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Abstract 
The Emergency Care Clinical Decision Support 

System (EC-CDSS) has proven to improve the quality 
of the Emergency Care System (ECS), which is crucial 
for providing timely life-saving care. The literature 
lacks a data processing architecture for an integrated 
EC-CDSS that can fulfill all quality attributes while 
satisfying all stakeholders’ information needs. To 
address this literature gap, this study designs a new 
data processing architecture, called PICT-DPA. The 
PICT-DPA was evaluated by its instantiation of a 
PICT-enabled EDSS and user interviews. Results 
demonstrate that the PICT-DPA improves quality 
attributes and meets stakeholders' information needs. 
The design process of the PICT-DPA shows the 
importance of understanding the research domain, 
integrating the theoretical foundations, and iterative 
design. Furthermore, the PICT-DPA can enhance the 
capabilities of data processing tasks in any domain 
with similar quality attribute requirements.  
 
Keywords: Design Science Research, Data 
Processing Architecture, Real-time Data Process, 
Emergency Care, Clinical Decision Support System 

1. Introduction  

Emergency Care System (ECS) is a critical 
component of health care systems by providing acute 
resuscitation and life-saving care (Moresky et al., 
2019). A responsive ECS consists of multiple 
distributed emergency care (EC) functions, which are 
essential responsibilities performed by different types 
of healthcare providers during emergency situations 
(WHO, 2018).  

The implementation of the EC Clinical Decision 
Support System (EC-CDSS) has proven to improve 
the quality of EC functions (Bennett et al., 2016). The 
EC-CDSS is a computerized software system designed 
to support clinical decision-making on different EC 
functions in a limited time (Tcheng, 2017). As a time-
sensitive care operation system, any delay and mistake 
in the decision-making of these EC functions can 

create additional risks of adverse events and clinical 
incidents. An integrative EC-CDSS is critical to 
support distributed clinical decisions on different EC 
functions and achieve the ultimate goal of the 
emergency care system, which is to improve patient 
health outcomes (PHOs) (WHO, 2018). 

Like other CDSSs, EC-CDSSs can be classified 
as knowledge-based or algorithm-based (Berner, 
2007). Knowledge-based systems retrieve data to 
evaluate a set of literature-based, practice-based, or 
patient-directed rules (often as IF-THEN statements) 
from a prepopulated knowledge base and then produce 
recommendations. Algorithm-based systems, while 
still requiring a data source, leverage artificial 
intelligence, machine learning, or other statistical 
learning methods to produce recommendations.  

An integrated EC-CDSS requires processing a 
massive amount of data from heterogeneous sources 
while simultaneously minimizing processing time and 
decision latency, and achieving all quality attributes 
(Sariyer et al., 2018). An efficient data processing 
architecture (DPA) is critical in satisfying those needs.  

Past research suggests that an integrated EC-
CDSS should meet two fundamental requirements: (1) 
including four essential quality attributes – 
performance, interoperability, cost, and timeliness 
(PICT), and (2) providing the necessary information 
for all stakeholders to make decisions on their related 
EC functions (Yu, 2023). The stakeholders include 
dispatchers who activate the ECS and dispatch the on-
scene care providers; on-scene care providers who 
provide life-saving interventions on the scene and 
during transportation; on-facility care providers who 
provide treatment interventions; and allied health 
workers who decide the triage (WHO, 2018). Few 
studies have investigated databases designed 
specifically for EC-CDSSs (Omoogun et al., 2017). To 
the best of our knowledge, none of the existing 
research and tools are able to meet the two 
fundamental requirements due to the limitations of 
traditional data processing techniques used in EC-
CDSS. This leads to the research question: How to 
present, operationalize, and evaluate a data processing 
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architecture for an integrative EC-CDSS with desired 
quality attributes while satisfying all relevant 
stakeholders’ information needs? This study answers 
the research question through design science research 
(DSR) via the creation of an innovative artifact called 
PICT-DPA (i.e., PICT data processing architecture).  

