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A B S T R A C T   

The COVID-19 pandemic has forced many countries from all over the world to adopt extreme measures to 
suppress the spread of the pandemic. These measures have triggered changes in air quality. Many studies showed 
an overall short-term improvement in air quality. This study investigates the long and short-term impacts of 
COVID-19 pandemic on air quality in the State of Florida. Three air quality indicators (AQI) from 69 stations 
located in 30 counties in the State of Florida were analyzed for 2015–2021. These pollutants are Fine Particulate 
Matters (PM2.5), Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2). The long-term changes in pollutant levels 
were assessed via Time-Lag linear regression analysis (TLR). The results show that PM2.5 levels dropped from 
8.88 to 8.24 μg/m3 between 2015 and 2021. However, the ANCOVA test shows that the TLR’s slope for PM2.5 is 
insignificant, with a p-value of 0.859. Thus, there was no statistical evidence that the changes in 2020 and 2021 
differ from previous years. NO2 levels fluctuated over the study period between 13.0 and 16.0 ppm with no 
identified trend. Nonetheless, the regression slope was also insignificant, with a significance of 0.401. The 
average SO2 concentrations steadily dropped from 4.3 ppb in 2015 to 2.0 ppb in 2020 and 2.62 ppb in 2021, with 
a regression slope significance of 0.001. It is concluded that pollutants’ levels behave differently during the 
lockdown and release periods, indicating that the lockdown contribution to reduce industrial activities is re
flected on air quality rather than mobile source emissions.   

1. Introduction 

The end of 2019 will be remembered in history as the time when a 
new global pandemic broke out. This new pandemic is commonly known 
as COVID-19 pandemic, which is a global spread of a virus that attacks 
the respiratory system of humans, causing severe health issues. The first 
case of COVID-19 viral pandemic was officially diagnosed in China in 
December 2019 [1,2]. The pandemic spread rapidly and globally soon 
afterwards, reaching most of the countries. Hundreds of millions of 
humans were infected with this virus. Millions of lives were lost, and 
most of the infected humans suffered from severe respiratory malfunc
tioning symptoms [1–4]. 

As a result of the wide pandemic spread, authorities from all over the 
world have imposed certain measures and lockdowns, directly affecting 
the daily activities [3–7]. Remote work environment was widely 

promoted, and education sectors adopted online education schemes. 
Land transport, logistics, and air travels were either restricted or fully 
suspended [3,4]. As a result of the changes in daily activities, it is ex
pected to have an indirect influence on the quality of air due to the 
significant reduction of socioeconomic activities (such as motorized 
mobility, constructions, and industrial activities) that would normally 
contribute to air pollutants [8–10]. 

The State of Florida is the third largest state in the United States in 
terms of population, one of the 10th highest states in terms of population 
density. Furthermore, the State of Florida is ranked second in population 
and density of senior citizens (aged 65 years or more), which is the age 
group that are severely affected by COVID-19 virus infection and asso
ciated symptoms, health issues that are related to the quality of air 
[11–13]. Thus, the research question being formulated in this study is to 
assess the changes in pollutants’ levels during the pandemic, and to 
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identify if those changes are associated with the pandemic, or a result of 
long-term trend of reducing these pollutants. This study aims to evaluate 
the short-term and long-term changes in air quality during the 
COVID-19 pandemic lockdown and release periods in the State of 
Florida. 

The United States confirmed the first positive case on January 20, 
2020 from a sample that was taken two days before [14], and the first 
positive case in the State of Florida was confirmed on March 1, 2020 
[15]. However, the impacts of COVID-19 pandemic and the corre
sponding preventive measures varied widely across the different states 
the USA, where each state adopted different response measures with 
different restriction levels [16]. 

2. Literature review 

Many studies have examined the impact of COVID-19 pandemic and 
lockdown on air quality all over the world. Although a reduction in 
pollutants’ levels was globally noticed, the levels of Fine Particulate 
Matters (PM2.5) and Nitrogen Dioxide (NO2) were substantially reduced 
[17–19]. A global comparison of Carbon Dioxide (CO2) levels showed 
significant short-term reduction [9]. While some studies have reported a 
global air quality improvement, most of the studies have evaluated air 
quality before and after the pandemic in specific region or country, such 
as the studies from North and South America, Europe, Africa, East and 
South Asia, and the Middle East. 

In the United States, the comparison of states with and without stay- 
at-home orders showed that the states with longer period of restrictive 
measures showed higher improvement in air quality levels [20]. A sig
nificant overall air quality improvement in the State of California was 
reported [21]. As for the State of Florida, one study has reported sig
nificant reduction in different pollutants (namely, PM2.5, NO2, Sulfur 
Dioxide (SO2), Ground Ozone (O3), and Carbon Monoxide (CO)) across 
six major Florida cities [22]. In the City of New York, a study found no 
significant changes in long-term PM2.5 and NO2 levels during the first 
five months of 2020 compared to the same months between 2015 and 
2019 [23]. Although the levels of these two pollutants in the City of New 
York were reduced, there was a general trend of declining PM2.5 and 
NO2 levels since 2015. In Canada, a comparison between the year of 
2020 and two previous years showed strong relationship of Air Quality 
Health Index (AQHI), NO2 and CO levels with the COVID-19, however 
no significant changes in SO2 levels were found [24]. 

In Italy, pollutants’ levels showed an overall air quality improvement 
during the lockdown in 2020 when compared to the same period be
tween 2017 and 2019 [25]. A comparison of NO2 levels in 2020 and 
2015–2019 showed significant improvement around schools in UK [26]. 
In Spain, higher reduction in NO2 levels was observed compared to 
Particulate Matter (PM10) levels reduction [27]. Moreover, changes in 
Ozone levels were not uniform across different cities in Spain [27]. In 
Portugal, the NO2 levels followed a similar trend to the one observed in 
Spain, where the reduction in NO2 levels was higher than the reduction 
of PM10 levels [27]. 

