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Abstract 
This paper presents an approach that utilizes 

artificial intelligence techniques to identify 

autonomous machine behavior patterns. The context 

for investigation involves a fleet of prototype 

autonomous haulers as part of a Product Service 

System solution under development in the construction 

and mining industry. The approach involves using 

deep learning-based object detection and computer 

vision to understand how prototype machines operate 

in different situations. The trained model accurately 

predicts and tracks the loaded and unloaded machines 

and helps to identify data patterns such as course 

deviations, machine failures, unexpected slowdowns, 

battery life, machine activity, number of cycles per 

charge, and speed. PSS solutions hinge on efficiently 

allocating resources to meet the required site-level 

output. Solution providers can make more informed 

decisions at the earlier stages of development by using 

the AI techniques outlined in the paper, considering 

asset management and reallocation of resources to 

account for unplanned stoppages or unexpected 

slowdowns. Understanding machine behavioral 

aspects in early-stage PSS development could enable 

more efficient and customized PSS solutions.  

 

Keywords: Product-Service System, Deep Learning, 

Autonomous Machine, Prototyping, Machine 

Behavior. 

1. Introduction  

Rapid innovation in technology and globalization 

has significantly transformed the industrial approach 

to value creation. Consequently, organizations have 

transitioned from a product-centric to a more service-

oriented mindset. This shift has resulted in what is 

known as “Product-Service Systems” (PSS) (Baines et 

al., 2009). In recent years, PSS development has been 

rapidly expanding, aiming to create effective strategies 

for more efficient and sustainable systems that meet 

customer needs and reduce the environmental foot-

prints of the products (Fargnoli et al., 2018).  The 

development of new products coupled with services 

operating within a new system presents significant 

challenges in managing solution space ambiguity. This 

is especially true for PSS development, which is a 

complex process that involves designing, prototyping, 

and testing to ensure that the final product provides an 

optimal user experience (Exner et al., 2015). 

Furthermore, PSS development is a collaborative 

and interdisciplinary process that involves the 

integration of products and services in order to provide 

customers with a comprehensive solution. Effective 

collaboration between various stakeholders, such as 

designers, engineers, and marketers, is crucial for the 

success of PSS development (Isaksson et al., 2009). 

The rapid advancement of technology has led to the 

development of complex machines and systems that 

play a crucial role in various industries, such as 

construction, mining, and transportation. 

Nevertheless, comprehending the behavioral aspects 

of these complex systems of machines in different 

contexts and environments is essential to ensure their 

efficient operations and maintenance. This is 

particularly important in the context of PSS 

development, where the primary needs and 

requirements of the customers and other affiliated 

stakeholders must be identified early in the process to 

align the individual and system technical decisions 

throughout the process (Fargnoli et al., 2018; Kimita 

et al., 2015). The concept of machine behavior 

encompasses numerous elements, such as the 
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machine’s design, the operational environment, and 

interactions with other systems. Due to their 

complexity, machines can sometimes exhibit 

unpredictable behavior, which poses challenges for 

decision-makers to diagnose issues and make well-

informed decisions (Grieves & Vickers, 2017).   

In PSS design, prototyping has become an 

important approach that allows designers to test and 

refine their concepts in a representative context. Early-

stage prototyping is particularly important for 

exploring and testing different concepts (R. M. Ruvald 

et al., 2021), which promotes active learning. Active 

learning is an integral part of this approach, facilitating 

the acquisition of new knowledge about the design 

space and relevant phenomena, and advancing 

designers' mental or analytical models of phenomenal 

interactions (Telenko et al., 2016). This process 

enables designers to rapidly iterate and refine their 

design concepts, gather information, and receive fast 

feedback. Prototypes serve as a flexible vehicle for 

exploring solutions and promoting communication 

across relevant disciplines throughout the PSS value 

chain (Exner et al., 2015).  However, a clearer 

understanding of the relationship between 

representation and decision-making is necessary, as 

the value of information, contextual factors, and 

systems prototyping in developing prototypes remains 

relatively less explored. Designers can gain insights 

into a machine’s behavior by creating a system 

prototype, leading to the development of more 

effective systems. 