2. Theoretical Foundations 

2.1. Emergency Care System Framework 

The PICT-DPA design uses the Emergency Care 
System (ECS) Framework (WHO, 2018) as the kernel 
theory because it includes EC functions, stakeholders, 
and the data flow through these EC functions. The 
framework defines the ECS as a sequential process 
with six time intervals in three phases. Table 1 
summarizes phases, EC functions, and related 
stakeholders.  

 
Table 1. ECS phases, EC functions, and related 
stakeholders based on ECS Framework (WHO, 

2018) 
Phases EC Functions Stakeholders 
Scene System Activation Dispatcher 

Instructions Dispatcher; Bystander; 
Dispatch Dispatcher; On-scene 

Care Provider 
Access to Patient On-Scene Provider 

Transport Positioning Driver; On-Facility 
Care Provider 

Intervention On-Scene Care 
Provider Monitoring 

Facility Handover On-Scene Provider; 
On-Facility Provider 

Assessment; Resuscitation; 
Intervention; Monitoring 

On-Facility Provider 

Triage; Registration Allied Health Workers 
Screening; Disposition Clerical Staff 

  
The first phase is SCENE with two related time 

intervals: Time to Dispatch and Time to 
Scene/Provider. Once a patient has an acute condition, 
the bystander initiates an emergency call, relaying 
patient information and acute condition to the 
dispatcher who activates the ECS process. 
Simultaneously, the dispatcher provides instructions 
for managing the acute condition while dispatching an 
ambulance with on-scene care providers. The Time to 
Dispatch interval encompasses three EC functions: 
system activation, instructions, and dispatch. Acute 
condition data is transmitted from the bystander to the 
dispatcher and subsequently to the on-scene care 
providers. The Time to Scene/Provider represents the 
duration required for the on-scene provider to access 
the patient. 

The second phase is TRANSPORT with one time 
interval: Transport Time. During this phase, the driver 
transports the patient to the target hospital, while the 

on-scene care provider performs interventions and 
monitors the patient’s life situation. Three EC 
functions are related to the Transport Time: 
intervention and monitoring provided by the on-scene 
care providers, and ambulance location information 
reported by the drivers. The intervention data, patient 
situation data, and position data are transmitted to on-
facility care providers through field-to-facility 
communication. 

The third phase is FACILITY with three time 
intervals: Time to Provider, Length of Stay, and Time 
to Operating Theatre. Time to Provider is when the on-
scene care provider hands the patient over to the on-
facility care provider. Throughout the Length of Stay, 
the on-facility care provider conducts additional 
assessment, resuscitation, intervention, and 
monitoring, followed by collaborating with Allied 
Health Workers for triage and disposition. Meanwhile, 
the clerical staff screens and registers the patient. The 
Time to Operating Theatre encompasses the duration 
from patient registration and triage to the operating 
theatre.  

2.2. PICT Quality Attributes Model 

Prior research (Yu, 2023) proposed a quality 
attribute model that represents the relationship 
between EC-CDSS quality attributes, EC Functions, 
and Patient Health Outcomes (PHOs) (see Figure 1).  

 

 
Figure 1. PICT quality attributes model 

 
As shown in Figure 1, Interoperability can 

improve the decision support Performance by 
providing sufficient data for training and developing 
better algorithm-based models (Wang et al., 2021). 
Interoperability can also increase Timeliness by 
reducing the data latency with a centralized database 
instead of collecting the historical data from the 
original source (Crilly et al., 2011). Performance can 
improve Timeliness and reduce Cost through 
reliability (the degree to which a measure is not 
afflicted by random errors) and validity (the extent to 
which a score truly denotes a concept) in decision-
making recommendations (Alkhawaja et al., 2020). 
The model highlights that improved Performance and 
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Timeliness lead to better PHOs through improved EC 
functions.  

2.2. PICT Quality Attributes and Metrics 

Based on the PICT quality attribute model, each 
quality attribute and its related metrics were 
summarized in Table 2.   