A study from Brazil found that the variations in pollutant’s levels are 
related to the dynamics of atmosphere at various time scales in the State 
of Sao Paulo [28]. This study also assessed the factors driving the 
reduction in pollutant levels. Another study in Rio de Janeiro found that 
CO and NO2 levels have declined during the lockdown period when 
compared to the same period from previous years due to reduction of 
vehicular usage [29]. However, PM2.5 reduction was only observed 
during the first week of lockdown. 

A comparison of pollutants’ levels between the year of 2020 and 
2019 showed that air pollution levels in China were reduced drastically 
for all pollutants (PM2.5, PM10, NO2, SO2 and CO) except ozone [30]. 
However, this reduction is characterized as a short-term reduction. A 
similar trend was also observed in Korea, with the only exception of SO2 
[31]. A reduction of pollutants levels (PM2.5, PM10, NO2 and O3) was 
observed in Thailand during the first three weeks of the lockdown in 

2020 [32]. Bhatti et al. (2023) investigated the effects of socioeconomic 
factors on air pollution in China [33]. The study suggests that socio
economic factors need to be considered when developing policies to 
reduce air pollution in China. Bhatti et al. (2022) studied the change in 
air quality patterns in Anhui Province, China, during the COVID-19 
pandemic [34]. They found that air pollution levels decreased signifi
cantly during the pandemic, mainly due to the reduction in human ac
tivities. Aamir et al. (2021) conducted a similar study in Hubei Province, 
China, and found similar results [35]. 

One study from Africa reported that the seasonal changes in mete
orological conditions were the main dominant contributors in improving 
air quality in Nigeria [36]. A study from the Middle East found that the 
small cities have experienced greater reduction in NO2, SO2, and CO 
levels than the mega cities [37]. In Jordan, PM2.5 and NO2 levels during 
the first quarter of 2020 were reduced by 29 % and 79 %, respectively 
compared to the levels of the corresponding quarter in 2019 [38]. 

Comparison of air pollutants’ levels between the year of 2020 and 
the previous years in Indian cities have shown gradual reduction in 
PM2.5 levels due to lockdown [39]. The study also found that the aerosol 
optical depth (AOD) changes were not spatially uniform. Another study 
reported that the lockdown has triggered a sudden reduction of air 
pollutants in Dhaka, Bangladesh [40]. The NO2 levels in New Zealand 
were significantly reduced by 48–54 % during the most restrictive alert 
level [41]. 

Galvan et al. (2022) examined the relationship between CO2 emis
sion, economic growth, and trade openness in middle-income trap 
countries [42]. They found that CO2 emission is positively correlated 
with economic growth and negatively correlated with trade openness. 

Nawaz et al. (2021) proposed a hybrid approach to forecast the 
COVID-19 epidemic trend [43]. The study suggests that the hybrid 
approach can be used to inform public health policy and 
decision-making. 

In conclusion, most of these studies focused on comparing air quality 
and pollutants’ levels during the lockdown in 2020 against the corre
sponding levels from previous years (mostly the years of 2015 and 
2019). Moreover, the considered air quality indicators varied widely, 
however, assessing PM2.5, NO2 and SO2 levels were common in most of 
the studies. In general, most of the studies have reported an overall air 
quality improvement during the lockdown period. However, these im
provements remain within the context of short-term assessment, and 
they do not consider the long-term timeline of air quality improvement. 
On the other hand, some studies found that the changes in pollutants’ 
levels are insignificant compared to the previous years, especially when 
the long-term changes of these levels are considered. Fig. 1 illustrates a 

Fig. 1. Literature review graphical summary.  
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brief summary of the conducted literature review. 

3. Study objectives 

This study aims to assess if there are any significant changes in air 
quality during the COVID-19 pandemic in the State of Florida. Three 
main air quality indicators for the years 2015–2021 are investigated in 
this assessment. The assessment will verify if there are any changes in air 
quality over the study period, and if the COVID-19 pandemic has 
attributed to the changes in air quality, if any. The assessment considers 
different geographical locations within the State of Florida. 

The COVID-19 lockdown is expected to influence certain activities 
(such as power consumption, motorized mobility, and industrial activ
ities) that are associated with pollutants and air quality. Therefore, this 
study is targeting the pollutants that are mostly associated with these 
types of activities. The selected pollutants are Fine Particulate Matters 
with diameters less than 2.5 μm (PM2.5), Nitrogen Dioxide (NO2), and 
Sulfur Dioxide (SO2) as air quality parameters that might be affected by 
varying socioeconomic activities during COVID-19 [44,45]. 

Fine particulate matter of 2.5 μm or less in diameter (PM2.5) is a 
dangerous pollutant because it can penetrate the lung barrier and enter 
the blood system, causing cardiovascular and respiratory disease and 
cancers [46,47]. It affects more people than other pollutants and has 
health impacts even at extremely low concentrations [46]. 

NO2 is a gas that is mainly emitted from combustion processes such 
as traffic, power generation and industrial activities [48]. It can cause 
inflammation of the airways, reduce lung function, and increase the risk 
of respiratory infections [47]. It can also contribute to the formation of 
other pollutants such as Ozone and PM2.5 [47]. 

SO2 is a gas that is mainly emitted from burning fossil fuels that 
contain sulfur, such as coal and oil. It can cause irritation of the eyes, 
nose, and throat, bronchoconstriction, and asthma exacerbation. It can 
also react with other substances in the air to form sulfate aerosols, which 
are a component of PM2.5. Although it would be expected to observe 
reduction in air pollutants levels during the COVID-19 lockdown, it is 
particularly important to verify if those reductions are attributed to 
other factors, such as seasonality, climate changes, short-term changes 
in socioeconomic activities, and the implemented environmental pol
icies and regulations rather than the lockdown itself. This objective can 
be met by comparing these concentrations with previously observed 
trends and assessing the statistical significance of the changes over time. 

4. Materials and methods 

4.1. Study approach 

This study investigates the levels of three pollutants that are highly 
attributed to the restricted socioeconomic activities (i.e., PM2.5, NO2, 
and SO2). Daily measurements for the years of 2015–2021 were 
collected from different monitoring stations that are distributed across 
the State of Florida. To account for both short-term and long-term 
changes, the study period covers five previous years before the start of 
the pandemic, and two years after the pandemic, which includes the 
lockdown period in 2020 and the release measures period in 2021. 

