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ABSTRACT

Foundations of memory capacity in models of neural cognition

Chandradeep Chowdhury

A central problem in neuroscience is to understand how memories are formed as a

result of the activities of neurons. Valiant’s neuroidal model attempted to address

this question by modeling the brain as a random graph and memories as subgraphs

within that graph. However the question of memory capacity within that model has

not been explored: how many memories can the brain hold? Valiant introduced the

concept of interference between memories as the defining factor for capacity; exces-

sive interference signals the model has reached capacity. Since then, exploration of

capacity has been limited, but recent investigations have delved into the capacity

of the Assembly Calculus, a derivative of Valiant’s Neuroidal model. In this paper,

we provide rigorous definitions for capacity and interference and present theoretical

formulations for the memory capacity within a finite set, where subsets represent

memories. We propose that these results can be adapted to suit both the Neuroidal

model and Assembly calculus. Furthermore, we substantiate our claims by providing

simulations that validate the theoretical findings. Our study aims to contribute essen-

tial insights into the understanding of memory capacity in complex cognitive models,

offering potential ideas for applications and extensions to contemporary models of

cognition.
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Chapter 1

INTRODUCTION

Memories formed in the brain emerge from intricate patterns of neural activity in-

volving specific subgroups of neurons. A pioneering model exploring this complex

phenomenon is Valiant’s Neuroidal model, introduced in his 2005 paper “Memoriza-

tion and association in a realistic neural model”, which represents memories as ran-

dom subgraphs over a larger base graph modeling the connectivity of the brain [32].

Activating a certain proprotion of neurons in a memory causes the memory to fire,

and effectively be retrieved from this network. Valiant provided two main algorithms

- JOIN, for forming new memories, and LINK, for associating pre existing memories.

One unique aspect of this model is that all memories, pre-existing and newly formed,

must approximately have the same size to behave like ‘equal citizens’ in the system.

To enforce this, Valiant introduced a set of six equations that the memory size must

follow. For a given configuration of the system, there are unique integral solutions to

this system of equations that Valiant referred to as the replication factor.

Valiant investigated two versions of the Neuroidal model - a disjoint version where

memories do not intersect, and a more biologically plausible shared version where

memories are allowed to intersect. The capacity of the disjoint version can be eas-

ily estimated - it is the number of neurons in the graph divided by the replication

factor. To study the capacity of the shared memory model, Valiant introduced a

notion of interference between memories. This refers to the unintended firing of one

memory when another is activated, caused by overlapping subgroups of neurons. As

interference accumulates from storing more memories, quality of retrieval degrades -
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false firing escalates, signaling the network has hit its memory capacity. Valiant left

quantitative characterization of this capacity for future work.

Since then, formal analysis of the neuroidal framework’s storage capabilities remains

limited. Valiant himself reinvestigated the capacity of the Neuroidal model with

respect to LINK in 2017 [34]. However, he did not analyze the capacity with respect

to JOIN, which we consider more interesting as it is primary memory creation tool in

the model. Recently, Perrine empirically investigated the capacity of the Neuroidal

model with respect to JOIN and provided some valuable insights into the problem

[27]. There also have been recent empirical investigations into capacity in the context

of the Assembly Calculus, a descendant of Valiant’s model that uses Project and

Merge, two more advanced memory formation operations inspired by LINK and JOIN

respectively [35]. However, broader open questions persist regarding formulating

general capacity theories spanning diverse random graph based models of cognition

that capture essential interference phenomena governing information storage.

In service of this goal, we take foundational steps in this paper toward a rigorous

capacity formulation for overlapping subset models in terms of expected interference

between memories. We start by providing precise definitions for memory capacity and

interference for a system of subsets over a finite base set. In contrast with the com-

plex memory generation process used in Valiant’s and other contemporary models,

we initially consider random subset insertion to enable simpler closed-form solutions

that can also be updated to account for the intricacies of different memory generation

algorithms. Under simplifying assumptions, we derive expressions characterizing ca-

pacity, roughly defined as the maximum number of subsets that can be stored in the

system before expected interference from adding more memories breaches intolerable

thresholds. We also simulate the Neuroidal model inspired by Perrine’s simulation in
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his thesis and swap out JOIN with random subset insertion to empirically validate

our results [27].

While mathematically convenient for an initial analysis, we understand random mem-

ory formation lacks biological plausibility. Therefore, we discuss strategies to adapt

our interference calculations to represent specialized memory creation algorithms used

in existing neural models, without compromising the generality of our overall capacity

theory. As a case study, we analyze capacity in the Neuroidal model with respect to

the JOIN operation. We simulate memory formation under JOIN, gaining preliminary

insights into challenges to adapting our theory. Findings reveal uneven accumulation

of interference on certain neurons, in contrast to the simplifying uniformity assump-

tions in our derivations.

Overall, this work initiates rigorous groundwork to elucidate the memory storage

limitations of neural systems in light of interference. We substantiate our formula-

tions with simulations that validate capacity findings under simplifying assumptions

of random memory formation. The analytical capacity expressions and strategies

proposed to handle complex memory creation algorithms offer potential springboards

to tackle outstanding questions in exploring storage dynamics of contemporary cog-

nitive models. They provide formal bases to investigate applications to long-standing

frameworks like Valiant’s neuroidal model and active areas like the Assembly Calcu-

lus.

3



Chapter 2

BACKGROUND

In this chapter, we summarize the key characteristics of the Neuroidal model and

Assembly Calculus relevant to our work. Both models are based on Erdős-Rényi

G(n, p) random graphs with nodes representing neurons and subgraphs representing

memories.

2.1 Neuroidal model

In his 1994 paper, Valiant proposed the Neuroidal model to study memory formation

and association in neural systems in a biologically plausible manner [31]. The Neu-

roidal model consists of a network of neuroids, which are simplified model neurons.

