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Abstract

Poisoning Attack is a dominating threat in
distributed learning, where the mediator has limited
control over the distributed client contributing to the
joint model. In this paper, we present a comprehensive
study on the coupling effect of poisoning attacks from
three perspectives. First, we identify the theoretical
foundation of the weak coupling phenomenon of
gradient eigenvalues when under the poisoning attack.
Second, we analyze the behavior of gradient coupling
under four scenarios: adaptive attacker, skewed client
selection, Non-IID data distribution, and different
gradient window sizes. We study when the weak
coupling effect would fail as the attack indicator. Last,
we examine the coupling effect by revisiting several
existing poisoning mitigation approaches. Through
formal analysis and extensive empirical evidence, we
show under what conditions the weak coupling effect
of poisoning attacks can serve as forensic evidence
for attack mitigation in federated learning and how it
interacts with the existing defenses.

Keywords: federated learning, poisoning attacks,
security analysis

1. Introduction

Federated learning [16] enables collaborative and
distributed model training for many applications, such
as next word prediction [4] and electronic health record
understanding [20]. In every round, the central server
distributes the current joint model to a random subset of
participants. Each client trains with their local data and
submits the local model update to the server. Then, the
server aggregates these local model updates into the new
joint model for the next round of training.

The lack of control over client’s data in federated
learning and transparency in the clients’ updates create
the space for exploiting training data manipulation with
two attack objectives: (i) denial of service (DoS) [2, 8],
which prevents the convergence of the global model
or makes the model converge to a bad minimum.
(ii) targeted poisoning [1, 21, 23], which assumes a
small percentage of malicious clients and is targeted at
objects of a specific source class (victim) to malfunction
towards a target class while keeping the service quality
on the rest of data. The latter is believed more difficult
but more motivated since the adversaries can tailor the
attack to any adverse goal while remaining under the
radar. Real-world targeted poison attacks have shown
that federated learning-trained object detectors can be
hijacked to misdetect objects of designated classes by
changing the class label of objects of a source class, e.g.,
labeling the stop sign as the speed limit [23]. The attack
may also modify the presence of the bounding boxes,
e.g., making the detection box for person disappear [7].

Existing poisoning detection strategies have
observed that the eigenvalues of the gradient covariance
between the poisoned and the benign gradient can
be separated. This weak coupling effect enables
the removal of the potentially poisoned model
updates [12, 22, 24, 26]. A key question is whether
one can simply conclude with high confidence that
the existence of the weak coupling effect is a sign of
poisoning attacks and that the smaller cluster in the
separation must reflect the poisoned gradients to be
removed. Meanwhile, differential privacy noise [15, 19]
and byzantine-robust aggregation [1, 8] are commonly
considered for poisoning mitigation. While these
approaches lead to the tight coupling of poisoned and
benign gradients, it remains unknown if the resulting
tight coupling can make poisoning effect disappear.
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Our research results are novel from three
perspectives. First, we provide the theoretical
foundation of gradient coupling in poisoning attacks
and named it λ-Coupling. We show that the distribution
of benign gradients from honest clients can be
separable from the distribution of poisoned gradients
from compromised clients. Second, we analyze the
behavior of the λ-Coupling under four scenarios:
adaptive attacker, skewed client selection, Non-IID
data distribution, and different gradient window sizes.
We identify situations where the λ-Coupling would
fail as the poisoning detection indicator. Last, we
investigate how poisoning coupling interacts with
two existing defense approaches against poisoning
attacks: differential privacy noise and Byzantine-robust
aggregation. We show that both methods would create
tight coupling, but such gradient behavior does not
necessarily neutralize the poisoning effect. Meanwhile,
both mitigation approaches could severely deteriorate
the benign performance of the trained global model.
Our formal analysis and empirical evaluation on three
benchmarking datasets validate our understanding of (1)
why the eigenvalues of the covariance of the gradient
update from the benign clients and the poisoned
clients can be separated, (2) under what conditions
the λ-Coupling can serve as the forensic evidence
for poisoning detection, and (3) how the coupling
effect behaves in existing defenses. As federated
learning systems become more popular with promises
of increased accuracy and privacy, highlighting and
understanding these behaviors is an integral part of the
poisoning attack mitigation effort.

2. Poisoning Attack Threat Model

Poisoning attack in federated learning assumes the
existence of an adversary on the compromised client
and occurs during the training phase. The attack
goal is to change the behavior of the trained global
model. The attack can be performed on data or model.
Data poisoning has two types: 1) clean-label and 2)
dirty-label. Clean-label attacks [21] inject training
examples that are cleanly labeled by a certified authority.
Imperceptible adversarial watermarks are injected into
the clean input to form a poisoning instance with a clean
label and simultaneously minimize the distance of the
input to the target instance.

In contrast, dirty-label poisoning deletes, inserts or
replaces training examples with the desired target label
into the training set. One example is the backdoor
poisoning [1, 6, 25, 28], in which the adversary inserts
small regions of the original training data and modifies
the label as the desired target class to embed the trigger

into the model. Accordingly, the unaltered input will not
be affected, and the input with the trigger will behave
according to the adversary’s objective. Another example
is the label-flipping attack [23], which modifies the label
of objects from a specific class (attack victim) to another
designated target class. The features of the data are kept
unchanged. Model poisoning attack happens during
the local model training process, by modifying the
objective of poison local model updates [8]. Since data
poisoning attacks eventually change a subset of updates
sent to the model at any given round, model poisoning
is believed to subsume data poisoning in federated
learning settings [2]. Given that the goal of this paper
is to study the coupling effect, which can be observed
in both backdoor [24] and label-flipping [7], we focus
on the targeted dirty-label poisoning and consider the
commonly used label-flipping attack [23].