As the main objectives of this study are identified, the following 
approach is used in this study. Air monitoring sites in Florida have been 
identified. The data available from these sites were reviewed and filtered 
to assure that sufficient data are available to cover the daily levels of 
pollutants between 2015 and 2021. Fig. 2 Summarizes the approach 
used in this study. 

4.2. Selected air pollution parameters 

The Air Quality Index (AQI) is one of the most popular air quality 
indicators identified based on particulate matter (PM10andPM2.5) and 
the concentration of some chemicals including Sulfur Dioxide (SO2), 

Nitrogen Dioxide (NO2), Ground Ozone (O3), and Carbon Monoxide 
(CO). AQI values start from 0 for ideal air quality up to 500 when air 
pollution can cause an instant danger to the public. As reported by 
American Lung Association, AQI and its contributing pollutants con
centrations are monitored and reported daily in more than 800 counties 
(out of 3143 counties in the United States [49]) [13]. The AQI catego
rizes air pollution levels into Good, Moderate, Unhealthy for Sensitive 
Groups, Unhealthy and Very Unhealthy [13]. The importance of this 
indicator justifies the necessity of recording PM2.5, NO2, and SO2 levels. 

United States Clean Air Act (CAA) and Environmental Protection 
Agency (EPA) have set National Ambient Air Quality Standards 
(NAAQS) for Primary and Secondary standards. Enforceable Primary 
Standard addresses public health protection associated with air quality 
including the health of sensitive population such as elderly, children, 
and asthmatics. However, unenforceable Secondary Standard attempts 
to address public welfare protection against damage to properties, 
farms, and animals as well as declined visibility, known as essential 
parameter in transportation safety. Table 1 shows NAAQS Standard for 
major pollutants of concern in ambient air [50]. Table 1 also reports 
NAAQS’s Primary and Secondary standard for major pollutants in 
ambient air. The maximum allowable concentration of PM2.5 and PM10 
are 12.0 μg/m3 and 150 μg/m3, respectively are also reported. It is worth 
mentioning that the levels of PM2.5 are declining, and its average has 
been below the national standards since 2006, with a 37 % national 
decrease between 2000 and 2021, and 45 % decrease in Southeast 
regional average [51]. 

The concentrations of particulate matter with sizes smaller or equal 
10 μm and 2.5 μm are called PM10 and PM2.5, respectively [52]. Such 
inhalable particles are made of a variety of different chemicals and may 
appear in distinct sizes and shapes. PM10 is a great indicator of the 
presence of dust, pollen, and mold in ambient air, known as an indicator 
for natural sources of pollutants, whereas PM2.5 indicates the abundance 
of smaller particles such as combustion particles, organic compounds, 
and metals. PM2.5 is an indicator that is more relevant to human-induced 
pollution than PM10. Unpaved roads, earth works and construction sites, 
fire, industrial smokestacks are identified as the main sources of direct 
emission of particulate matter called primary pollutants. However, a 
variety of particles are generated in the atmosphere due to the occur
rence of complex reactions of chemicals such as nitrogen oxides and 
sulfur dioxide that were already emitted to the air from automobiles, 
industries, and power plants. These pollutants are called secondary 
particulate pollutants and tracking the contribution of secondary 
pollution sources is neither direct nor straightforward [52]. 

PM2.5 and PM10 are functions of both natural characteristics of the 
region, such as the lands’ soil properties, wind intensity and direction, 

Fig. 2. Study approach graphical summary.  
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and socioeconomic activities such as industrial emission, construction 
earth works and traffic flow in unpaved roads. The long-term assessment 
of air pollutant’s level in many locations revealed significant seasonal 
variations, suggesting considerable impact of natural parameters such as 
humidity, precipitation, and soil moisture content, especially on PM10 
levels. Zhan et al. reported that natural factors play a greater role on air 
pollution including particulate matters as compared to socioeconomic 
factors [53]. According to above-mentioned information, PM2.5 deemed 
to be a better indicator of human-induced air pollutants to be studied in 
this research. 

Nitrogen Oxides (commonly shown as NOx) are known as toxic and 
very reactive gases generated when fuel is burned at high temperatures 
in combustion systems such as automobiles, trucks, power plants, in
dustrial boilers, cement kilns, and turbines. As presented in Table 1, NOx 
concentrations in atmosphere are regulated by NAAQS standards. It is a 
strong oxidizing agent and plays a key role in the generation of ozone 
(smog) on hot summer days. NOx concentration is a great indicator of 
human-induced air pollutants. As reported by EPA, the regional average 
concentration of NO2 decreased as much as 64 % from 2000 to 2020 due 
to attention to the implementation relevant air quality regulation [54]. 
The annual 99th percentile of daily maximum 1-h average concentration 
of NO2 is mostly below 50 ppb, which is below maximum allowable 
concentration of 53 ppb set by EPA [54]. 

NAAQS standards for SO2 are set to protect against exposure to all 
gaseous sulfur oxides including SO2, known as the component of 
greatest concern. As reported by EPA, the regional average concentra
tion of SO2 decreased as much as 86 % from 2000 to 2020 due to 
attention to the implementation relevant air quality regulation [55]. The 
annual 99th percentile of daily maximum 1-h average concentration of 
SO2 is below 25 ppb, which is below maximum allowable concentration 
75 ppb set by EPA [50]. The major sources of SO2 pollution are from 
coal, oil and diesel combustion at power plants and other industrial 
facilities [56]. Rare natural sulfur dioxide emission can only occur due 

to volcanic activity; hence natural emission of SO2 is highly unlikely in 
most of counties and SO2 pollution is known as human-induced pollu
tion [55]. Once emitted into the air, sulfur dioxide also contributes to 
secondary pollutants including sulfate aerosols, particulate matter, and 
acid rain. Sulfur dioxide concentration in downwind ground-level has 
direct correlation with socioeconomic factors including industrial fa
cilities in that vicinity [8]. Combustion of diesel equipment and vehicles 
were one of the main sources of sulfur dioxides in the United States till 
nationwide regulation for reducing sulfur content of diesel fuels was 
enacted. Consequently, annual sulfur dioxide (SO2) emissions from road 
vehicles in the United States decreased from 503 to 15 thousand tons 
from 1990 to 2021 [57]. 