Each neuroid is a threshold unit connected to other neuroids via directed, weighted

synapses. Valiant constrained the neuroidal model using four key biological parame-

ters observed in cortex: total neuron count, synapses per neuron, synaptic strength

relative to threshold, and neuron switching times.

Later in 2005, Valiant developed algorithms for two basic cognitive functions, JOIN

and LINK, within the neuroidal model while respecting realistic biological constraints

[32]. JOIN implements memory formation - if representations for items A and B

already exist in the network, JOIN modifies the network so a new representation C

fires if and only if both A and B fire. LINK implements association - if A and B are

already represented, LINK modifies the network so activation of A causes activation

of B.
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Now we summarize the key parameters that define the Neuroidal model:

- Number of neurons (n):

– Specifies total neuron count in the network.

– Values analyzed range from 105 to 109, consistent with biological observa-

tions

- Number of synapses per neuron (d):

– Specifies expected number of synaptic connections from each neuron

– Models network connectivity density

– Values analyzed range from 16 to 106

- Synaptic strength (k):

– Relative to neuronal threshold required for neuron to fire

– Specifies strength of each synapse as a fraction of threshold

– Values analyzed range from 0.001 to 0.125 of the threshold

– Consistent with typically observed weak synapse strengths

- Switching time:

– The time it takes for a neuron to complete a cycle of causing an action

potential in response to action potentials in its presynaptic neurons

– Assumed to be 1 time unit for state changes, faster for threshold firings

- Threshold (T ): Integer threshold value that summed synaptic inputs must ex-

ceed to cause neuron firing

- Neuron state (s): Each neuron has a state value indicating current mode (e.g.

firing or non-firing)
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- Synapse state (q):

– State variable for each synapse

– Used in algorithms to indicate intermediate synapse values

- Synapse weight (w):

– Integer weight of each synapse, summed to determine neuron inputs

– Initial weights set to T/k based on synaptic strength parameter

We try our best to use the same notation in our results whenever possible however

please note that there are some distinctions.

2.1.1 JOIN

We are primarily interested in JOIN as it the main memory formation tool of this

model. Valiant discusses three variants of JOIN in his work - two-step disjoint JOIN,

two-step shared JOIN, and one-step shared JOIN. The disjoint version is of little

value to our analysis of capacity. Valiant did not make any claims of difference in

biological plausibility between the one-step and two-step shared JOIN operations

however we will focus on the one-step shared version as it easier to implement and

computationally more efficient [32]. Further, it has already been succesfully simulated

by Perrine in 2023 [27].

For the shared one-step case, Valiant suggests a slight change to the parameters -

instead of a single synaptic strength parameter we now have two seperate parameters

for memorization and association, km and ka respectively that follow the relation

km = 2ka [32]. The algorithm can be summarized as follows:

1. Fire memory A and B simultaneously
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2. Propagate the synapse weights to all neuroids that have edges going from A or

B to them

3. Collect the neuroids that have total number of edges greater than km

4. Group these neuroids together and call it memory C.

Note that since the synapse weight is T/km, by having greater than km incoming

edges from A or B, the total weight of the neuroid will be greater than T causing it

to fire.

This results in a set of approximately r C neuroids that represent the conjunction of

A and B - firing A or B will trigger at least half of these C neuroids to fire causing C

to fire [32]. Subsequent JOIN operations treat C representations as first-class citizens

like A and B.

Note that the original Neuroidal model is assumed to be bipartite, at least for the

regions where the algorithms operate, an assumption we do not make in our analysis

and instead work on a general random graph as we think that is more biologically

plausible.

Valiant’s original model assumes there are no edges between A and B since its a

bipartite graph however we make no such assumption and it is possible that C could

overlap with A or B. We think this still respects the intentions of JOIN as firing A

or B will still fire C and it does not matter if it fires through edge weights or through

overlap.
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2.2 Assembly Calculus

Inspired by the Neuroidal model, Christos H. Papadimitriou, Santosh S. Vempala,

Daniel Mitropolsky, and Wolfgang Maass proposed the Assembly Calculus, an up-

dated model of neural computation, in their 2020 paper “Brain computation by

assemblies of neurons” [25]. Assemblies were first introduced by Hebb way in his

landmark 1949 paper “The first stage of perceptron: growth of the assembly” [11].

Assemblies are defined as large populations of neurons believed to imprint memories.

The main difference between the memories in the Neuroidal model, later named arb-

sets by Valiant, and assemblies, are that arbsets are not better connected to each

other than arbitrary sets unlike Hebbian assemblies [34].

The authors introduce a set of operations on assemblies. These operations correspond

to properties of neuron assemblies observed in experiments, and can be shown, an-

alytically and through simulations, to be realizable by generic, randomly connected

populations of neurons with Hebbian plasticity and inhibition. Assemblies occupy

a level of detail intermediate between the level of spiking neurons and synapses and

that of the whole brain. They then argue that the resulting computational system can

in principle be capable of carrying out arbitrary computations. The authors believe

that something like it may underlie higher human cognitive functions like reasoning.

The main parameters of the model are:

- The number of neurons that are in a firing state in an area (n)

- The probability of recurrent (connections in a loop) and afferent (connections

that carry sensory information towards the brain and spinal cord) synaptic

connectivity (p)

- The maximum number of firing neurons in any area (k)
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- Plasticity coefficient (β)

Typical values of these parameters used in the accompanying simulations with the

2020 paper are n = 106−7, p = 10−3, k = 102−3, and β = 0.1 [25].