 
Table 2. Quality attributes and metrics 

Quality 
Attributes 

Metrics and their definitions 

Performance  Validity measures the system's ability to perform 
expected functions and document expected 
results.  
Reliability assesses the consistency of guidance 
or recommendations across repeated trials 

Interoperability Number of heterogeneous data sources measures 
how many different data sources are used to 
integrate data for decision support.  
Number of information exchange 
protocols/standards measures how many 
protocols or standards are used to integrate the 
heterogeneous data.  

Cost Cost of infrastructure measures how expensive 
to build an EC-CDSS based on the required 
hardware and software. 
The cost of data transmission measures the 
amount of unnecessary data being transmitted 
into EC-CDSS.  

Timeliness Data latency is the time between the EC event 
and when the data is ready for analysis by the 
EC-CDSS.  
Analysis latency is the time of initiating data 
analysis and delivering it to the appropriate 
person. 

 
The decision support Performance measures the 

ability of CDSS to reduce errors in making decisions 
or providing recommendations (Ji et al., 2021). It can 
be measured using two metrics: validity and 
reliability. Interoperability is the ability to exchange 
and integrate heterogeneous data (Omoogun et al., 
2017). It encompasses two related metrics: the number 
of heterogeneous data sources and the number of 
information exchange protocols/standards. Cost 
always goes hand-in-hand with complexity. Some 
commercial EC-CDSS solutions are often 
prohibitively expensive. The cost of EC-CDSS can be 
decreased by reducing the cost of infrastructure and 
the amount of data for transmission. Timeliness refers 
to the ability to minimize any possible latency during 
the decision support process, which includes data 
latency and analysis latency (Hackathorn, 2002). 

3. PICT-DPA and its instantiation  

The design of the new DPA was an iterative 
process guided by the DSR process model (see Figure 
2) proposed by Vaishnavi and Kuechler (2015). The 
awareness of the problem has been described in the 

previous sections. In this section, we first show the 
suggestions about how the tentative design (in the 
form of design requirements) was abductively drawn 
from the ECS Framework (WHO, 2018). Then we 
describe the development of PICT-DPA with related 
design cycles. The PICT-DPA was evaluated in two 
ways. First, we successfully instantiated PICT-DPA as 
a prototype clinic decision support system to show its 
feasibility. Second, we evaluated the utility of PICT-
DPA through a controlled experiment in the prototype 
system and user interviews.  

 

 
Figure 2. DSR process model 

3.1. Design Requirements 

The overall requirement of the design is how the 
data processing architecture (DPA) would enable all 
quality attributes while satisfying all stakeholders’ 
information needs. To ensure the appropriate decision-
making suggestions from the EC-CDSS, the data 
pipeline must be able to transmit the patient's vital data 
to knowledge- or algorithm-based models 
(Requirement #1). The Timeliness attribute requires 
transmitting the data and insights in real-time 
(Requirement #2). To control the Cost of 
infrastructure, the new DPA should be able to support 
all EC functions (Requirement #3). To reduce the Cost 
of data transmission, the abnormal vital data should be 
filtered for real-time transfer and data used for training 
algorithm-based models may be transmitted in batches 
offline (Requirement #4). Thus, the new DPA should 
accommodate both real-time and batch data 
transmission (Requirement #5). The Interoperability 
attribute requires information exchange standards or 
protocols (Requirement #6). Lastly, to satisfy all 
stakeholder's information needs, the new DPA needs 
to send decision-making recommendations for 
different EC functions to relevant stakeholders 
(Requirement #7). 

Page 5733



3.2. PICT-DPA Development 

Through five design cycles, the proposed data 
processing architecture, PICT-DPA, was finalized as 

shown in Figure 3. The architecture comprises three 
subsystems: the data extraction subsystem, the data 
integration and transmission subsystem, and the 
insight delivery subsystem.

