly merged model
validation ASE results. This indicates the added meteor-
ological variables contained in the NCEI data did not
degrade the results found in the less meteorologically
comprehensive models constructed with the hourly ASPM
or 15-minute data.

As Kulkarni et al. (2013) noted, three different modeling
methods yielding such similar outcomes lends credence to
the reliability of this data mining approach. Three distinctly
different models, namely decision trees, neural networks,
and linear regression, were tested with strikingly similar
validated ASEs regardless of the model used. These results
confirm the observations of Kulkarni et al.

Per Tufféry (2011), model validity should be established
by using an ‘‘out of date’’ testing dataset. This was
accomplished by using fresh 2016 data to score the selected
best model for each airport. It is also of note that the 2016
datasets used to score the models were of roughly the same
size as the 2014–2015 training and validation sets that
pulled from 60% and 40% of the two-year population,
respectively.

3.4. Scoring

All of the models were scored using a full year’s worth
of 2016 ASPM or combined ASPM and NCEI merged
data. SASH EMTM provides a scoring node that was used to
predict the 2016 AARs using the weather inputs from the
three datasets. The models were scored using the best
model for each airport with the 2016 data, with 2400 to

0600 cases removed. For brevity, the ‘‘best’’ (ATL) and
‘‘worst’’ (JFK) airports are presented here as examples. The
results for ATL are depicted in Table 8 and for JFK in
Table 9. In each table, within the footnote, the model chosen
to score is labeled (DT, NN, REG) and reflects the results
noted in Table 4 between the actual AAR observed in 2016
and the predicted AAR estimated by the model. Histograms
are used to present the model fit graphically. The histograms
indicate the difference between the actual airport AAR
observed and the values estimated by SASH EMTM, as well
as error residuals, separately, and are presented as Figures 2
and 3 (ATL) and Figures 4 and 5 (JFK).

For the histograms, a perfect score would place the actual
versus predicted AAR differences at zero for all cases
considered. Thus, the larger the actual and model estimate
AAR differences are, the larger the spread by cases become
and tend to flatten the histograms as shown for each airport.
In addition, large horizontal displacements from the origin
on the X-axis indicated the likely presence of outliers in
the scored data inputs. Subsequent model and data input
reevaluations were warranted if the difference spread tended
to exceed the maximum AAR, as presented in Table 1.

3.5. Numerical Weather Model Prediction of AAR
Demonstration

With the models and modeling strategies established,
it was desirable to test the efficacy of using basic weather
variables to estimate the AARs a priori. For this effort,
NWS numerical weather data estimates were reformatted
into the FAA 15-minute ASPM data formats so that the
models created could be used in a true predictive sense to
test if a 24-hour forecast of weather parameters from NWS
can yield useful estimates of FAA airport arrival rates.

As an example, NWS LAMP output data were obtained
and reformatted to be accepted into the SASH EMTM

frameworks established within the 15-minute modeling

Table 8
ATL observed versus predicted AAR difference in scored 2016 data.

ATL DT
15 min

ATL DT
hourly

ATL DT
merged

Mean 0.981 3.692 3.067
Standard error 0.012 0.083 0.083
Median 1.033 4.126 3.178
Mode 2.663 4.126 3.178
Standard deviation 1.942 6.702 6.717
Sample variance 3.773 44.916 45.121
Kurtosis 11.569 9.072 8.933
Skewness 22.116 21.592 21.463
Range 35.802 131.191 131.191
Minimum 226.585 284.980 284.980
Maximum 9.217 46.211 46.211
Sum 25842.290 24319.620 20189.520
Count 26352 6588 6584