2.2.1 Project

Project is one of the two primary memory creation operations of the Assembly Calcu-

lus [25]. This operation creates a “copy” of an existing assembly x in a new brain area

B. It works by repeated firing of assembly x while area B is temporarily disinhibited.

Through recurrent excitation and competition mediated by inhibition, a sequence of

neuronal activity in area B converges to form a stable new assembly y that will fire

whenever x fires subsequently. This models experimentally observed phenomenon

where assemblies activate associated assemblies in downstream areas. This process

is described in great detail in the paper “Recurrent circuitry dynamically shapes the

activation of piriform cortex” [8]. In the primary example used, the olfactory bulb

is the upstream area and the piriform cortex is the downstream area. Projection

underlies creation of new long-term memories.

2.2.2 Merge

Merge is the other main memory creation tool in the Assembly Calculus [25]. This

operation combines two existing assemblies x and y into a single new assembly z with

strong reciprocal connections to x and y. It is the most complex operation, requiring

coordinated firing across 5 areas - those containing x, y, parents of x, parents of y,

and the area A that will contain the new assembly z. Through repeated co-activation

of x and y by their parents, recurrent excitation and inhibition between A and the

areas containing x and y, the connectivities are adjusted and a new merged assembly z

9



forms in A. This operation is used to create merged neural representations supporting

hierarchical combinations.

2.2.3 The NEMO model

Recently, Max Dabagia, Christos H Papadimitriou, and Santosh Vempala have intro-

duced the NEMO model, an updated version of the Assembly calculus that claims to

be even more biologically plausible by being able to create, process and manipulate

temporal sequences of stimuli and memories [5]. The primary contribution of this

model is the introduction of an updated version of Project called Sequence project,

ab operation that can project a sequence of memories down.

2.3 Connection to this work

Despite the different nomenclature and goals of these models, they all share the same

basic structure - a random graph representing the brain or brain area, subgraphs

representing memories and nodes representing neurons. We believe that common

definitions of interference and capacity and general theory will apply to all such

models, although the exact formulation of expected interference between memories

and capacity will vary between different memory creation algorithms.
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Chapter 3

RELATED WORK

In this chapter, we go over works that have investigated the notion of capacity in

random graph based models of cognition. To the best of our knowledge, there is a

very limited amount of prior research carried out in this area.

One of the first attempts to estimate the capacity of the random graph based models

of cognition was undertaken by Valiant himself [32]. Valiant concludes that it is

complicated to derive the capacity of the model with shared memory representation,

a sentiment we agree with. He accounts for interference by adding error rates for JOIN

and LINK and the general noise rate σ, the total number of nodes active in the circuit

at a given time, to his set of 6 equations governing JOIN and solves them assuming a

reasonable bound on this value. Valiant also claimed that a single value for number

of items that can be represented does not make sense for such a complicated model

and it is more appropriate to simply bound the interference.

We assume a more optimistic stance regarding this and believe that it is possible

to find an analytical formulation that will answer this question. We also think that

Valiant agrees with us as he revisited this problem after a brief period of time, as

discussed below, and made considerable progress in this area. While we are not able

to solve the analytical capacity of the Neuroidal model with respect to shared JOIN

in this paper, we believe we have laid significant groundwork for it and are optimistic

it will be solved in the near future.

Valiant revisited the notion of capacity 4 years later, along with Vitaly Feldman, in

their 2009 paper “Experience-Induced Neural Circuits That Achieve High Capacity”
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[7]. He uses a relatively simple simulation of the Neuroidal model to analyze the

capacity with a mix of tasks like memorization, association, inductive learning and

hierarchical memory formation. He works with a rather loosely defined notion of

interference in this paper that is however very similar to the idea introduced in 2005.

The definition of capacity remains essentially the same as the point where there is

too much interference or ‘degradation’. The empirical results provided in this paper

are quite interesting to us however the use of a bipartite Neouroidal model makes it

slightly less biologically plausible. In our simulations we work with general sets and

random graphs with no further assumption of structure.

Valiant again took on the challenge of capacity in his 2017 paper “Capacity of Neural

Networks for Lifelong Learning of Composable Tasks”, this time from a more theoret-

ical standpoint [34]. In this paper, he analyzed the capacity of the Neuroidal model

with respect to LINK. Valiant was able to successfuly derive theoretical estimates for

the upper bound of the capacity. Valiant carries over the concept of interference from

the 2005 paper and studies the evolution of the system until the associations created

by LINK are no longer clearly defined and there is too much unintended excitation or

firing of other memories, in other words, there is too much interference in the system.

This paper serves as the primary inspiration for our work and we follow very similar

theoretical tools and style to arrive at our results. Of primary interest here, is the

fact that Valiant analyzes capacity with regards to an operation that does not create

new memories [34]. We assume that Valiant intended for the system to evolve by

JOINing existing pairs of memories to form new memories as that is the primary

memorization algorithm associated to the Neuroidal model. This raises the question

of whether the capacity upper bound derived in this paper is actually realizable or

will the system reach the point of excess interference before that. This is the core

12



reason for developing our theory with the memory formation algorithm as the central

piece that determines the final formulation of interference and capacity.

In his 2023 paper, “Neural Tabula Rasa: Foundations for Realistic Memories and

Learning”, Perrine simulates the Neuroidal model and analyzes its capacity empiri-

cally with respect to the basic parameters of the model [27]. This paper inspired us

to experimentally verify our theoretical results using an adapted version of the sim-

ulation code provided by Perrine. We also find the results in this paper intriguing,

especially the behavior of the model where the capacity increases with a higher num-

ber of pre-existing starting memories in the model. This goes against our conventional

wisdom and we try to explain it in section 5.3.1.

Also in 2023, Yi Xie, Yichen Li, and Akshay Rangamani explored the capacity of the

Assembly Calculus with respect to the Project operation in their paper “Skip Connec-

tions Increase the Capacity of Associative Memories in Variable Binding Mechanisms”

[35]. They work with a very similar interference driven definition of capacity without

explicitly defining interference. The primary distinction with Neuroidal model based

investigations into capacity is that they focus on interference between classes of mem-

ories rather than memories themselves. They define capacity as the number of classes

when the within-class similarity is less than or equal to the between-class similarity.