Figure 3. The PICT Data Processing Architecture 

The data extraction subsystem is to extract the 
necessary data for knowledge-/algorithm-based models 
from three heterogeneous data sources: Wearable 
Sensing Devices (WSD), Emergency Care Systems 
(ECS), and Electronic Health Records (EHR). WSD is a 
crucial data source for capturing patient vital signs, such 
as heart rate, blood pressure, and insulin levels, using 
wireless biosensors (Piwek et al., 2016). Additionally, 
its built-in GPS sensors enable the tracking of patient 
locations (Tartan et al., 2018). Those data are important 
in training algorithm-based models to determine the 
need for medical emergency care, appropriate 
interventions, and triage. The ECS data includes 
incident data collected through the ECS process, such as 
clinical observations, medications administered, or 
procedures performed (Poulymenopoulou et al., 2011). 
ECS data also incorporates emergency room and 
ambulance data, such as the number of available 
emergency room beds, the count of ambulances 
available in ambulance companies, and ambulance type 
(e.g., Advanced Life Support, Basic Life Support). 
Additionally, EHR data are used to improve ED 
efficiency (Wang et al., 2021). 

The data integration and transmission subsystem 
consist of two layers: a real-time processing layer and a 
store-and-forward layer. This design is inspired by the 
Lambda architecture, a prominent industry data 
processing architecture that combines batch-processing 

and streaming-processing methods (Marz et al., 2015). 
Real-time processing is essential for time-sensitive EC-
CDSS (Barcelos et al., 2015). However, it is expensive 
and sacrifices throughput. Thus, this layer should be 
event-driven and only activated when needed. Normal 
information can be transmitted through the store-and-
forward layer with traditional batch data processing. 
The store-and-forward layer first integrates data 
extracted from the data source system using informatics 
exchange protocols/standards such as Health Level 
Seven (HL7) to maintain data consistency, followed by 
loading the integrated data into a data repository. To 
optimize the data store, a dimensional data model can be 
used.  

The last subsystem is the insight delivery 
subsystem, which refers to the provision of material, 
newsworthy, and actionable findings to stakeholders, 
ensuring relevance and value in a data-rich 
environment. This subsystem should satisfy all relevant 
stakeholders' information needs in one single platform. 

The development of the PICT-DPA included 
extensive design and validation discussions with four 
experts, each representing a different type of 
stakeholder shown in Figure 3. There are a total of five 
design cycles, each resulting in the improvements of 
artifacts as summarized in Figure 4.  
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Figure 4. The PICT-DPA design cycles 

 
During the first design cycle, experts questioned the 

same heartbeat ranges as thresholds for everyone in the 
knowledge-based model. Based on their 
recommendations, the model performance was 
improved by incorporating personal variations such as 
gender, age, and underlying health conditions.  

During the second design cycle, a concern was 
raised about the difficulties in sharing EHR among 
different medical systems, especially in the US. Thus, to 
keep the interoperability, a mobile application was 
developed to allow patients to voluntarily share relevant 
personal health information such as medical history and 
any potential allergies.  

The third design cycle involved the privacy 
concerns of patients in sharing their EHR data. Thus, a 
privacy policy was added within the mobile application, 
assuring confidentiality and non-disclosure of data. 
Another challenge was raised when some patients were 
not aware of their own medical history. Thus, the mobile 
application added a field to capture the patient’s Primary 
Care Physician's (PCP) contact information, which 
serves to supplant the traditional data source of EHR. 

The fourth design cycle resulted in two 
improvements. Firstly, to address the cost constraints 
associated with replacing existing systems, experts 
recommended integrating existing algorithm-based 
models into PICT-DPA instead of training new models. 
This would enable the PICT-DPA to serve across a 
range of existing EC-CDSSs. This can be achieved by 
incorporating the updated PICT-DPA into any existing 
EC-CDSS using open-source APIs. Secondly, experts 
highlighted the limitation of relying solely on the 
knowledge-based model to determine the need for 

emergency service. For example, in some cases, patients 
may experience discomfort even when their vital signs 
appear normal. Thus, an activation emergency care 
service feature may be introduced by adding an 
"activate" button in the mobile application. This button 
enables patients to initiate real-time vital data 
transmission without a triggering event. 

In the final design cycle, care providers pointed out 
that a single recommendation for diagnosis and 
treatments was not sufficient. Instead, all possible 
causes and their probabilities are added to the 
recommendation screen.  