4.3. Study area characteristics 

The State of Florida, located in the south-eastern part of the United 
States of America, has most of its land as a peninsula between the 
Atlantic Ocean and the Gulf of Mexico. The state consists of 67 counties, 
representing different metropolitan configurations. 

The US state of Florida with average size of 170,312 km2 area is 
known as the third populated state with a population of 21.22 million. 
The southern part of the state has a tropical climate, while the rest of the 
state has a humid tropical climate. The rainy season starts in May and 
continues till October. During July, dust from African Sahara moves to 
the state, suppresses rainfall, and negatively impacts on Florida’s air 
quality, which is known as one of the cleanest in the country. According 
to World Resource institute, the State of Florida is among top ten 
Greenhouse gas (GHG) emitting states with quantity of 267.24 million 
ton of GHG where 41.7 % of GHG are emitted by transportation sectors 
and 37.4 % are emitted by power and heat generators [58]. The share of 
these sectors indicates that any noticeable variation in their perfor
mance might affect the air quality of surrounding environment. 

The average GHG emission of the State of Florida in 2019 is 11.01 
metric tons of CO2 per capita, which is lower than the country’s average 
emission of 15.30 metric tons of CO2 per capita [59,60]. This implies 
that average emission of SO2 and NOx by individuals in different sectors 
such transportation and electricity generating sectors might be also 
milder compared with many other states in the country. 

4.4. Analysis approach 

The study period consists of seven consecutive years (from 2015 to 
2021), to represent five years before the spread of COVID-19 pandemic, 
and two years after the spread of COVID-19. Historically, there were 104 
ambient air monitoring sites, were some of the sites are no longer 
operating [61]. These sites were reviewed and filtered to assess the 
availability of data during the study period. Air quality indicator data 
were collected from 69 air quality monitoring stations. These stations 
are distributed at various locations with the State of Florida, covering a 
wide range of metropolitan areas, land uses, and population densities 
[61–63]. However, these stations were neither fully active nor 
measuring the same type of pollutants during the study period. Since not 
all monitoring stations measured all the targeted pollutants’ levels, the 
number of monitoring stations and the included counties varied across 
the three different pollutants. PM2.5 levels were measured in 51 stations 
(28 counties), NO2 levels were measured in 15 stations (7 counties), and 
SO2 levels were measured in 22 stations (14 counties). The monitoring 
stations are tracking levels of different pollutants, such as PM2.5, SO2, 
NO2, CO, Ground Ozone, and PM10 at an hourly basis. Most stations are 
tracking PM2.5 levels. However, fewer stations are tracking NO2, and 
SO2, since some of the stations are limited to monitor only one or two 
types of pollutants. Therefore, this study is limited to these three types of 
pollutants, which are known to be air quality indicators that are sensi
tive to changes in socioeconomic activities [44,64]. 

Table 1 
Summary of maximum allowable pollutants’ levels [50].  

Pollutant Primary/ 
Secondary 

Averaging 
Time 

Level Form 

Carbon 
Monoxide 
(CO) 

Primary 8 h 9 
ppma  

- Not to be exceeded 
more than once per 
year. 1 h 35 

ppm- 
Nitrogen 

Dioxide 
(NO2) 

Primary 1 h 100 
ppb b  

− 98th percentile of 1-h 
daily maximum con
centrations, averaged 
over 3 years. 

Primary 
Secondary 

1 year 53 ppb  - Annual Mean. 

Ozone (O3) Primary 
Secondary 

8 h 0.070 
ppm  

- Annual fourth-highest 
daily maximum 8-h 
concentration, aver
aged over 3 years. 

Particulate 
Matter 
(PM2.5) 

Primary 1 year 12.0 
μg/m3  

- annual mean, averaged 
over 3 years. 

Secondary 1 year 15.0 
μg/m3  

- annual mean, averaged 
over 3 years. 

Primary 
Secondary 

24 h 35 μg/ 
m3  

− 98th percentile, 
averaged over 3 years. 

Particulate 
Matter 
(PM10) 

Primary 
Secondary 

24 h 150 
μg/m3  

- Not to be exceeded 
more than once per year 
on average over 3 years. 

Sulfur 
Dioxide 
(SO2) 

Primary 1 h 75 ppb  − 99th percentile of 1-h 
daily maximum con
centrations, averaged 
over 3 years. 

Secondary 3 h 0.5 
ppm  

- Not to be exceeded 
more than once per 
year.  

a ppm: Parts per Million. 
b ppb: Parts per Billion. 
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4.5. Historical trends of the main air quality indicators 

Fig. 3 (a) shows the monthly changes in PM2.5 between 2015 and 
2021. For instance, PM2.5 concentrations tend to be at the lower side 
during the winter, and then as the temperature increases during the 
summer, its concentrations tend to increase slightly. However, PM2.5 
monthly average did not exceed maximum allowable concentration of 
12 μg/m3 during the study period. Without exception, PM2.5 increased 

around the month of June, which might be due to expected annual Af
rican Sahara dust breakout at this time of the summer. Although such 
dust breakout is better monitored by PM10, PM2.5 records can also detect 
such natural and rather recurring air quality deterioration. As discussed 
earlier, PM2.5 is not a perfect indicator of socioeconomic activities (such 
as motorized mobility), since it is frequently interrupted by natural dust 
generated locally or regionally. Despite the seasonality trend within 
each of the assessed years, the PM2.5 levels tend to be reduced over time. 

Fig. 3. Monthly Variation of (a) PM2.5 , (b) NO2 , and (c) SO2 levels for each year (2015–2021).  

M.S. Ghanim et al.                                                                                                                                                                                                                             



Results in Engineering 20 (2023) 101622

6

This trend is consistent with the EPA documentations, which indicates 
that the annual fine particle concentrations across the United States 
have been declining [51]. 