Integrating advanced technologies and industry 

4.0 capabilities in traditional industries such as 

construction machinery and mining has led to the 

development of more tailored and efficient solutions 

(R. Ruvald et al., 2019). The introduction of artificial 

intelligence (AI) in PSS development has 

revolutionized machine design, operation, and 

maintenance. AI techniques, including deep learning 

and computer vision, have become powerful tools for 

analyzing machine behavior in PSS development. 

With the ability to capture, process, and analyze vast 

amounts of data, these technologies provide insights 

into machine behavior that were previously 

inaccessible (Abioye et al., 2021). Additionally, the 

vast amount of data generated adds to the complexity, 

uncertainty, and ambiguity of the decision-making 

process. Therefore, it is essential to have a 

concentrated pool of knowledge to effectively operate 

the transition toward PSS and generate innovation 

while communicating it efficiently to relevant 

stakeholders (R. Ruvald et al., 2019). 

To support informed decision-making in early-

stage PSS development, this paper focuses on utilizing 

AI techniques to identify patterns of machines' 

behavior in a simulated prototyping environment. The 

research hypothesis guiding this study is that by 

employing AI techniques in a simulated prototyping 

environment, decision-makers can gain valuable 

insights into machine behavior, enabling informed 

decisions and improved PSS development outcomes. 

This paper is structured as follows: In section two, 

the relevant literature on the application of digital 

technologies in PSS development is presented. Section 

three describes the research approach utilized in this 

study. Section four presents the applied research 

methodology. Section five provides the results of our 

experiments, including the decision support system. 

Finally, section six concludes the paper and discusses 

the implications of our research findings for PSS 

development. 

 

2. Literature Review 

Products and services are often combined to 

provide maximum value for both users and providers. 

This bundling may also involve novel digital 

technologies, leading to the creation of smart product-

service systems (Chowdhury et al., 2018) or digital-

enabled PSS (Tukker, 2015). Remote monitoring of 

these systems using digital technologies has been 

discussed in the literature (Andersson & Mattsson, 

2015; Jonsson et al., 2008). However, there is a need 

to understand how the adoption of digital technologies 

into the business model affects wider organizational 

changes (Grubic, 2014), particularly within the 

context of PSS development in the construction and 

mining industry.  

In the early stages of product design, concept 

evaluations have a significant impact on the final value 

of the product due to the vast design solution space 

(Boukhris et al., 2017). However, in the early stages 

decision-making is characterized by ambiguity and, 

limited knowledge about the problem or solution. To 

address this uncertainty, the design thinking 

framework suggests using prototypes as a useful 

approach (Brown, 2008). Traditional prototyping 

approaches prescribe building full scale physical 

models of products or services to assess risk prior to 

manufacturing, which can be considered too late, time-

consuming and/or costly an activity to adequately 

represent the final product or service. Alternatively, 

experience prototyping, which can be conducted prior 

to full scale manufacturing described above, involves 

creatively constructing immersive experiences 

blending various prototypes and simulated 

environments that allow potential customers to 

interact with the future product and/or service solution 

(Buchenau & Suri, 2000). 
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Recent years have witnessed a growing interest in 

the use of AI techniques, particularly in object 

detection and tracking. Advancements in computer 

vision-based approaches have made visual 

information more accessible through object 

recognition (Zientara et al., 2017). However, 

challenges remain in automatic scene understanding 

from video streams and 3D reconstruction, as factors 

such as motion blur, image resolution, noise, lighting 

changes, scale, and orientation can impact the 

accuracy of existing systems (Saha et al., 2019).  

The integration of AI techniques in PSS 

development has paved the way for novel business 

models and improved customer experience, fostering 

the growth of AI-driven PSS solutions (Nicoletti & 

Appolloni, 2023; Walk et al., 2023). Several studies 

highlight the impact of AI in PSS developments 

through decision-making frameworks (Aeddula et al., 

2021; Wall et al., 2020) and optimizing service 

offerings (Sala et al., 2021). In the construction 

industry, data-driven design frameworks are 

transforming the way products are conceptualized, 

paving the way for service innovation strategies. 

Additionally, AI techniques are unlocking insights 

from usage data, customer feedbacks, and 

maintenance reports, driving proactive service 

enhancements, facilitating effective PSS design (Chen 

et al., 2019; Dickens et al., 2023; Sala et al., 2022). 