They were able to derive empirical results for this concept of capacity with respect

to multiple basic parameters of the Assembly Calculus. Further, they also propose

changes to some operations of the model to improve the capacity. We believe this is a

very important work in this area and along with Perrine’s paper signals the growing

interest in the notion of capacity in models of cognition.
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Chapter 4

METHODS

In this chapter, we will discuss the methods we used to arrive at our results.

4.1 Theoretical methods

To derive the theoretical results, we used basic properties of real numbers, core prin-

ciples from probability theory, and properties of common statistical distributions like

normal, binomial and hypergeometric distributions. We start by focusing on a basic

set with subsets being the main substructure of interest. As random graphs are a

type of subsets, most of these general results will apply to the models discussed in

Chapter 2 as long as the hypothesis is satisfied.

Before we can proceed further we need to formally define the notion of interference

between subsets.

Definition 1. (k-Interference) Given two sets U,W , and some number k ∈ (0, |W |],

we say U k−interferes with W if

|U ∩W | ≥ |W |
k

. (4.1)

Corollary 2. If |U | = |W |, then U k-interferes with W if and only if W k-interferes

with U .

We restrict the upper range of k to |W | for convenience, as beyond that all values of

|W |
k

will be less than 1.

14



This is a generalization of the notion of interference introduced by Valiant in 2005

[32]. Valiant defines a memory to be in a “firing” state if more than half the nodes

in the memory are in a “firing” state. He then defines interference as the unintential

firing of a memory W when another memory U is fired, which is possible if and only

if more than half the nodes of W are also present in U . This corresponds to the k = 2

case of our definition.

We now formally define the capacity of a system of overlapping subsets with interfer-

ence being the limiting factor.

Definition 3. ((r, T, k, δ)-Subset Capacity) Given a set V = {v1, ..., vn}, and pa-

rameters r, T, k, δ > 0, the (r, T, k, δ)-subset capacity of V is the maximum number

of subsets that can be picked subject to the conditions that for any randomly picked

subset U ,

1. |U | ∈ [r − δ, r + δ],

2. n >> 2(r + δ),

3. E[XU ] ≤ T where XU is a random variable denoting the number of

k-interferences caused due to picking U .

The first item simply accounts for the fact that the memories need not be exactly

size r however it should be bounded reasonably for us to make any claims regarding

the capacity. We need the second restriction on the memories here since we want

to apply lemma 5, that will be introduced later, to every pair. The third restriction

here can be thought of as a stopping criteria as we stop picking the subsets once

the expectation of interference reaches that threshold. In the context of models in

computational neuroscience like the Neuroidal Model, this means that there will be
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too much impact on the quality of memorization, that is too much noise and misfiring

in the system if we add any further memories.

We believe these definitions of interference and capacity are rigorous and general

enough to apply to a wide range of contemporary models of neural cognition.

4.2 Empirical methods

To validate our results empirically, we compare our theoretical results against the

capacity of a simulated model. Perrine successfully implemented the Neuroidal model

with shared one-step JOIN in 2023. The simulation uses the graph-tool python library

which is a highly performant library written in C++ with wrappers for Python.

Perrine also investigated the empirical capacity of the Neuroidal model under varying

parameters. We build upon Perrine’s codebase and make some key changes to achieve

our goals.

First, we add the capability to the model to easily swap between memory creation

algorithms. For our experiments, we use both the basic random memory creation and

one-step shared JOIN algorithms. Future investigations into the capacity of random

graph based models could be facilitated by adding support for more memory creation

algorithms.

Second, we add the capability to the code to be able to generate visualizations of

the model at regular intervals, this will allow us to visualize the model and develop

deeper intuition into its behavior. This is especially critical for understanding JOIN

and it’s interference characteristics as these properties are not immediately obvious

from the definition of the operation.
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Chapter 5

RESULTS

In this chapter, we present the primary contributions of this work and provide dis-

cussion justifying their applicability to contemporary neuroscience.

5.1 Theoretical results

First we will go over the theoretical results of our analysis.

5.1.1 Interference

We are now interested in finding the probability of a randomly picked subset inter-

fering with another randomly picked subset. We start with the case where they are

randomly picked as we believe it is the simplest case. We will touch upon other pos-

sible cases in the Discussion section below when discussing models in Computational

Neuroscience that use unique memory generation algorithms.

Lemma 4. Given a set V with n items and two subsets U,W of respective sizes ru, rw,

denote the size of the intersection between them by the random variable Yu,w. Then

the probability of U k-interfering with W is

rw∑
y=⌈ rw

k ⌉

(
ru
y

)(
n−ru
rw−y

)(
n
rw

)
and Yu,w ∼ Hypergeometric(n, ru, rw).
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Proof. If V = {v1, ..., vn}, we can represent the first randomly picked subset U as a

boolean vector u of length n defined by

ui =


1 if vi ∈ U

0 if vi /∈ U.

With this representation, U will intersect another randomly picked subset W at the

indices where both boolean vectors u,w have a 1. Then Yu,w is equivalent to the

number of indices where both u,w have a 1. First note that

P(Yu,w = y) =

(
ru
y

)(
n−ru
rw−y

)(
n
rw

) . (5.1)

This follows from the fact that given the first vector U , we already know where the

1’s are located. We can pick the y intersecting 1’s for the second vector in
(
ru
y

)
ways

implicitly placing 0’s in the remaining spots. We then fill the remaining n−ru indices

corresponding to the 0’s in the first vector with rw − y 1’s in
(
n−ru
rw−y

)
ways. Finally we

divide by the total number of possible subsets
(
n
rw

)
. Clearly, this is the probability

mass function of the hypergeometric distribution with population size n, ru success

states and rw draws. We conclude that Yu,w ∼ Hypergeometric(n, ru, rw). Finally, to

find the probability of U k-interfering with W we need to find P(Yu,w ≥
⌈
rw
k

⌉
) which

is the sum of P(Yu,w = y) from y =
⌈
rw
k

⌉
to y = rw.