Fig. 3 (b) shows the concentrations of NO2 from 2015 to 2021. The 
results reveal that the monthly average concentrations of this pollutant 
did not reach maximum allowable concentration of 53 ppm. As for NO2 
concentrations, there is a clear trend of having low concentrations 
during the summer months. Some studies reported higher concentra
tions of NO2 during fall and winter in the United States and other places 
[23]. The lower concentration of NO2 can be associated with its con
version to secondary pollutants such as ground-level ozone during hot 
season [65]. 

Fig. 3 (c) shows concentrations of SO2 from 2015 to 2021. The results 
reveal that the monthly average concentrations did not reach the 
maximum allowable concentration of 75 ppb. As for the SO2 concen
trations, the variation within the year is less than the observed trend for 
the other pollutants. However, the SO2 concentrations during the winter 
month of 2021 have experienced higher values than the other months. 
Moreover, the SO2 concentrations seem to have more reduction over the 
years than the other two pollutants. Similar annual reduction of SO2 is 
reported as a result of implementing nationwide regulation for reducing 
sulfur content of diesel fuels since 2000. Enacting the regulation resulted 
in reduction of SO2 annual emissions from road vehicles from 503 
thousand tons in 1990 to 15 thousands in 2021 [58]. Although the 
emission of SO2 depends on the rate of fossil fuels combustion, its con
centration in ambient air is also affected by seasonal variation and 
meteorological factors such as wind speed, precipitation, and rate of its 
conversion to secondary air pollutants in hot seasons [66]. 

In general, there is a descending trend of pollutants’ levels over the 
years. Therefore, a statistical comparison between concentrations before 
and during the COVID-19 lockdown and measures can only reveal the 
significance of short-term impact, where any potential reduction in 
those levels in 2020 and 2021 as a result of other environmental regu
lations cannot be verified. 

4.6. Time-lag linear regression analysis model 

To verify the long-term changes in PM2.5, NO2, and SO2 levels, time- 
lag linear regression analysis (TLR) approach is used. First, the daily 
averages of statewide pollutants’ concentrations across the data 
collected from all available stations for the years of 2015–2021 are 
estimated. Then, a separate TLR model is developed for each type of the 
pollutants assessed in this study. The y-intercept and the slope for the 
TLR models and their confidence intervals are reported. For a given 
pollutant, the regression slopes for 2020 and 2021 TLR models are 
compared against the previous trends, to assess if significant differences 
are presented or not. The Type III ANCOVA statistical test is performed 
to test homogeneity changes in y-intercept values and slopes over the 
years, by examining the interaction between the year and day 
covariates. 

This methodology is used to verify if the changes in a given pollut
ant’s levels are associated with the overall improvement of air quality or 
short-term changes as a result of COVID-19 pandemic lockdown [51,54, 
55]. The constants and the slopes for the years of 2015 and 2021 are 
then compared to draw the conclusion. The TLR general model for the 
year 2020 can be mathematically expressed in Equation (1). A similar 
formula is used for the year 2021, where the only difference is the use of 
one additional previous year (i.e., the year of 2020). 

Py = β0 + βXX + βT TX +
∑y− 1

i=2015
(βZiZi+βXZiXZi) + εy (1)  

where: 
Py:Concentration of pollutant P in day X for the given year y (years of 

2020, 2021). 
X:The covariate representing the day of a given year y. 

TX:The time-lag variable value for day X in year y. 
Zi:The dummy variable representing the previous year (i.e., year i). 
β0:The regression model constant. 
βX:The day of year covariate coefficient. 
βT:The time-lag variable coefficient. 
βZi:The year dummy variable coefficient for year i (years 

2015–2019). 
βXZj:The day-year interaction coefficient for day X and year i (years 

2015–2019). 
εy:Regression analysis error term for year y regression model. 
This approach has the advantage of assessing the long-term historical 

trends of pollutants levels rather than the absolute changes in pollutants 
levels, or what is called the short-term changes. For example, a pollutant 
level that has been decreasing steadily over the past decade would be 
expected to show a further reduction in 2020 due to the COVID-19 
pandemic. However, if the analysis only focused on the pollutant 
level, which reflects the short-term reduction, it would lead to a 
confounded conclusion that the reduction in this pollutant level is solely 
attributable to the COVID-19 pandemic, without accounting for the 
long-term trend of reduction rate. To avoid this bias, this approach 
evaluates the rates of change of pollutants levels over time and compares 
them with the expected rates based on the historical data. This way, it 
can identify any significant deviations from the normal trends that could 
be linked to the COVID-19 pandemic or other factors. This approach also 
allows for a more comprehensive and nuanced understanding of the 
impacts of the COVID-19 pandemic on air quality across different re
gions and periods. 

However, this approach is considering statewide data, which may 
not account for the spatial heterogeneity of air pollution, which could 
vary depending on the location, land use, dominating activities, pol
lutants’ source, and meteorology of the pollutants. 

4.7. Benefits to society 

The benefits of this research for society at large are twofold. First, it 
provides valuable insights into the long-term changes in pollutants’ 
levels. Moreover, it would also help in identifying the contribution of the 
lockdown period during the COVID-19 pandemic on those pollutants. As 
many behavioral, social or industrial activities were significantly 
impacted at societal level, this research investigates a unique opportu
nity in providing real-life experiments and data-driven approach to 
assess those changes in air quality. 

Second, the findings of this research can inform the development of 
policies and interventions aimed at improving air quality. By identifying 
the key determinants of air pollution levels, we can develop more tar
geted and effective strategies for reducing emissions and improving air 
quality. 

5. Results and discussion 

5.1. Short-term changes of pollutants’ levels within each year 

This section evaluates the changes of the three pollutants levels 
within the year. The evaluation was performed to assess the short-term 
changes of pollutants’ levels, by comparing the pollutant’s levels within 
the same year. The comparison considered the changes from the 
beginning of the year (i.e., January) and the middle of the year (June), 
since the seasons are changing from Winter to Summer, and the tem
perature drops from its lowest to the highest. Fig. 4 shows the changes in 
June when compared to January of each year. 