Note. Hourly merged DT model selected from the nine-model suite for
scoring with 2016 data.
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format. The 15-minute ASPM data contain the fewest
number of weather variables of the three variable sets used
in this study but generally had favorable ASEs in the train
and validation model output results and also did reasonably
well when scored. As a result, these data are ideal for a
simple scoring test in assessing airport AARs using NWS
LAMP weather guidance. Variables that needed to be
reformatted or created from the LAMP data into ASPM
format include WIND_ANGLE, WIND_SPED, CEILING,
VISIBILTY, ALH, GMT_YMDHM, and MC. With the
LAMP model output limited to 24 hours, a dataset was

collected on November 15, 2017, with a valid forecast
period beginning at 1700 GMT on November 16 and
running through 1700 GMT on November 17. These data
were then reformatted to represent ASPM variables, scored
within the SASH EMTM, and were subsequently compared
to the actual AARs observed and recorded in the FAA
ASPM database on November 18. Compared to the
datasets used to train and validate the models, the NWS
24-hour datasets are very small. Nonetheless, the initial test
results were encouraging. Actual airport arrival rates minus
the predicted airport arrival rates for a 15-minute decision

Figure 2. Difference between ATL actual and predicted AAR in scored 2016 data.

Figure 3. Observed ATL arrival rates versus predicted AAR residuals.
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tree model at LGA are presented in Table 10. A histogram
showing the differences between the actual and predicted
AARs (by frequency of cases) is presented in Figure 6.

The date chosen for the collection of these data was
happenstance due to the timing of this research. November
17, 2017, was a blustery day at LGA with winds gusting to
36 mph mid-morning, VFR conditions, and no precipitation
throughout the 24-hour period. The relevance of this
demonstration is that NWS predictive weather model
guidance can be potentially applied a priori to estimate

airport arrival rates in a 24-hour cycle. A positive observed
versus predicted AAR difference represents an under-
estimated arrival capacity at LGA, while the opposite
(negative) difference marks an overestimation of airport
capacity based on weather input variables and local time.

IV. Discussion

The intent of this research was to objectively examine
the usefulness of applying weather information predictively

Figure 4. Difference between JFK actual and predicted AAR in scored 2016 data.

Figure 5. Observed JFK arrival rates versus predicted AAR residuals.
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to estimate AARs. To achieve this goal, a closer examination
of model performance at each airport was required. Of the
90 models created for 10 different airports, the best for each
airport (using the square root of ASE from the 2014–2015
validated data) were directly compared by scoring these
models using fresh 2016 data. As an approximate estimate of
acceptable model error, an arbitrary threshold was set at 10%
of an airport’s maximum AAR. Recalling the maximum
arrival rates for each airport are contained in Table 1, this
result implies that the maximum acceptable error (absolute
value of observed minus predicted AAR) for an AAR
prediction at DEN would be 15.2 (or 15), while at LGA the
threshold for acceptable model performance would be an
AAR predictive error of four. Additionally, simple line plots
of the observed AAR minus predicted AAR versus actual
AAR are presented for each airport, so a visual depiction and
interpretation of model performance can be more easily
understood. A model with little difference between obser-
ved versus predicted AARs would have a near-zero error
for all cases. These results are summarized in Table 11
and are based on the percentage of cases that fall within
the arbitrarily set acceptable threshold of plus or minus
10% of the airport’s maximum AAR. Further, the models
were ranked overall from 1 to 10 (best to worst) by com-
paring the 2014–2015 model validation results. Additionally,
the type of model considered the best performer for each
airport and the dataset used to create the model are included
in the table.

What follows now is a brief discussion of the scoring
results for the single model selected for ATL and JFK using
the 2016 datasets. Based on Table 11, ATL can be
considered to be a good modeling result, while the JFK
modeling effort is deemed to be poor.

Table 9
JFK observed versus predicted AAR difference in scored 2016 data.