For brevity, we can reinterpret the above probability as the tail distribution function

of Yu,w at
⌊
rw
k

⌋
,

P
(
Yu,w ≥

⌈rw
k

⌉)
= P

(
Yu,w >

⌊rw
k

⌋)
= F̄Yu,w

(⌊rw
k

⌋)
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Recall from statistics that the expectation of a binary payoff, like intersection, that

depends on a cutoff (in this case
⌈
rw
k

⌉
) is equal to the probability of the variable being

greater than or equal to the cutoff. Therefore the probability in lemma 4 is equal to

the expected number of interferences of U with W .

We then want to estimate the expected number of interferences when the sizes of the

subsets are within a certain offset of r, say δ without being exactly equal to r. This

approach will make our results more applicable to models like the Neuroidal Model

that assume memory sizes follow some distribution [32]. The offset can be selected

to best suit the distribution involved. For example if the sizes come from a discrete

distribution like B(r/p, p), and if the variance r(1−p) is more than 10, it makes sense

to choose δ = 2
√
r(1− p) since roughly 95% of all values lie within [r − 2σ, r + 2σ].

Generalizing this without any further assumptions is quite hard as the binomial co-

efficients do not vary nicely as a function of two variables over their domain. Instead

we will make a reasonable assumption that will allow us to derive a reasonable lower

bound for this expectation in terms of a general parameter instead of individual subset

sizes.

Lemma 5. Given a set V with n items and two subsets U,W of respective sizes ru, rw,

denote the size of the intersection between them by the random variable Yu,w. If

1. ru, rw ∈ [r − δ, r + δ] for some r, δ > 0,

2. n >> 2(r + δ),

then

F̄Yu,w

(⌊rw
k

⌋)
≥

⌊r−δ⌋∑
y=⌈ r+δ

k ⌉

(
r−δ
y

)(
n−r−δ
r−δ−y

)(
n

r+δ

)
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Remark. Before proceeding with the proof, we want to justify the second assumption

made here. It is a known fact that bounding binomial coefficients above or below is

hard due to the nature of how it varies with respect to the second argument. We know

that
(
n
k

)
reaches its maximum value at

⌈
n
2

⌉
or
⌊
n
2

⌋
and it is monotonically increasing

at smaller values and decreasing at larger values. My making the assumption here

we can ensure that our second argument is always a lot smaller than this maxima,

and as such an increase in the second argument will only increase the value of the

expression. This assumption is reasonable since models like the Neuroidal Model

expect the memory sizes to be significantly smaller than the size of the model [32].

Also note that the binomial coefficient increases monotonically with respect to the

first argument.

Proof. First note that n > ru, rw and by extension n > r since the size of a subset

cannot exceed the size of the set. Then observe that

F̄Yu,w

(⌊rw
k

⌋)
=

rw∑
y=⌈ rw

k ⌉
P(Yu,w = y)

=
rw∑

y=⌈ rw
k ⌉

(
ru
y

)(
n−ru
rw−y

)(
n
rw

)

≥
rw∑

y=⌈ rw
k ⌉

(
r−δ
y

)(
n−r−δ
r−δ−y

)(
n

r+δ

)

≥
⌊r−δ⌋∑

y=⌈ r+δ
k ⌉

(
r−δ
y

)(
n−r−δ
r−δ−y

)(
n

r+δ

)

(5.2)

The first and second equalities follow from the definition of the tail distribution and

lemma 4 respectively. The third inequality follows from assumption 1. in the theorem
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and the behavior of the binomial coefficient under varying arguments. The final

inequality follows from the fact that since all terms in the sum are positive, reducing

the number of terms will make the overall expression smaller.

5.1.2 Capacity

With the above lemmas in our arsenal we can now move on the main subject of this

thesis.

Before deriving the capacity for the general case, let us consider the simpler case

where all memories have the exact same size. This is valuable since it results in a

much simpler expression and we can use this as an approximation for the more general

case too. However note that we realize this scenario is not biologically plausible at

all.

Theorem 6. Given a set V with n items and the property that every picked subset

will have size exactly r, the (r, T, k, δ)-subset capacity of V is

⌊
T

F̄Yu,w

(⌊
r
k

⌋) + 1

⌋
.

Remark. Since all subsets have fixed size r, note that the choice of δ is not relevant

here.

Proof 1. Suppose we have already have M−1 subsets in the universe. Pick a random

subset U . From lemma 4, we know that the expected number of k-interferences of

U with another arbitrary subset W from the universe is F̄Yu,w

(⌊
r
k

⌋)
. Since there are
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M − 1 other subsets, the total expected number of k-interferences caused by picking

U is (M − 1)F̄Yu,w

(⌊
r
k

⌋)
.

From inequality 3 in the definition of capacity, we have

(M − 1)F̄Yu,w

(⌊ r
k

⌋)
≤ T =⇒ M ≤ T

F̄Yu,w

(⌊
r
k

⌋) + 1. (5.3)

The (r, T, k, δ)-subset capacity of V then is the largest integer M that satisfies in-

equality 5.3.

We provide an alternate proof that, while less elegant, can be scaled to prove the

general statement.

Proof 2. Suppose we have already have M subsets in the universe. Pick two subsets

U,W without replacement. From lemma 4, we know that the expected number of

k-interferences of U with W is F̄Yu,w

(⌊
r
k

⌋)
. Since we know all subsets have the same

size, the expected number of k-interferences ofW with U is the same. So the expected

number of interferences caused by one pair is

2F̄Yu,w

(⌊ r
k

⌋)
.