In particular, the changes in PM2.5 concentration between the 
beginning of the year and the middle of the year. This period was 
selected since it corresponds to the period where the lockdown period 
has no effect (i.e., the beginning of 2020) to the period where the 
lockdown restrictions were at their peak (i.e., the middle of 2020). For 
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consistency, the same period was used to compare the changes for all 
studied years (2015–2021). It was noticed that the changes during the 
first six months (i.e., January and June) of each year range mostly be
tween ±9 %, where some years experienced an increase during the first 
six months of the year, and other years experienced a reduction during 
the same period. Moreover, there was no specific trend for these changes 
as well. Most of the years experienced an increase in June when 
compared to January, except for two years (2017 and 2021). 

As for NO2, and unlike the observed trend for PM2.5, the average 
daily NO2 concentration was dropped by 29.6 % during the first six 
months of 2015. The drop percentages during the first six months in 
2020 and 2021 were 37.8 % and 46.7 %, respectively. The average 
reduction during the first six months and across all years was approxi
mately 33.0 %. NO2 levels in June were lower than those of January for 
all the years, without an exception. 

With respect to SO2 levels, concentrations levels in June were less 
than the levels in January for most of the years, except for 2015 and 
2018. In 2015 and 2018, the levels in June were higher than those in 
January by approximately 27.7 % and 8.0 %, respectively. As for the 
COVID-19 lockdown period in 2020, it was noticed that the differences 
between SO2 levels in January and June are marginal. However, the SO2 
levels in June have dropped by almost 60 % when compared to its levels 
in January in 2021. 

5.2. PM2.5 Mass concentration 

Fig. 5 summarizes the annual average daily levels of PM2.5 across all 
available monitoring stations in the State of Florida. The figure shows 
that the average PM2.5 levels is slightly declining over time. For instance, 
the annual average daily levels drop by 7.27 % from 8.88 μg/m3 in 2015 
to 8.35 and 8.24 μg/m3 in 2020 and 2021, respectively. Moreover, the 
variation of PM2.5 levels were also reduced over time, where the annual 

variance dropped from 8.87 in 2015 to 7.42 and 4.14 in 2020 and 2021, 
respectively. 

Fig. 6 shows the statewide daily average PM2.5 concentrations for the 
years of 2015–2021. There is a trend of descending rates over each year. 
Furthermore, the width of the regression slope with 95th percentile 
confidence interval is reduced over time, which indicates less variability 
over time. This reduction in variability can also be attributed to overall 
air quality improvement. 

A summary of the TLR models for 2020 and 2021 results are shown in 
Table 2. The first comparison that can be made is related to the in
tercepts. The results show that the intercepts associated with the year 
covariates are insignificant at 95th percentile confidence level. This 
indicates that despite the overall reductions in 2020 and 2021, there was 
no statistically significant evidence that PM2.5 concentrations have 
changed in 2020 and 2021 when compared to the previous years (i.e., 
2015–2019). 

With respect to the differences in regression slopes, which is 
expressed by the interaction between Day and Year covariates, the re
sults of the ANCOVA test shown in Table 3 indicate that there is no 
statistical evidence that the slopes in 2020 and 2021 are different than 
those observed in the examined previous years, where the p-value is 
0.859. This observation is suggesting that the rate of change in PM2.5 
concentrations in 2020 and 2021 is similar to the previous years. 

Therefore, it is concluded that there is no significant statistical evi
dence to suggest that the COVID-19 pandemic has attributed to the drop 
in PM2.5 concentrations in 2020 or 2021. On the other hand, this drop 
can be attributed to other factors that are associated with overall 
improvement in air quality. 

5.3. NO2 concentration 

Fig. 7 summarizes the annual average daily concentrations of NO2 
across all monitoring stations in the State of Florida. The figure does not 
show specific or distinct average or variance trend across the study 
years. The width of the 95 % CI of regression slopes were constant over 
the years indicating no variability. In general, the NO2 concentrations in 
any of the studied year were high during the winter months, and they 
decreased as the middle of the year is approached. The months of June, 
July, and August have experienced the lowest NO2 concentrations 
within the year. However, there was no statistical evidence to suggest 
that the NO2 concentrations have improved over the years. Similarly, 
there is no statistical evidence to suggest that NO2 concentrations during 
the pandemic were less than the previous years. 

Fig. 8 shows the average dailyNO2 levels in the years of 2015–2021. 
In general, there is no conclusive trend for the regression slope over each 
year. Some years show a descending trend, other years show ascending 
or no trend. However, the trend for 2021 is ascending, which indicates 
the presence of activities associated with NO2 during this year. None
theless, further statistical evidence must be presented before a conclu
sion can be drawn. Furthermore, the width of the 95th percentile 
confidence interval of the regression slope across the years is almost 
similar, which is consistent with the variability statement shown in 
Fig. 7. 

The results summarized in Table 4 show that the differences between 
the time-lag linear regression slopes in 2020 and 2021 are not signifi
cant, where the p-value of the ANCOVA test is 0.401. This finding with 
respect to NO2 concentrations is consistent with the findings associated 
with PM2.5 concentrations. 

As for the NO2 seasonal variation, other studies have documented 
that the NO2 levels during the middle of the year (i.e., the months of the 
summer) tend to be lower than the beginning and the end of the year (i. 
e., the months of the winter) in New York, New Jersey, and Portugal [67, 
68]. These seasonal variation statements support the findings of this 
study. While those studies have reported the findings in cities that are 
having different climate and weather conditions than the ones found in 
Florida, they are still important findings to verify that changes in NO2 

Fig. 4. Rate of Change of Pollutants’ Levels between January and June for the 
years 2015–2021. 

Fig. 5. Boxplot representing Average Daily PM2.5 Levels for the 
years 2015–2021. 
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levels are not sensitive to the severe changes in weather conditions be
tween summer and winter months. As for studies during the pandemic 
that are based on Florida, a study reported that significant short-term 
reduction of air quality for the cities of Jacksonville, Tallahassee, 
Gainesville, Orlando, Tampa, and Miami during the pandemic [22]. 

Fig. 6. Daily average mass concentrations of PM2.5 in the state of Florida between 2015 and 2022.  

Table 2 
Coefficient estimates (95 % confidence intervals) of differences in the intercepts 
from the linear time lag model for 2015–2020 for PM2.5, NO2, and SO2 con
centrations by year compared to 2021 values.  