3.3. PICT-EDSS 

As an abstract architecture, the feasibility and 
usability of PICT-DPA were assessed through its 
instantiation, the PICT-EDSS (PICT-enabled 
Emergency Decision Support System). The system was 
implemented on a cloud server environment to store 
integrated data and algorithm-based machine learning 
models, as shown in the system architecture (see Figure 
5).  

 

 
Figure 5. The architecture of PICT-EDSS 

 
For data extraction, Fitbit smartwatches are used as 

WSD to monitor and capture vital data. The collected 
data are then sent to a mobile application through 
Bluetooth. The mobile application includes a 
knowledge-based filter model that determines the 
normalcy of vital data. 

For the data integration and transmission, patient 
vital data extracted from WSD is sent to the knowledge-
based filter model in the mobile application. The filter 
model includes a pre-set heart rate threshold range. If 
the patient's heart rate is within the normal range, the 
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vital data will be stored in the mobile application and 
transmitted via the store-and-forward layer. If the 
patient’s heart rate is out of the threshold range, it will 
be flagged as abnormal and transmitted through the real-
time layer. The patient’s EHR data will be extracted at 
the same time from the data repository and integrated 
with the abnormal vital data. The integrated data will 
then be transmitted in real time to the pre-trained 
algorithm-based models. 

The PICT-EDSS insights delivery subsystem 
includes two algorithm-based EC-CDSS models: the 
system activation model and the treatment model. The 
ECS system activation model is trained using the WSD 
vital data (e.g., average heartbeat, rhythm type, 
Ischemia, Premature Ventricular Contraction, and 
Cardiovascular Blockage), demographic data (e.g., 
gender and age), and medical history data, with 
‘Dispatch Sent’ as the target. These data were proven to 
effectively determine whether a patient was suffering 
from acute cardiovascular disease and required 
emergency care services (Barcelos et al., 2015). 
Additionally, a new variable named ‘Need Dispatch’ is 
created with the help of experts to evaluate the accuracy 
of the ‘Dispatch Sent’ target. The treatment decision 
model is trained using the EHR and vital data.  

To deliver insights to different stakeholders, the 
PICT-EDSS displays the model scoring results through 
a web-based application with user-friendly interfaces. 
To use the system, the stakeholders are required to 
register with specific roles, such as administrators, 
dispatchers, on-scene/on-facility care providers, and 
allied health workers. Once registered, users can access 
decision support results tailored to their respective roles. 
For example, the dispatcher is provided with a real-time 
dashboard featuring a map-based interface, showing 
ECS data and abnormal vital signs with geolocation. 
The activation algorithm scores the data to determine 
emergency service needs, while the dispatch algorithm 
suggests transportation plans for the nearest ambulance 
to the hospital. During patient transport, care providers 
in the emergency room are notified of the incoming 
patient. They can access basic information and 
estimated arrival time via the dashboard. The dashboard 
also provides detailed information in three sections, 
including the “EHR” section with medical history, the 
“Real-Time Situation” section displaying vital signs, 
and the “Recommendation” section offering 
intervention algorithm-based suggestions for diagnosis, 
medication, and triage.  

4. Evaluation and Discussion 

Several trials on different WSDs were performed to 
assess data transmission using PICT-DPA. The 
knowledge-based filter model was disabled at first to 

evaluate the store-and-forward transmission of vital data 
from WSDs to the data repository through APIs. The 
PICT-EDSS successfully extracted all vital data from 
WSDs and transmitted it to the data repository, thus 
meeting Requirements #1, #3, #5, and #6. The 
knowledge-based filter model was then activated to 
evaluate real-time data transmission. Volunteers 
wearing Fitbit Smartwatch did quick cardio exercises 
(such as sprinting or high knees) to elevate their 
heartbeats above the threshold specified in the 
knowledge-based filter model. The PICT-EDSS 
successfully captured all abnormal data in real-time, 
thus meeting Requirements #2 and #4. Lastly, the PICT-
EDSS successfully delivered scoring results of 
algorithm-based models to different stakeholders, thus 
meeting Requirement #7 and demonstrating PICT-
DPA’s ability to satisfy all stakeholder’s information 
needs.  