We know that there are
(
M
2

)
= M(M − 1)/2 such pairs so the expected number of

total interferences is

2 · M(M − 1)

2
F̄Yu,w

(⌊ r
k

⌋)
= M(M − 1)F̄Y

(⌊ r
k

⌋)
.

Since there are M subsets, the expected number of interferences by choosing picking

one subset is

M(M − 1)

M
F̄Yu,w

(⌊ r
k

⌋)
= (M − 1)F̄Yu,w

(⌊ r
k

⌋)
.
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From inequality 3, we have

(M − 1)F̄Yu,w

(⌊ r
k

⌋)
≤ T =⇒ M ≤ T

F̄Yu,w

(⌊
r
k

⌋) + 1. (5.4)

The (r, T, k, δ)-subset capacity of V is the largest integer M that satisfies inequality

5.4.

We will now tackle the general case using the same strategy as above.

Theorem 7. Given a set V with n items, the (r, T, k, δ)-subset capacity of V is

bounded above by

T∑⌊r−δ⌋
y=⌈ r+δ

k ⌉
(r−δ

y )(n−r−δ
r−δ−y)

( n
r+δ)

+ 1

Remark. Note that we can only say it is bounded above and not the exact capacity as

defined since we have to use lemma 5. However as δ → 0, this expression converges

to the expression in theorem 6.

Proof. Suppose we have M subsets U1, ..., UM with sizes r1, ..., rM . Pick two subsets

Ui, Uj. From lemma 4, we know that the expected number of interferences caused by

this pair is

F̄Yu,w

(⌊rj
k

⌋)
+ F̄Yw,u

(⌊ri
k

⌋)
.

We then sum over all possible pairings to get the expected number of total interfer-

ences: ∑
(i,j)∈Z×Z,1≤i,j≤M,i ̸=j

(
F̄Yu,w

(⌊rj
k

⌋)
+ F̄Yw,u

(⌊ri
k

⌋))
.
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Since there are M subsets, the expected number of interferences by picking one subset

is

1

M

∑
(i,j)∈Z×Z,1≤i,j≤M,i̸=j

(
F̄Yu,w

(⌊rj
k

⌋)
+ F̄Yu,w

(⌊ri
k

⌋))
.

From inequality 3, we have

1

M

∑
(i,j)∈Z×Z,1≤i,j≤M,i̸=j

(
F̄Yu,w

(⌊rj
k

⌋)
+ F̄Yw,u

(⌊ri
k

⌋))
≤ T,

which implies

M ≥ 1

T

∑
(i,j)∈Z×Z,1≤i,j≤M,i ̸=j

(
F̄Yu,w

(⌊rj
k

⌋)
+ F̄Yw,u

(⌊ri
k

⌋))
. (5.5)

Using lemma 5 we get

M ≥ 1

T

∑
(i,j)∈Z×Z,1≤i,j≤M,i̸=j

(
2

⌊r−δ⌋∑
y=⌈ r+δ

k ⌉

(
r−δ
y

)(
n−r−δ
r−δ−y

)(
n

r+δ

) )

=
1

T

M(M − 1)

2

(
2

⌊r−δ⌋∑
y=⌈ r+δ

k ⌉

(
r−δ
y

)(
n−r−δ
r−δ−y

)(
n

r+δ

) )
,

(5.6)

which implies

M ≤ T∑⌊r−δ⌋
y=⌈ r+δ

k ⌉
(r−δ

y )(n−r−δ
r−δ−y)

( n
r+δ)

+ 1. (5.7)

The expected (r, T, k, δ)-subset capacity of V should be bounded above by this ex-

pression and the tightness of the bound will depend on the parameter δ.
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5.2 Empirical results

5.2.1 Fixed subset size

First we simulate the case for fixed subset size r.

We compare the average capacity of the simulation with the analytical result from

Theorem 6 as a function of the size of the set. We fix r = 20, k = 2, T = 0.1. Figure

5.1 shows the results of this comparison. We see that the average simulated capacity

is practically identical to the analytical capacity thoughout our input range.

Then we the compare the average capacity of the simulation with the analytical result

from Theorem 6 as a function of the size of the subsets r. We fix n = 100, k = 2,

T = 0.1. Figure 5.2 shows the results of this comparison. We see that the average

simulated capacity is very close to the analytical capacity thoughout our input range

and follows the general trend, even following the sharp decreases while going from

odd numbers to even numbers. This is because the sets need intersections of size

atleast ⌈r/2⌉ to interfere and as the size of the subset goes from an odd number

to the next even number, this value remains the same while the size of the subsets

increase leading to a higher probability of interference and lower capacity. One can

also think of it as more terms being included in the sum in Lemma 4. We believe

these peaks will reduce in intensity relative to the scale of the y axis as n → ∞.

Figure 5.3 shows the values of analytical capacity with same configuration as above

but with n set to 500. We can already see that the graph has become a lot smoother.

Unfortunately, it is impossible for us to simulate models of this size or bigger due to

memory constraints.
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Figure 5.1: Capacity vs. Size of the set (n). How capacity is affected by
increasing the size of the set (n). This figure compares the expression for fixed subset
size against the simulation with fixed subset size.
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Figure 5.2: Capacity vs. Size of the subsets (r). How capacity is affected by
increasing the size of the subsets (r). This figure compares the expression for fixed
subset size against the simulation with fixed subset size.
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Figure 5.3: Capacity vs. Size of the subsets (r) for n = 500. How capacity is
affected by increasing the size of the subsets (r) when n = 500.
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5.2.2 Bounded subset size

Now we simulate the case where the subset sizes are not fixed but rather bounded

above and below.

Like in the fixed case, we compare the simulated and analytical capacities against

the size of the set and against the size of the subsets. For the comarison against size

of the set, we set r = 20 and for the comparison against size of the subsets, we set

n = 100. For both cases we fix k = 2, T = 0.1 and draw the r values randomly from

N (r, 1) followed by conversion to integer. Based on the Empirical Law, we except

95% of the values to lie within two standard deviations of r, so we choose δ = 2.