However, the integration of AI with PSS comes with 

the limitations and challenges associated with the data 

during the development process (Exner et al., 2017). 

To address these challenges, researchers have 

proposed interactive and hybrid approaches that 

involve collaboration between humans and AI 

systems. In this context, low-fidelity prototypes have 

been developed to understand the challenges in 

human-AI interaction, particularly in remote-sighted 

assistance services (Xie et al., 2022). However, within 

the context of PSS development in the construction 

and mining industry, there is a knowledge gap in the 

literature regarding the value of bundling together 

system prototyping and AI techniques in early-stage 

PSS development. Further exploration of the benefits, 

challenges, and potential applications of hybrid 

approaches, which combine human expertise with AI 

capabilities, could provide valuable insights into the 

development of PSS in the construction and mining 

industry. By attempting to address this gap and 

building upon the existing literature, this research aims 

to contribute to a deeper understanding of the 

intersection between digital technologies, prototypes, 

and AI techniques in the context of PSS development 

in the construction and mining industry. 

3. Research Approach 

This paper adopts a prescriptive research 

approach within the framework of the design research 

methodology (Blessing & Chakrabarti, 2009). The 

prescriptive research approach aims to provide 

practical guidelines, recommendations, or 

interventions to address specific design challenges and 

improve the development process (Blessing & 

Chakrabarti, 2009). In this study, the prescriptive 

research approach aligns with the goal of enhancing 

PSS development by incorporating additional features 

and capabilities based on insights gained from a 

previous case study (R. Ruvald et al., 2018). 

Building on the findings of the previous case 

study, which focused on the design of data-driven PSS 

using early-stage system prototyping (R. Ruvald et al., 

2018), this research aimed to expand upon the existing 

framework and incorporate specific features and 

capabilities. These additions were intended to address 

identified limitations and gaps in PSS development. 

To achieve this, image and sensor data were 

collected during scaled prototype machine operations 

to create a comprehensive dataset for training and 

analysis purposes. The dataset served as a foundation 

for incorporating additional features and capabilities 

into the PSS development process. These specific 

additions were carefully selected based on insights 

gained from the previous case study, taking into 

consideration the unique requirements and challenges 

of the construction and mining industry.  

By incorporating these features and capabilities, 

the research seeks to enhance PSS development by 

improving the accuracy of machine behavior analysis, 

facilitating informed decision-making, and enabling 

the creation of more efficient and sustainable systems. 

Additionally, the additions aim to address previously 

identified limitations and gaps, ensuring that the PSS 

development process is more comprehensive, robust, 

and aligned with the needs of both users and providers. 

Through the utilization of the prescriptive 

research approach and the incorporation of specific 

features and capabilities, this research aims to 

contribute to the advancement of PSS development in 

the construction and mining industry, providing 

practical insights and recommendations for 

researchers and practitioners in the field. 

 

Research Question: How can AI techniques be 

utilized in a simulated prototyping environment to 

comprehend the behavioral aspects of machines and 

enhance the development of product-service systems? 
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Research Objective: The research objective of this 

study is to investigate the effectiveness of utilizing AI 

techniques, such as deep learning-based object 

detection and tracking, in comprehending machine 

behavior and optimizing PSS development. 

 

4. Materials and Method 

4.1. Prototype  

The prototype platform utilized in this study 

consisted of a scaled-down site measuring 5m x 5m, 

simulating the environment of a quarry or mining 

operation.  The key component of the platform was the 

inclusion of two autonomous haulers engaged in 

loading and dumping interactions, replicating typical 

operations. To enable an autonomous experience for 

the user, the haulers were equipped with a range of 

sensors, control boards, and communication devices. 

Further information on the specifications and technical 

details of the prototype platform can be found at 

(PDRL, 2019.)  

 

 
Figure 1. Scaled-down site. 

4.2. Deep Learning 

In this study, deep learning techniques were 

utilized to address complex problems characterized by 

intricate patterns or high-dimensional data by 

leveraging artificial neural networks, which are a 

fundamental component of deep learning algorithms. 
In the context of computer vision, deep learning 

techniques have demonstrated success in various 

domains, including object detection and tracking. The 

workflow adopted in this study involved the utilization 

of the YOLOV5 model for object detection and the 

kernelized correlation filter (KCF) algorithm for 

object tracking. 