In terms of quality attributes, the Interoperability 
was demonstrated by two data heterogeneous sources 
(WSD and EHR) and one information exchange 
protocol implemented in the PICT-EDSS.  

4.1. Functional Evaluation 

The functional evaluation of the PICT-EDSS was 
conducted through a controlled experiment between two 
systems: one system with PICT-DPA implementation 
and one without. All other experimental conditions are 
identical. Given the scarcity of real-world data, Monte 
Carlo simulation was employed to generate training data 
for the prototype system. A total of 1,212 patient records 
were utilized to train the models in the PICT-EDSS and 
perform the functional evaluation, including 412 real-
world records obtained from four data sources 
(Kalyakulina et al., 2020; Moody et al., 2001; Jager et 
al., 2003), and 800 simulated records produced through 
Monte Carlo simulation. The records from the same 
dataset were randomly extracted and processed through 
two systems to observe how they identified and filtered 
the abnormal data, provided activation 
recommendations, and how much delay was required 
for each system to process the data and deliver the 
insights.  

First, the Performance was evaluated using two 
metrics: validity and reliability. The validity, 
represented as the accuracy of decisions on 'Dispatch', 
was evaluated to determine whether the PICT-EDSS 
provides valid insights. The baseline result (see Table 3) 
was based on the 412 real-world records from systems 
that did not use PICT-DPA. The 800 simulated records 
were used to test the PICT-EDSS, and the results are 
presented in Table 4. All clinical decision insights in the 
800 simulated records were confirmed by medical 
experts. When making the dispatch decision, the PICT-
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EDSS had a higher precision of 99.2%, a higher recall 
of 100%, and a higher overall accuracy of 99.5% 
compared to systems without PICT-DPA, which had a 
precision of 87.1%, a recall of 76.4%, and an overall 
accuracy of 77.6%.  

The PICT-EDSS was also evaluated for its 
reliability using chance-corrected agreement κ statistics. 
The PICT-EDSS achieved a higher κ value of 98.2% 
compared to systems without PICT-DPA, which had a κ 
value of only 42.59%. 
 

Table 3. Confusion matrix of no PICT-DPA data  
Systems	
without	PICT-
DPA	

Need	to	
Dispatch	

No	Need	to	
Dispatch	

	

Dispatch	 256	 79	 335	
Not	Dispatch	 15	 69	 84	
	 271	 148	 419	

Precision	 87.1%	
Recall	 76.4%	

Overall	Accuracy	 77.6%	
 

Table 4. Confusion Matrix of PICT-DPA Data  
PICT-EDSS	 Need	to	

Dispatch	
No	Need	to	
Dispatch	

	

Dispatch	 519	 0	 519	
Not	Dispatch	 4	 277	 281	
	 523	 277	 800	

Precision	 99.2%	
Recall	 100%	

Overall	Accuracy	 99.5%	
 
In addition, the Timeliness of PICT-EDSS was 

evaluated using data and analysis latency. Data latency 
includes real-time data extraction from WSD, 
integration and transmission to the data repository, and 
delivery of insights from the server to the system's front 
end. Analysis latency includes the time taken to 
implement knowledge-/algorithm-based models. Based 
on the literature (Wu et al., 2017), data extraction from 
WSD and transmission to the algorithm-based model 
takes an average of 5 seconds, and insight delivery takes 
an average of 1.5 seconds for existing EC-CDSS. For 
the PICT-EDSS, the average data latency was 0.5 
seconds, and the average analysis latency was 0.956 
seconds (see Figure 6). These results confirmed that 
PICT-EDSS significantly improves timeliness, 
achieving one of the design goals of PICT-DPA.  