Figures 5.4 and 5.5 show the results of these experiments. We see that even thought

the analytical bound from equation 3 bounds the simulated capacity, the bound is

very loose and does cannot be used as an approximation. We believe this is because

of how the binomial coefficient varies with respect to its second parameter and that

δ here, even though only 2 is quite big with respect to r, and is reducing the second

argument significantly in the term
(
n−r−δ
r−δ−y

)
. We believe that a larger n and r will

make this bound tighter and applications like the Neuroidal model indeed use values

of n and r that are orders of magnitudes larger. However, it is not feasible for us

to simulate at such scale. We also compared the analytical results from equation 5.3

and it was still a good approximation for the simulation with randomly drawn r’s.

Figures 5.6 and 5.7 show the results of these simulations. As expected the simulated

capacity is a lot closer to the analytical capacity when the standard deviation is low.
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Figure 5.4: Capacity vs. Size of the set (n) when r ∼ N (r, 1). How capacity
is affected by increasing the size of the subsets (r) when r is drawn from a normal
distribution with mean r and standard deviation 1. This figure compares the ex-
pression for bounded subset size against the simulation that draws memories from a
distribution.
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Figure 5.5: Capacity vs. Size of the subsets (r) when r ∼ N (r, 1). How
capacity is affected by increasing the size of the subsets (r) when r is drawn from a
normal distribution with mean r and standard deviation 1. This figure compares the
expression for bounded subset size against the simulation that draws memories from
a distribution.
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Figure 5.6: Capacity vs. Size of the subsets (r) when r ∼ N (r, 1) comparing
exact formula vs simulation. How capacity is affected by increasing the size of
the subsets (r) comparing the results of 5.3 with the simulation where r is drawn from
a normal distribution with mean r and standard deviation 1. This figure compares
the expression for fixed subset size against the simulation that draws memories from
a distribution.
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Figure 5.7: Capacity vs. Size of the subsets (r) when r ∼ N (r, 2). How
capacity is affected by increasing the size of the subsets (r) comparing the results of
5.3 with the simulation where r is drawn from a normal distribution with mean r
and standard deviation 2. This figure compares the expression for fixed subset size
against the simulation that draws memories from a distribution.
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5.3 Discussion

We believe our theoretical framework for interference and capacity calculations can

be extended to analyze and understand the behavior of graph-based models with

more complex memory creation algorithms. The primary distinction between our

simple model and more complicated models like the Neuroidal model and Assembly

Caculus is with regards to the memory creation algorithm. We implicitly assume a

random memory creation algorithm in lemma 4 while the Neuroidal model uses the

JOIN operation and the Assembly Calculus uses the Project and Merge operations

for memory creation [25, 32]. Since no other part of our theory makes any assumption

about the process of memory formation, we believe that adjusting the calculation of

expected interference between two memories in lemma 4 to incorporate the nuances

of other memory creation algorithms and using it appropriately in Theorem 6 or 7

will give us an accurate representation of capacity in those models.

We maintain the generality of our interference calculation while allowing for variations

in memory creation algorithms. Specifically, we can refine the lemma to account

for the JOIN, Project and Merge operations, ensuring that our interference metric

aligns with the unique characteristics of each model. This adaptability enables the

application of our interference and capacity framework to a broader class of graph-

based models in computational neuroscience.

The flexibility of our theoretical approach allows researchers to tailor interference

calculations based on the specifics of memory creation algorithms in diverse neural

network models. As a result, our capacity analysis can provide valuable insights into

the limitations and efficiency of these models, enhancing our understanding of their

memory storage capabilities.
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5.3.1 Capacity and JOIN

In this section, we briefly discuss some insights we gained from our analysis of the

JOIN operation with regards to capacity.

The JOIN algorithm is unique in the sense that it must follow a set of 6 basic con-

straints which ensure that the newly formed memories are roughly the same size as

the memories that were JOINed and therefore the size of the memories (r) remains

more or less fixed for a given graph size (n), expected degree (d) and edge weight (w).

Note that edge degree and synaptic weight were not a factor in our theory as edges

do not matter when memories are randomly inserted. However, we believe that an

updated JOIN-compliant formula expected interference between two memories will

involve these paramters.

First, we compare our results from equation 3 with results from our simulation of

the Neuroidal Model. Valiant calculated the memory sizes for various parameter

combinations, however the minimum graph size he considered was 100,000. Our

simulation of the Neuroidal model cannot be scaled up that far so we use n = 500, d =

128, w = 16. We used patterns found in his results to estimate that r = 40 would be

the appropriate value for this configuration. We start with 100 randomly generated

memories which have negligible interference between them, essentially agreeing with

our results from Theorem 7. We observed that newly formed memories had sizes

around 40, validating that we are compliant with Valiant’s definition of JOIN. Finally,

we set the interference threshold T = 0.1 and interference parameter k = 2 as that is

the only value of k supported by the Neuroidal model.

Our equation produces a capacity of 3203070686178 while the Neuroidal model sim-

ulation only reaches around 250 memories over 20 runs before stopping due to excess

interference. Therefore our equation in its current form cannot serve as a good approx-
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imation for the Neuroidal model’s capacity however it is effectively a very loose upper

bound on most models like these as the memory formation is not capacity optimized

which we think makes sense biologically. We believe random memory generation is

quite good for capacity and memory formation algorithms that are even further opti-

mized for capacity will be even more biologically implausible. As described in section

5.2.3, the theory will need to be updated to account for JOIN’s behavior.

Finally, we made some attempts to gain some initial understanding of why memories

formed by JOIN tend to interfere a lot more than randomly generated memories.