JFK DT 15
min

JFK REG
hourly

JFK DT
merged

Mean 0.123 0.325 0.394
Standard error 0.014 0.107 0.104
Median 0.281 1.003 0.726
Mode 1.835 9.351 1.780
Standard deviation 2.216 8.679 8.397
Sample variance 4.909 75.326 70.502
Kurtosis 1.473 1.064 1.207
Skewness 20.735 20.748 20.688
Range 18.510 69.865 73.138
Minimum 213.266 250.576 249.738
Maximum 5.244 19.289 23.400
Sum 3250.260 2137.990 2591.280
Count 26352 6588 6584

Note. Hourly merged DT model selected from the nine-model suite for
scoring with 2016 data.

Table 10
LGA observed versus predicted AAR in scored 20171116 data.

Statistic LGA LAMP 24 hour

Mean 0.856
Standard error 0.096
Median 0.583
Mode 0.583
Standard deviation 0.789
Sample variance 0.623
Kurtosis 0.282
Skewness 0.092
Range 3.623
Minimum 21.417
Maximum 2.206
Sum 57.340
Count 67

Figure 6. LGA difference in observed versus predicted AAR 20171116 data.
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4.1. Hartsfield-Jackson Atlanta International Airport

ATL has a maximum arrival rate of 132, so an acceptable
error based on 10% of the maximum AAR is an absolute
value of the observed minus predicted AAR of 13. These
results were derived from the decision tree model using the
merged hourly ASPM and meteorological station data. This
model was selected as the best model based on model
validation using data withheld from the 2014–2015 data.
Figure 7 shows the line graph of the difference between the
actual and predicted AAR plotted against the actual AAR.
The highlighted area of the graph is of interest and depicts
the residuals (difference between the actual and predicted
AAR) when the AAR is roughly above 80. Examining the
variable importance for Atlanta using this dataset, the top

five variables ranked by order of importance in supporting
the model decision making were: (1) meteorological
conditions (IMC versus VMC), (2) dew point, (3) visibility,
(4) nearby thunderstorms, and (5) ceiling.

At first glance, the model performed poorly when actual
AARs were low, likely due to the presence of adverse
weather or when other capacity-limiting factors were
encountered, such as a closed runway. This can be seen
as an over-forecast of airport capacity where the differences
between the actual and predicted AARs are negative, and
the over-forecasts are observed at the lower left-hand
section of the figure. However, further scrutiny of the data
revealed that of the 6,584 cases scored using the 2016
hourly merged data, there were only five cases where the
actual AAR fell below 80. Recall an AAR represents the

Table 11
Model performance summary and rankings.

Airport
Percentage of cases within
10% of maximum AARa

Validated model ranking based
on squared root of ASEb Model type Dataset used

LAX 91.7 5 Decision tree Hourly merged
ATL 91.6 4 Decision tree Hourly merged
EWR 87.2 1 Decision tree 15-minute
LGA 68.3 2 Decision tree Hourly
SFO 68.0 3 Decision tree Hourly
DFW 65.3 9 Decision tree Hourly merged
DEN 60.6 10 Neural network Hourly merged
CLT 59.3 7 Neural network 15-minute
ORD 45.1 8 Neural network Hourly
JFK 44.4 6 Decision tree Hourly merged

aBased on scoring results using 2016 data. bBased on model validation using withheld 2014–2015 data.

Figure 7. ATL actual and predicted difference versus actual AAR.
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number of aircraft an airport can accept in 60 minutes based
on its physical runway configuration, weather conditions,
and other factors and is measured in whole numbers.

Therefore, the output was replotted for ATL with the five
cases where the AARs fell below 80 and are not shown by
limiting the range of the X-axis and are presented in Figure
8. This is simply an expansion of the highlighted portion
of Figure 7. If the useable error limit (again, arbitrarily set)
is a positive or negative AAR difference of 13, acceptable
model performance may be seen at actual AARs of roughly
105 or higher. An actual AAR of 105 or higher accounts for
all but 296 cases scored using the 2016 data: 6,288 of the
6,584 cases, or 95.5% of the total cases analyzed.