4.2.1. Dataset: The case study involved a custom 

machine prototype utilized for detection and tracking, 

as described in Section 5. The dataset employed in this 

study encompassed a diverse collection of images 

capturing the prototype under different conditions, 

such as variations in brightness, scale, and orientation. 

A total of 959 images were manually labeled to create 

the dataset. The manual labeling process involved 

annotating the images to identify and outline the 

presence of the machine prototype. Figure 2 represents 

the data samples from the dataset. 

 

 
Figure 2. Data samples from the dataset. 

 

4.2.2. YOLOv5: The YOLOv5 model, known for its 

real-time object detection capabilities, was selected for 

this study. YOLO, which stands for "You Only Look 

Once," utilizes a single neural network to detect 

objects in images or video streams, achieving high 

accuracy and real-time performance (Redmon et al., 

2016). In this study, the YOLOv5 framework, built on 

the PyTorch machine learning library, was employed. 

To optimize its performance for the specific 

requirements of the study, configurations, and 

modifications were made to the YOLOv5 model. 

These adaptations included adjustments to the training 

process, selection of appropriate hyperparameters, and 

potential modifications to the model architecture 

(Redmon et al., 2016). 

 

4.2.3. Object Detection: The trained YOLOv5 model 

detects the machine prototype in real time using a 

standard camera.  Typically, the object detection 

algorithm analyses only the spatial features within an 

individual frame while disregarding the inter-frame 

relationships, leading to a relatively slow performance 

(Zhou et al., 2022). 
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4.2.4. Kernelized Correlation Filter: To address the 

issues of the individual frame leading to missed 

detection and drifting, a visual object tracking method 

was employed. KCF is a popular algorithm used for 

visual object tracking in computer vision applications. 

It has gained popularity due to its high speed and 

accuracy in video-tracking objects. One of the main 

reasons why KCF is preferred over other algorithms is 

its ability to learn the appearance of an object in the 

video and then use that learned model to track the 

object in subsequent frames. KCF uses correlation 

filters to learn the object's appearance, which allows it 

to track the object even when it undergoes 

deformations, changes in illumination, or partial 

occlusions (Henriques et al., 2015). 

 

By incorporating the prototype platform and 

employing deep learning techniques, including the 

YOLOv5 model and Kernelized Correlation Filter 

algorithm, this study aimed to analyze machine 

behavior and track objects in real-time within the 

simulated prototyping environment. The integration of 

these methodologies facilitated the collection of 

valuable data for subsequent analysis and provided 

insights into the performance and potential 

improvements of the proposed PSS development 

approach. 

 

5. Results  

To comprehend the machines' behavior within the 

simulated prototyping environment, a deep learning-

based workflow was employed. A simulated proto-

typing environment process is presented in Figure 1 

with two machines being the focus of the study to 

understand their behavior in the overall simulated site 

scenario. 

 
Figure 3. Multiple machines detection. 

The workflow involved training the YOLOv5 

model on a custom dataset and conducting real-time 

validation using a standard web camera. The trained 

model successfully detected multiple custom 

machines, as depicted in Figure 3. The accuracy of the 

object detection model is 98.52%. 

Furthermore, to achieve a comprehensive 

understanding of the machine interactions, the 

tracking system simultaneously monitored two 

machines. Figure 4a and Figure 4b illustrates this 

process, with machines color-coded as green and red 

for visualization purposes. Green represents a loaded 

machine headed to the dumping site, while red 

signifies a machine headed to the loading site, 

respectively. This color-coded scheme not only aids in 

real-time tracking but also streamlines the identifi-

cation of each machine on the site track. 

 
 

 
Figure 4a. Machines tracking. 

 
 

 
Figure 4b. Machines tracking 
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A decision support system was developed to 

enable human-machine interactions, and Figure 5 

shows the human-machine interface presenting 

collected information for an informed decision-

making process. The interface provides real-time 

information for all machines in the simulated site, 

allowing decision-makers to select the desired 

machine information. Additionally, the interface 

includes an emergency stop function to pause the 

entire machine fleet operations in case of any 

unexpected occurrences.   