We visualize the graphs and analyze the nodes with respect to two metrics: number

of memories the nodes belong to and the number of interferences that have occured

at those nodes. We choose the same parameters as before except we choose 1000

randomly inserted starting memories instead of 100. This will lead to overall higher

capacity and allow us to analyze in more depth. Perrine has demonstrated that the

capacity of the Neuroidal model scales up with the amount of starting memories

[27]. We are able to verify this as our simulation ended up producing around 1800

memories, in particular, an additional 800 JOINed memories as compared to the 150

with 100 starting memories. A possible explanation for this intriguing behavior would

be that since these starting memories are randomly generated and follow our results

that predict significantly low interference among them, they are making it harder for

the system to reach the threshold in constraint 3 in definition 3, since the simulation

calculates the intereference rate using the number of total misfires at the state of the

system over the number of total memories in the system.

Figures 5.8 through 5.11 and 5.12 through 5.15 show the progression of the system

from 1200 memories till the system reaches capacity with the value inside the node

indicating the number of interferences that occured at that node and the number of

memories the node belongs to respectively. The relative size of the node indicates the
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Figure 5.8: Interference accumulation per node of Neuroidal model at 1200
memories. Neuroidal model (n=500, d=128, w=16, r=40) at 1200 memories. Node
value indicates number of interferences that occured at each node.
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Figure 5.9: Interference accumulation per node of Neuroidal model at 1400
memories. Neuroidal model (n=500, d=128, w=16, r=40) at 1400 memories. Node
value indicates number of interferences that occured at each node.
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Figure 5.10: Interference accumulation per node of Neuroidal model at
1600 memories. Neuroidal model (n=500, d=128, w=16, r=40) at 1600 memories.
Node value indicates number of interferences that occured at each node.

39



Figure 5.11: Interference accumulation per node of Neuroidal model at
capacity. Neuroidal model (n=500, d=128, w=16, r=40) at capacity (1800 memo-
ries). Node value indicates number of interferences that occured at each node.
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Figure 5.12: Memory membership per node of Neuroidal model at 1200
memories. Neuroidal model (n=500, d=128, w=16, r=40) at 1200 memories. Node
value indicates memory membership of the node.
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Figure 5.13: Memory membership per node of Neuroidal model at 1400
memories. Neuroidal model (n=500, d=128, w=16, r=40) at 1400 memories. Node
value indicates memory membership of the node.
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Figure 5.14: Memory membership per node of Neuroidal model at 1600
memories. Neuroidal model (n=500, d=128, w=16, r=40) at 1600 memories. Node
value indicates memory membership of the node.
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Figure 5.15: Memory membership per node of Neuroidal model at capac-
ity. Neuroidal model (n=500, d=128, w=16, r=40) at capacity (1800 memories).
Node value indicates memory membership of the node
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indegree of the node. We observe that the interference is not uniformly distributed

accross the nodes. And as we observe the pattern of evolution, we see that certain

nodes end up with a lot of interference while many have negligible amount of inter-

ference. We also note that nodes that have already accumulated some interference

have a higher chance of being a center of interference again. Practically, this indicates

that some nodes are just innately more prone to interference than other nodes due

to the initial edge layout. This is in constrast to our theory which assumes that the

nodes are equal at the start and throughout the life of the system. We believe this

is the primary factor that will need to be accounted for in attempts to update the

theory and in particular, lemma 4 to be compatible with JOIN. We believe this is

really challenging and leave it as future work.

We can also observe from the figures that the number of memories a node is part

does not seem to have any correlation to the number of interferences at that node

and therefore is not a good indicator of future interference at that node and cannot be

used as a heuristic to update our estimate. There does seem to be some correlation

between the in-degree and the interference and could provide intuition regarding

updating lemma 4. As such, we feel analyzing the in-degree distribution will be key

to finding the capacity for JOIN.
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Chapter 6

CONCLUSION

Inspired by advances in modern computational neuroscience and growing interest in

the capacity of the brain, we rigorously defined and studied the notion of “capacity”

and “interference” in a set both theoretically and emprically. We also provided ideas

to extend these results to more structured objects like graphs with more advanced

algorithms for adding subobjects to the universe.

6.1 Future work

Here we discuss some potential future work building off this study:

- Adapt lemma 4 to find the expected interference in the case of other memory

creation algorithms like

– JOIN: This we believe will be the most challenging step as it involves

deriving an estimate for the capacity based on the indegree distribution

that is non-uniform throughout the graph and also over time.

– Project: We believe that once we have an estimate for JOIN, it will be very

easy to find an estimate for Project as these are very similar operations

however with slightly different goals. The main thing to note here wil be

that assemblies are more densely connected than arbsets and that will the

key here.

– Merge: We feel an estimate for merge would be very similar to those of

JOIN and Project as it is essentially an amalgation of the two.
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– Sequence Project: A analysis of the capacity of Sequence Project will be

very interesting as it is the only algorithm we discussed that creates more

than a single memory. We are excited to see how this will affect the analysis

as well as final estimate.

We believe each one of these will provide considerable challenges due to their

complex nature [5, 25, 32]. The rest of the theorems will follow similarly to be

able to find the capacity of the model and the final expression should have the

same general structure. We also think the estimates will follow similar trends

against the number of neurons and number of memories.

- Instead of bounding the subset sizes, assume the subset sizes are drawn from a

distribution with a given mean r and find the expected subset capacity. This

will involve finding the expectation of the hypergeometric PMF as a function

of two random variables.

6.2 Closing thoughts

The study of capacity with regards to interference is really important as computa-

tional models of the brain need to keep the number of misfires low to be able to

accumulate memories for a long period of time as well as maintain a high quality

of retrieval. We believe this study will inspire more computational neuroscientists to

tackle the intriguing question of capacity in contemporary models as well as upcoming

models that will further demistify the human brain.
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