 

 
Figure 6. Timeliness of baseline and PICT-EDSS 

To this end, the evaluation of the PICT-EDSS 
prototype has demonstrated that PICT-DPA is feasible 
in real-world implementation, and adopting the PICT-
DPA can improve the Interoperability, Performance, 
and Timeliness of the EC-CDSS system. Other quality 
attributes that the PICT-DPA aims to achieve require 
additional evaluations, which are elaborated in the next 
subsection. 

4.2. User Interviews 

The quality of PICT-DPA, its impact on PHOs, and 
the stakeholders' intention to use were evaluated 
through a series of semi-structured interviews, The 
participants were EC-CDSS stakeholders, either having 
actively engaged in decision support processing in an 
emergency care context or being responsible for 
budgeting or using EC-CDSS systems.  A total of 12 
participants agreed to participate in this interview, and 
10 participants participated in the interview. The 
participants include one emergency room manager and 
one ambulance company manager, six care providers 
(doctors and nurses), and two dispatchers. 

The interview results further confirmed that an 
interoperable EC-CDSS can increase Performance and 
Timeliness. For example, multiple care providers 
mentioned that Interoperability can improve decision-
making performance with credible and comprehensive 
medical data. As one participant stated, decision-
making based on heterogeneous data  

… make the suggestion more believable, 
especially with those detailed vital data, 
historical records, and a comprehensive 
medical list. 

It aligns with previous literature that interoperability can 
improve EC-CDSS performance by yielding accurate 
data suitable for further analysis and decreasing data 
integration time (Crilly et al., 2011).  

The participants also validated the improved 
Performance of PICT-DPA as shown in the quote below:  

It is good to know the destination hospitals and 
their availabilities, because sometimes, the 
closest hospitals might be not available 
because of their emergency bypass states.  

Another participant commented:  
I like the treatment strategy recommendation. 
It can give doctors some clues about diseases 
may be overlooked.  
The machine learning, self-learning model, 
will make the precision of recommendations 
better and better. 
Most participants identified Timeliness as the key 

quality contribution of the PICT-DPA, especially for the 
dispatchers. As Participant 6 mentioned,  
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... the timeliness will be improved. Especially 
some communication time between patient and 
dispatchers, and between dispatchers and ER 
care providers. 
 The ability of PICT-DPA to reduce 

communication time can be attributed to its quick data 
extraction from heterogeneous sources and its two-
layered data integration and processing.  

As discussed earlier, the ultimate goal of EC-CDSS 
is to improve PHOs. Some participants were cautious in 
their assessment of the extent to which the PICT-DPA 
could enhance PHOs. As one participant explained,  

I cannot say it will improve the PHO. Because 
the PHO is impacted by multiple features. The 
effectiveness needs data to assess.  

They suggested that real-world implementation was 
necessary to gather adequate data to evaluate its impact 
on PHOs.  

Nevertheless, multiple participants suggested that 
the PICT-EDSS could enhance PHOs through expedited 
information transmission and more effective decision-
making processes. For example, one said:  

I believe with the recommendation, the doctor 
can have more precise treatment on patient, so 
that at least can keep patient alive.  

This aligns with the literature that performance and 
timeliness of decision-making are key factors 
influencing PHOs (Preum et al., 2019). Future research 
is needed to evaluate how the performance of PICT-
EDSS is related to the PHOs.  

All participants confirmed their intention to use the 
PICT-EDSS because it can support their information 
needs of related EC functions and its ease of use, as one 
participant confirmed: 

Yes, I would like to give it a try. There is a lot 
of information. The data is enough for ER 
doctors. And the most important thing is, this 
information is easy to access.  

The dispatchers appreciated the system more because of 
its integrated information, as one indicated  

…they (dispatchers) need more attention 
because they are an important connection part 
of the integrated system. 

5. Research Contributions 

Our research makes several contributions to both 
research knowledge and practices. 