 

 

The human-machine interface provides real-time 

information for all the focused machines in the 

simulated site, including battery life, speed, activity, 

and cycles, with an emergency stop function available 

for individual machines, as shown in Figure 6a and 

battery life of the machines in Figure 6b (for 

visualization purpose, both the machines’ data is 

shown in a single plot). 

 

 
Figure 6a. Individual machine data 

Figure 6b. Machines’ data 

 

The simultaneous localization and mapping of the 

machines were used with the KCF method to identify 

their activity from real-time video. To ensure seamless 

operation, the human-machine interface was designed 

to alert users in case of machine breakdown and 

remind them to charge the batteries when the battery 

level goes below 35%. Figure 7a illustrates the 

interface system with a warning sign indicator for a 

breakdown machine and visualization of the machine 

breakdown in the simulated environment is show in 

Figure 7b. 

 

 

 
 

Figure 7a. Interface warning of machine 
breakdown 

Figure 5. Human-machine interface 

Page 1022



 
Figure 7b. Visualization of machine breakdown 
(Red Line). 

5.1. Validation  

In terms of evaluation metrics, Multiple Object 

Tracking Accuracy (MOTA) was utilized to assess the 

tracking performance. It is a widely recognized 

evaluation metric employed to assess the performance 

of multiple object tracking. It provides a 

comprehensive measure of tracking accuracy by 

considering various aspects, including false positives 

(FP), false negatives (FN), misses and identity 

switches (IDSW), and total count of ground truth 

objects (GT) at a specific time t. The ground truth 

values were manually annotated, ensuring precise 

labeling of objects.  It is a measure of the accuracy of 

the model and is defined according to (Bernardin & 

Stiefelhagen, 2008).  

 

𝑀𝑂𝑇𝐴 = 1 − 
∑(𝐹𝑁+𝐹𝑃+𝐼𝐷𝑆𝑊)𝑡

∑ 𝐺𝑇𝑡
              (1) 

 

A higher MOTA value indicates better tracking 

performance, as it signifies a lower number of errors 

and higher accuracy in tracking the objects. A MOTA 

value of 1 indicates perfect tracking with no errors. In 

this research case of two-object detection and tracking 

scenario, the model demonstrated an accuracy of 

96.59%.  

Intentional breakdown of a particular machine is 

represented in Figure 7a and 7b validates the 

functionality of the decision support system service. 

The prototype interface and visualizations were 

deployed with the functional scale site at three 

separate events in USA, India, and China. At these 

events observers were allowed to interact with the 

machines and interfaces as a form of engagement. The 

observers at these events ranged from potential 

customers to other interested industry professionals. 

The overall response was positive to the prototype and 

enabled dialogue with potential users on the overall 

system as well as machine level specifics. This type of 

feedback is vital from a PSS development perspective 

because it allows contextualized feedback from highly 

relevant stakeholders enabling the potential 

optimization of technical details within the complex 

socio-technical requirements existing in an overall 

PSS solution.   

By incorporating the deep learning-based 

workflow, developing the decision support system, 

and achieving a high MOTA accuracy, this research 

provides valuable insights into understanding and 

monitoring the behavior of machines within the 

simulated site and provides the foundations for 

informed decision-making in early-stage PSS 

development. 

 

6. Discussions and Conclusions  

The research presented in this paper focuses on 

the utilization of AI techniques to gain valuable 

insights into the behavior of machines in PSS 

development. By employing deep learning and 

computer vision, AI techniques enable the 

identification of data patterns, providing a more 

detailed understanding of machine behavior. The 

training of a deep learning based YOLOv5 model on a 

custom dataset enables the detection of machines, 

while the KCF method facilitates accurate tracking of 

loaded and unloaded machines in a simulated site 

environment. 

One of the key findings of this research is the 

ability of AI techniques to identify patterns in machine 

behavior. This capability offers valuable insights that 

can inform decision-making in early-stage PSS 

development. By comprehending machine behavior, 

decision-makers can make informed decisions that 

enhance operational efficiency. For example, machine 

detection and tracking allow for the identification of 

potential maintenance needs and the development of 

predictive maintenance strategies. This not only 

reduces maintenance costs but also extends the 

lifespan of machines, resulting in improved asset 

management and cost savings  (Poór & Basl, 2019). 