Year PM2.5 , (μg/m3) NO2, (ppb) SO2, (ppb) 

Intercept 95th CI Intercept 95th CI Intercept 95th CI 

2015 0.429 (-0.017, 
0.875) 

0.296 (-0.760, 
1.353) 

2.081b (1.633, 
2.528) 

2016 0.127 (-0.317, 
0.571) 

0.370 (-0.686, 
1.425) 

0.695b (0.260, 
1.130) 

2017 0.304 (-0.141, 
0.749) 

0.113 (-0.944, 
1.169) 

− 0.150 (-0.584, 
0.284) 

2018 − 0.045 (-0.489, 
0.399) 

0.567 (-0.490, 
1.625) 

0.033 (-0.401, 
0.467) 

2019 − 0.090 (-0.534, 
0.354) 

0.289 (-0.767, 
1.346) 

− 0.475a (-0.909, 
− 0.040) 

2020 0.040 (-0.472, 
0.553) 

0.060 (-1.157, 
1.278) 

− 0.723b (-1.225, 
− 0.222)  

a p < 0.05. 
b p < 0.01. 

Table 3 
Results of ANCOVA test for the PM2.5 linear time-lag model.  

Source Type III Sum of Squares Degree of Freedom Mean Square F-value Significance 

Dependent Variable: PM2.5 

Corrected Model 9144.429 14 653.173 210.095 0.000 
Intercept 1009.907 1 1009.907 324.839 0.000 
Year Covariate (Intercept) 20.442 6 3.407 1.096 0.362 
Day Covariate 26.363 1 26.363 8.480 0.004 
Time Lag 8161.390 1 8161.390 2625.133 0.000 
Year * Day Interaction (Slope) 8.036 6 1.339 .431 0.859 
Error 7902.933 2542 3.109   

R2 = 0.536 (Adjusted R2 = 0.534). 

Fig. 7. Boxplot representing Average Daily NO2 Levels for the 
years 2015–2021. 
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5.4. SO2 concentration 

The annual average daily concentrations for SO2 are presented in 
Fig. 9 for all monitoring stations across State of Florida. Overall, the 
average yearly concentrations observed a constant decrease was 

observed from 2015 to 2020 with a sudden increase in 2021. The 
average SO2 concentrations reduced from 4.3 ppb in 2015 to 2.0 ppb in 
2020 and 2.62 ppb in 2021 observing 53.3 % and 38.8 % reduction, 
respectively. Furthermore, the variance also showed similar trends with 
5.6 ppb in 2015 and 1.6 ppb in 2020 and a higher value (sudden in
crease) in 2021 of 10.1 ppb. 

Fig. 10 presents the average daily concentrations of SO2 for each day 
of the year. Generally, the lower concentrations were observed in the 
initial months (first quarter) of the year. The 95 % confidence interval of 
the slopes reduced gradually from 2015 to 2020 showing lesser variation 
in SO2 levels. The variance increased significantly for 2021. 

The results for TLR model were previously presented in Table 2. The 
results indicate that the intercept was significant for all years except 
2017 and 2018. Table 5 summarized the results of the ANCOVA test for 
SO2 levels. The test results show that the significance was less than 0.001 
indicating that the SO2 concentrations changed significantly in 2021 
compared to 2015. These findings were contrary to the trends observed 
for PM2.5 and NO2 levels. 

According to the data presented in Fig. 9, the annual average daily 
concentrations of SO2 showed a decline from 2015 to 2020, followed by 
a sudden increase in 2021. This increase was unexpected, considering 

Fig. 8. Daily average mass concentrations of NO2 in the state of Florida between 2015 and 2022.  

Table 4 
Results of ANCOVA test for the NO2 linear time-lag model.  

Source Type III Sum of Squares Degree of Freedom Mean Square F-value Significance 

Dependent Variable: NO2 

Corrected Model 36738.706 14 2624.193 149.590 0.000 
Intercept 6237.417 1 6237.417 355.560 0.000 
Year Covariate (Intercept) 24.729 6 4.122 .235 0.965 
Day Covariate 69.055 1 69.055 3.936 0.047 
Time Lag 33564.176 1 33564.176 1913.302 0.000 
Year * Day Interaction (Slope) 108.772 6 18.129 1.033 0.401 
Error 44593.128 2542 17.543 – – 

R2 = 0.452 (Adjusted R2 = 0.449). 

Fig. 9. Boxplot representing Average Daily SO2 Levels for the 
years 2015–2021. 
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the relatively restricted transportation activities in 2019. This incon
sistency raises questions about whether the transportation sector is the 
primary contributor to the emission of SO2 concentrations. It is worth 
noting that the continuous reduction of coal-fired generation, driven by 
environmental regulations and the Clean Air Act Amendments (CAAA) 
of 1990, effectively led to a decrease in both total and electric power 
industry SO2 emissions over several decades, up until 2020 [69]. Coal is 
notorious for its high SO2 emissions, registering at 3900 pounds per 
million kilowatt-hours (lb/mil. kWh) in power plants, a clear contrast to 
more environmentally friendly fossil fuels such as natural gas, which 
emit only 5 lb/mil. kWh [70]. 

5.5. Discussion 

While the implemented environmental policies and regulations have 
caused a relatively steady declining trend controlling the sources of 
PM2.5 and NO2 levels, these policies did not result in a parallel trend for 
SO2 levels, which indicates that there is a need to implement further 
sustainable policies and initiatives targeting the sources of SO2 levels, 
such as industrial activities or power generation plants, which empha
sizes the role of environmental policies and regulations in achieving 
environmental benefits. 

The results show that the statewide daily average PM2.5 levels 
showed a descending trend over each year, with a narrower confidence 
interval over time, confirming the reduction in variability and 
improvement in air quality. The TLR models did not find any significant 
difference in the intercepts or slopes of PM2.5 levels between 2020 and 
2021 and the previous years, suggesting that the COVID-19 pandemic 
did not have a statistically significant effect on the PM2.5 levels in 
Florida. 