In fact, 91.6% of all the 2016 cases studied had an
absolute observed minus predicted AAR error of less than
13, and over half the cases had an AAR error of less than 4.
However, even in the replotted graph presented in Figure 8,
the decision tree model struggles with 296 cases with
AARs below 105. Again, an over-forecast of airport
capacity is seen at lower AARs, and a slight under-forecast
of airport capacity is noted as the actual AAR climbs to its
132 maximum.

4.2. New York-John F. Kennedy Airport

JFK has a maximum arrival rate of 60, so an acceptable
error based on 10% of the maximum AAR is a value of the
absolute values of the observed minus predicted AAR of 6.
Figure 9 shows the line graph of the difference between the
actual and predicted AAR plotted against the actual AAR.
These results were derived from the decision tree model
using the merged hourly ASPM and meteorological station
data. This model was selected as an underperforming

model based on model validation using data withheld from
the 2014–2015 data. Examining the variable importance
for JFK using this dataset, the top five variables ranked
by order of importance in supporting the model decision
making were: (1) meteorological conditions (IMC versus
VMC), (2) adjusted local hour, (3) ceiling, (4) temperature,
and (5) wind speed.

As with some of the other models, difficulty with over-
forecasting airport capacity occurred at the lower spectrum
of AARs. Looking at the graph and associated data, there
are 236 cases out of 8,780 where the observed AAR was
less than a negative 35, and the model struggles to correctly
map these outlying events. Further, only 44.4% percent of
the 2016 cases scored fell within the plus or minus 6 AAR
error thresholds for this decision tree. The steepness of the
line’s curve suggests that this decision tree model only
performs well between AARs of 38 and 57.

V. Conclusions and Recommendations

This study sought to examine detailed historical NAS
airport performance archives as well as environmental data
to see if there are meaningful signals in these data that
could gainfully apply machine learning predictively.
Decision tree, neural network, and linear regression models
were created and validated for 10 geographically dispersed
airports with different arrival capacities using comprehen-
sive FAA ASPM airport performance and NOAA NCEI
2014–2015 environmental datasets. The ‘‘best’’ models,
based on the squared root of the validated model ASE, were
scored using a full year’s worth of data (2016) with the
same formats as those used to previously create and
validate the models. While many variables were available

Figure 8. ATL actual and predicted difference versus actual AAR (replot).
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to apply to the prediction of AARs in these datasets,
ultimately, it was decided to only use weather variables in
estimating airport arrival rates, as the goal of this research
was to determine if NWS predictive weather model
guidance could potentially be fed into the created models
to estimate key airport AARs. It was hoped this effort could
support FAA national airspace managers to estimate NAS
capacity a priori to more efficiently regulate air traffic
flows in weather-constrained airspace.

Using only weather variables to create, validate, and
score the models, the results were mixed but positive.
Based on this approach, three airports, ATL, EWR, and
LAX, all exhibited superior 2014–2015 validated model
performance as well as when scored using the 2016 data.
All three of these ‘‘best’’ airport models were placed within
the top five of the ten airport models created and validated,
and all were decision tree models. Interestingly, while the
top three models after scoring were all decision tree
models, each employed a different type of data: LAX using
hourly, ATL using hourly merged, and EWR using
15-minute datasets.

Seven of the ‘‘best’’ ten airport models selected gravi-
tated toward decision trees, while the remaining three
airport models settled on neural network models, with
linear regression models failing to be selected for any
airport as a ‘‘best’’ model overall—regardless of the dataset
selected. This is likely due to the nonlinear relationships
between the predictors and target variable; nonetheless, the
regressions performed surprisingly well and perhaps reflect
the power of using this modeling approach with a very
large number of cases (over 15,000 to build and verify and
over 6,000 cases to score the models). The large number of
cases used appears to overpower the need to meet the basic
parametric linear regression constraints required to ensure
the selected sample is an unbiased representation of the
population being estimated. In this study, all of the avail-
able cases were applied, and a linear regression was selected
specifically to estimate a continuous AAR variable. While
linear regression was not selected as a ‘‘best’’ model for any
of the ten airports, Table 4 shows how favorably the linear
regression modeling technique behaved (for the most part)
when compared to the nonlinear decision tree and neural
network models ultimately selected as the ‘‘best’’ models.