The most significant knowledge contribution lies 
within the artifact (i.e., PICT-DPA) itself. It is a new 
data processing architecture, within which two parallel 
data pipelines (real-time layer and store-and-forward 
layer) connect three distinct subsystems (data 
extraction, data integration and transmission, and 
insight delivery). While it is built upon the well-known 

Lambda architecture, to our best knowledge, PICT-DPA 
is the only event-driven data processing architecture 
with a two-tiered structure. The structure is possible 
through the incorporation of knowledge-based models 
for data filtering and algorithm-based models for 
scoring. Many have commented that developing 
artifacts to address a class of problems is one of the 
goals of design science research (Sein et al., 2011, Iivari 
et al., 2009). As discussed by Rossi et al. (2012), PICT-
DPA represents a generalized knowledge to solve a 
class of problems (i.e., how to design a decision support 
system that desires all four quality attributes – 
performance, interoperability, cost, and timeliness). It 
contributes to the IS design science literature by 
providing an exemplar of developing solution-oriented 
artifacts. 

Furthermore, the specific design considerations 
within the emergency care domain during the design 
process contribute to the clinical decision support 
system for emergency care literature and can be used by 
other ECS researchers when designing IS artifacts in a 
similar context.  

Most importantly, PICT-DPA is a general 
architecture that can serve as a reference for IS 
researchers from other domains when designing systems 
to meet the specific quality attribute requirements and 
stakeholder information needs. For example, the two-
layer three-subsystem architecture enables the 
transmission of real-time data while controlling the cost. 
It can be adapted in other domains, such as finance and 
manufacturing, where real-time decision-making can 
have significant impacts on outcomes. The researchers 
in these domains can tailor their own domain-specific 
functionalities, like knowledge- and algorithm-based 
models based on the unique domain-specific 
requirements and stakeholder needs. By replacing 
domain-specific functionalities of the PICT-DPA for 
emergency care represented in this study, a domain-
specific DPA can be developed. 

From the practical perspective, the event-driven 
PICT-DPA can be used to guide the implementation of 
integrated EC-CDSSs by researchers and practitioners. 
It can enhance the capabilities of data processing tasks 
in any domain with similar quality attribute 
requirements. More specifically, the knowledge-based 
model enables the stakeholders to use domain 
knowledge to set the thresholds of event filters for 
anomaly detection. The algorithm-based models enable 
the decision-making system to perform complex 
artificial intelligence tasks.  

6. Conclusion and Limitations 

This study proposes a new data processing 
architecture called PICT-DPA. To the best of our 
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knowledge, PICT-DPA is the first attempt to address the 
data processing needs of an integrated EC-CDSS while 
considering all quality attributes and satisfying all 
relevant stakeholders’ information needs. Furthermore, 
the PICT-EDSS, an instantiation of our proposed data 
processing architecture, validated the feasibility and 
usability of PICT-DPA. The PICT-DPA is also 
evaluated through end-user interviews, and the findings 
confirm that the PICT-DPA achieved its design 
objectives. The success of instantiation (PICT-EDSS) 
represents a significant advancement in data processing 
tasks in the field of EC-CDSS, enabling relevant 
stakeholders to make more informed and timely 
decisions.  

This research has several limitations. The first is the 
lack of real-world data used in the evaluation. While the 
Monte Carlo simulation was used to simulate the EC-
CDSS operational data in the emergency care service 
process, the dispatch model was not evaluated because 
of the lack of ambulance and emergency room data. 
Another limitation is related to the design process. 
Although experts evaluated iterations of design outputs 
and provided recommendations, we didn’t obtain inputs 
from them with regard to our design requirements. 
Furthermore, having just one expert representing one 
stakeholder type may result in an insufficient 
representation of expert opinions. Therefore, we plan to 
recruit additional experts in the enhancement of the data 
processing architecture. Lastly, our study lacks explicit 
considerations for health information security and 
privacy. Although the prototype system included some 
security and privacy considerations, such as encrypted 
data storage, role-based access and control, and a 
privacy-consent form, a comprehensive security and 
privacy strategy and its impact on the PICT-PCT’s 
design is needed.  

Several future research is needed to improve its 
current design. First, the PICT-EDSS can be improved 
by focusing on the integration of hospital data and ECS 
data in a real-world environment. Second, more 
algorithm-based models should be explored to enhance 
insight deliveries.  
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