NO2 levels consistently decreased during the first six months of each 
year. The annual average daily levels did not show any specific or 
distinct trend or variation over time. The levels were higher during the 
winter months and lower during the summer months for all the years, 
without exception. The statewide NO2 daily average levels did not show 
any conclusive trend over each year. The TLR models did not find any 
significant difference in the slopes of NO2 levels between 2020 and 2021 
and the previous years, suggesting that the COVID-19 pandemic did not 
have a statistically significant effect on the NO2 levels in Florida. 

SO2 levels mostly decreased during the first six months of each year, 
except for 2015 and 2018. The most notable decrease was observed in 
2021, where SO2 levels dropped by almost 60 %. This indicates that the 
COVID-19 lockdown may have reduced SO2 emissions from industrial 
and power generation activities. 

The TLR models found that the intercept was significant for all years 
except 2017 and 2018, suggesting that there was a change in SO2 levels 

Fig. 10. Daily average mass concentrations of SO2 in the state of Florida between 2015 and 2022.  

Table 5 
Results of ANCOVA test for the SO2 linear time-lag model.  

Source Type III 
Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F-value Significance 

Dependent Variable: SO2 

Corrected 
Model 

2433.357 14 173.811 58.731 0.000 

Intercept 1663.646 1 1663.646 562.152 0.000 
Year 

Covariate 
(Intercept) 

388.744 6 64.791 21.893 0.000 

Day 
Covariate 

41.313 1 41.313 13.960 0.000 

Time Lag 688.955 1 688.955 232.800 0.000 
Year * Day 

Interaction 
(Slope) 

69.103 6 11.517 3.892 0.001 

Error 7522.859 2542 2.959 – – 

R2 = 0.244 (Adjusted R2 = 0.240). 
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between those years and the other years. The ANCOVA test found that 
there was a significant difference in the slopes of SO2 levels between 
2021 and 2015, suggesting that the COVID-19 pandemic had a statisti
cally significant effect on increasing the SO2 levels in Florida. This 
finding was contrary to the findings for PM2.5 and NO2 levels, which did 
not show any significant effect of the pandemic. 

In summary, the results reveal that the PM2.5 and NO2 levels during 
the pandemic are not statistically different than the long-term historical 
trends of these two pollutants. Furthermore, the SO2 the pandemic has a 
short-term impact on SO2 levels. Where these levels during the 
pandemic were different that the long-term historical trend. 

The absence of a significant correlation between the concentrations 
of PM2.5, NOx, and SO2 and transportation activities suggests that 
transportation alone cannot account for the variation in air pollutant 
levels. Other sectors contributing to air pollution, such as power plants, 
may exert a more noticeable influence on air quality. This is supported 
by the observed similarity between trends in coal consumption in power 
plants and average annual pollution levels. 

6. Conclusions and recommendations 

The COVD-19 pandemic forced many governmental and official en
tities from all over the world to impose certain measures to suppress the 
spread of the pandemic. Those measures have changed many daily so
cioeconomic activities. While some of those activities were reduced, 
such as motorized mobility, other activities have experienced a sub
stantial increase, such as the increase in generated power demand. 
Therefore, the changes in such socioeconomic activities were attributed 
to changes in air quality. Several studies have assessed the short-term 
impacts of the changes in activities on the air quality. However, the 
long-term significance of these changes did not drag the same attention, 
creating the need to assess and investigate the long-term impact of 
COVID-19 on air quality as well. This paper investigates the statewide 
short-term and long-term impacts of COVID-19 pandemic on the State of 
Florida. The study investigates three air quality indicators that are 
highly influenced by the changes in socioeconomic activities, fine par
ticulate matters (PM2.5), nitrogen dioxide (NO2), and sulfur dioxide 
(SO2). The study period covers three main periods, pre-pandemic period 
between 2015 and 2019, lockdown in 2020, and post-pandemic in 2021. 

The results have revealed that the short-term changes for PM2.5 and 
NO2 levels during the three study periods were not statistically signifi
cant. Likewise, the long-term changes were not significant as well, as 
there was a declining trend in the levels of those two pollutants, which 
can be attributed to other factors, such as environmental regulations and 
vehicular emissions’ pollutants. In particular, the changes in regression 
slopes and the intercepts of pollutants’ levels were insignificant. 

However, the changes in SO2 levels have a taken a different path. As 
there was no clear and distinct historical trend, the short-term changes 
of SO2 levels in 2020 and 2021 were statistically significant when 
compared to the pre-pandemic period. This observation is consistent 
with the observed increase demand of generated power [22]. When the 
long-term changes of SO2 levels are considered, the same conclusion can 
be drawn, where the changes in SO2 levels in 2020 and 2021 were not 
influenced by the historical change in SO2 levels. The study also found 
that lockdown measures led to a reduction in industrial activity, which is 
reflected in the decline in SO2 levels. This suggests that reducing in
dustrial emissions may be a particularly effective way to improve air 
quality. 

Overall, this research has the potential to make a significant contri
bution to improving public health and well-being by helping us to 
reduce exposure to air pollution. Although this study gives a statewide 
assessment of air quality in the State of Florida, it has some limitations 
that should be further investigated. 

The study did not account for all potential factors that may have 
influenced air quality levels during the pandemic, such as changes in 
weather patterns, transportation demand, or economic activity. For 

instance, this study should be further expanded to assess and evaluate 
the contribution of several socioeconomic and demographic factors, 
such as vehicular demand, land use, meteorology, and population fac
tors on changes in different air quality index. 

The study was conducted in a single state (Florida), so the findings 
may not be generalizable to other parts of the United States or the world. 
Within this context, it is recommended to compare air quality within 
different areas in the same state, such as metropolitan and nonmetro
politan areas, or urban, suburban, and rural areas, where impact of 
changes in socio-economic activities on air quality could potentially be 
different. These recommended studies would tremendously benefit from 
the large-scale and global social experiment opportunities that were 
introduced by the COVID-19 pandemic, and the response measures that 
came along. Moreover, it is important to note that this research did not 
encompass the examination of the location and extent of coal con
sumption by power plants in the studied areas. Investigating the impact 
of these factors can potentially provide valuable insights and is recom
mended for future research. This study was also limited to three pol
lutants, and it is recommended in future research to consider other 
pollutants, such as Ozone and Carbon Monoxide. 
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