Understanding data patterns plays a crucial role in 

understanding machine behavior in various scenarios, 

such as course tracking, machine failure, unexpected 

slowdowns, battery life, speed, cycles per charge, and 

machine activity. This understanding supports 

informed decision-making during PSS development 

concerning potential alternatives to manage 

hauler/machine assets and reallocate resources 

towards achieving targeted operational efficiency. By 

analyzing the available data, decision-makers can 
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identify potential risk areas and develop contingency 

plans to minimize the impact of unplanned events. 

Machine detection and tracking contribute to the 

understanding of machine behavior, facilitating the 

identification of maintenance requirements and 

ensuring the machines adhere to designated paths, 

thereby ensuring human safety. The human-machine 

interaction, facilitated by the developed interface, 

allows for real-time observation of machine behavior, 

including battery life, speed, and charging needs, as 

well as the detection of potential obstacles and 

machine breakdowns. Visualizations aid in identifying 

breakdowns or issues in machine behavior, while the 

emergency stop function ensures operational safety in 

the face of unexpected catastrophic occurrences. 

Furthermore, the comparison of battery usage per 

cycle between individual machines provides valuable 

insights for optimized resource allocation. 

Furthermore, the utilization of AI techniques 

could enable plans for strategizing around optimal 

resource allocation to be considered during the early 

stages of PSS development. Decision-makers can 

leverage the insights gained from machine behavior to 

efficiently anticipate and react to potential issues 

requiring the reallocation of resources, minimizing 

downtime, and maximizing productivity. By 

understanding patterns such as unexpected slowdowns 

or battery usage, decision-makers have a better 

understanding of how to compensate for the missing 

capacity, ensuring operational efficiency. 

The findings of this research could have broader 

implications for PSS development beyond the 

simulated prototyping environment. The insights 

gained through the usage of AI techniques can be 

applied to the development of full-scale PSS 

operations, where the optimization of operational 

efficiency and resource allocation is of critical 

importance. By incorporating AI techniques in the 

operational phase, decision-makers can further 

enhance, customise, or streamline PSS outcomes to 

deliver increased value to the customers. 

The significance of this research lies in its 

potential to advance the field of PSS development and 

contribute to the body of knowledge on the application 

of AI techniques. By comprehending machine 

behavior using AI techniques in a simulated 

prototyping environment, decision-makers can 

optimize operational efficiency, minimize downtime, 

improve asset management, and enhance resource 

allocation. Additionally, a deeper understanding of 

machine behavior can enable predictive maintenance 

strategies, reducing maintenance costs and extending 

machine lifespan.  The research’s influence extends to 

the PSS development process, particularly in the 

traditional industries like construction and mining. By 

exploring the role of advanced technologies, it sheds 

light on their capacity to accelerate the design and 

testing phases of PSS development.  
In conclusion, this research has demonstrated the 

effectiveness of utilizing AI techniques to identify 

patterns of machines' behavior in early-stage PSS 

development. The insights gained from these 

techniques enable decision-makers to make informed 

decisions that optimize operational efficiency, 

improve asset management, and enhance resource 

allocation. By comprehending machine behavior using 

AI techniques, PSS developers can minimize 

downtime, reduce maintenance costs, extend machine 

lifespan, and allocate resources more effectively. 

 

Limitations: The research was conducted within a 

controlled environment, and as a result, the behavior 

of machines in different conditions, such as rain or 

snow, was not considered. Additionally, it is important 

to note that the human-machine interface was 

presented with basic functionalities for demonstration 

purposes. 

 

7. Future Works  

Future research will involve investigating the 

behavior of machines in various controlled 

environments and exploring the relationships between 

different machines, such as interactions between 

wheel loaders and haulers or between two haulers. In 

addition, the tracking of all sorts of items on a job site 

(tools, humans, and other machines). Furthermore, the 

application of this prototyping process within PSS 

development can be explored deeper as a means 

through which to gather data at multiple levels of the 

conceptual system, including the impact on roles, 

responsibilities, and decision-making processes within 

interdisciplinary teams, to drive critical design 

decisions. Lastly, the potential utilization of in-built 

camera sensors in machines and the subsequent 

analysis of machine behavior can lead to including 

operator in the loop design methods for training the 

machine pathing and predictive maintenance models. 
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