Model performance was, for the most part, remarkably
consistent across each of the three model types created
(decision tree, neural network, or linear regression models),
and all model types used three different training and
validation datasets. Based on the 2016 scored data, at least
three airport model and dataset combinations, ATL (DT,
hourly merged), EWR (DT, 15-minute), and LAX (DT,
hourly), demonstrate a predictive capability that could
potentially be deployed operationally. LGA and SFO, with
validated model rankings (based on the squared root of the
ASE) at ranking two and three, respectively, were some-
what disappointing when the 2016 scored model results

were reviewed. However, the top five models, based on the
model validation squared root of ASE, were also within
the top five models based on the scored 2016 data—but the
ranking orders were shuffled.

Based on the performance parameters used in this study,
why do the EWR and LGA models rise to the top of the
three New York airports while JFK has far less successful
results, given these three airport locations experience nearly
the same weather conditions? Considering the models tested
and scored, the simple answer is the weather-based variables
affect each airport model differently as meaningful pre-
dictors in capturing AAR variability, and this performance is
relative to other non-weather inputs that also play roles in
determining the AAR. The three airport models ranked the
importance of weather variable inputs differently, and only
EWR included visibility within its top five input variables—
as its highest-ranked variable of importance. Also, EWR
has a known weather constraint based on its Runway 11
crosswind component that significantly lowers its AAR
when this runway becomes unavailable. Additionally, better
results were expected at SFO due to the marine stratus
conditions that have such a large impact on its AARs, but the
results when evaluating the 2016 scored data were marginal
(only 68.0% of all cases falling within 10% of the maximum
AAR). More research is needed here.

Based on the 2016 scored model results, the 15-minute
data only supported two ‘‘best’’ case models (EWR and
CLT), while the hourly data supported four models (LAX,
LGA, ORD, and SFO), and the hourly merged data
supported the remaining four ‘‘best’’ models (ATL, DEN,
DFW, and JFK). Within eight of the ten airports studied,
the hourly and hourly merged datasets outperformed the
15-minute data, indicating the additional weather variables
contained in the hourly and hourly merged data improved
model performance overall.

The greater the complexity of the observed weather
variables used to create the predictive AAR models, the
greater the level of effort needed to approximate these same
variables from the upstream feeding NWS predictive
numerical weather models, raising the level of difficulty
in deploying models constructed with more weather
variables. Also, the number of forecast hours contained in
the NWS weather models depends on the model selected.
Some models run out to 80 hours and beyond, while higher
temporal resolution models with shorter time steps (e.g.,
15 minutes) cover a relatively shorter overall period of time
(e.g., 24 hours). So, in designing a deployable predictive
system, the underlying weather model used as input to the
AAR-estimating model should match the predictive
weather model’s native time steps, spatial resolution, and
extractable parameters. A weather-based predictive AAR
model that cannot be easily supported by an underlying
weather prediction model is not useful.

It is recommended that one, or all three of the ‘‘best’’
models created here be experimentally deployed for
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continuous observation. While not the highest-ranked
model per the evaluation criteria used in this study, EWR
as a 15-minute model employs relatively simple weather
variable inputs that can be estimated and autonomously
produced from NWS LAMP numerical weather model
guidance. Using the computer code generated in this study
by the SASH EMTM decision tree model, the constant
output of AARs fed by automated NWS meteorological
weather input data could be monitored for accuracy for
a lengthy period. The inspection of a prototype EWR
predictive system will thoroughly examine the operational
efficacy of this modeling approach and can also identify the
strengths and weaknesses inherent with this design. Long-
term observation and evaluation of such a system would
shed a great deal of light on the positive and negative
aspects of this machine learning modeling approach.
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