We make the following assumptions in our threat
model. Each malicious client can only manipulate
the training data Xi with auxiliary information, such
as the target label on their own device but cannot
access or manipulate other participants’ data. The
attack corrupts training data with label change, but
the learning procedure remains unaltered, e.g., SGD,
loss function, or server aggregation. The attack is not
specific to any deep learning model architecture, loss
function, or optimization function. This attack will only
drop the prediction accuracy of the source class. Yet,
the poisoning attack has little negative impact on the
accuracy for the rest of the classes. Let F (x) denote
the global model trained in federated learning, fi(x) be
the local model of client i, (x, y) denote the raw data and
its ground truth label in the training set of client i. The
attack method ρ replaces the ground truth label y to y′

to mislead the joint training so that the federated global
model produced by federated learning will be fooled and
mispredict examples of source class y to target class y′

with high confidence, formally:

ρ : ρ(x, y) = (x, y′)

s.t. fi(x) = y′, y′ ̸= y, max[F (x) = y′]

The objective is to maximize the chance of the global
model F(x) misclassifying test examples from the source
class into the target class.

The threat model also assumes that only the training
data of the source class on a small percentage (λ) of
compromised clients is poisoned. While λ can be small,
such as 5% or 10% of total N clients, the availability
of malicious clients can be purposely increased. We
follow [23] with α% chance that the gradient update
collected by the server is from a malicious client. Unless
otherwise specified, we adopt α = 0.6 at each round for
effective poisoning attacks.
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3. λ-Coupling Effect of Poisoning Attacks

In vanilla federated learning, the eigenvalues of
the covariance of the gradient update from the set
of training examples for a given class would couple
with each other and form only one cluster under PCA.
Figure 1 demonstrates the coupling effect of two classes
in CIFAR10 under vanilla federated learning. When
the system is under the targeted dirty-label poisoning
attack, it is observed that by a small λ malicious
clients, the eigenvalues of the covariance of the gradient
update from the set of training examples for the source
class will consist of two sub-populations: the poisoned
gradient on malicious clients and the benign gradient
on honest clients. We refer to such phenomenon as
λ-Coupling, implying a weak coupling relation between
the poisoned and benign gradients.
Definition 1. λ-Coupling. Given 0 < λ < 1/2, let
H and P denote the two distributions: Honest and
Poisoned, respectively, with finite covariance. Let the
mixing loss function be G = (1 − λ)H + λP , v be
the top eigenvalue of the covariance of G and µG is the
mean of the mixed distribution G. The two distributions
H and P are separable if there exists some τ such that:

Pr
X∼H

[| ⟨X − µG, v⟩ | >τ ] < λ, (1)

Pr
X∼P

[| ⟨X − µG, v⟩ | <τ ] < λ. (2)

From the definition, we can see that when 0 < λ <
1/2, the distribution of the benign gradients and the
poisoned gradients are loosely coupled. By projecting
the high-dimension gradients onto the two-dimension
space with principal component analysis (PCA), we
illustrate λ-Coupling in Figure 2 in a detection window
of 5 and 10 rounds. Both cases can cleanly separate the
poisoned gradients (blue cross) on the source class from
the benign gradient update from honest clients (yellow
dot). These results also show that the λ-Coupling
phenomenon persists with different percentages of
malicious clients and window sizes as long as λ satisfies
0 < λ < 1/2. Therefore, it is possible to inspect
the gradient distributions across all clients for outlier
detection and removal.

This definition also implies the effect of λ-Coupling
in Equation 1 and 2 are dependent with v, the top
eigenvalue of the covariance of G and µG, the mean
of the mixed distribution G. Since G indicates the
mixed distribution of honest and poisoned gradients, the
distributional differences can be formulated by the mean
difference between the two distributions. Therefore, we
can have the following Theorem.
Theorem 1. Given 0 < λ < 1/2, let H and P denote
Honest and Poisoned distributions, with mean µH , µP ,

(a) Source class. (b) Target class.

Figure 1: λ-Coupling for CIFAR10 with source class (Car)
and target class (Truck) under no poisoning attack.

and finite covariance ΣP ,ΣH ⪯ ϕ2I. Let the mixing
loss function be G = (1−λ)H+λP and ∆ = µH−µP .

Then, if λ ≥ 6ϕ2

||λ∆||22
, P and H satisfy λ-Coupling.

Proof. We first prove | ⟨∆, v⟩ | > 2ϕ√
λ

under the

assumption of ||∆||22 ≥ 6ϕ2

λ . Given G = (1−λ)H+λP ,
we have µG = (1− λ)µH + λµP and

EX∼H [(X − µG)(X − µG)
T ] = ΣH + λ2∆∆T

EX∼P [(X − µG)(X − µG)
T ] = ΣP + (1− λ)2∆∆T

Since G is a mixed distribution of H and P , we have

ΣG = (1− λ)EX∼H [(X − µG)(X − µG)
T ]

+ λEX∼P [(X − µG)(X − µG)
T ]

= (1− λ)ΣH + λΣP + λ(1− λ)∆∆T

Since the l2 norm of the matrix is the largest singular
value, we have ||∆∆T ||2 = ||∆||22. And subsequently:

λ(1− λ)∆∆T = λ(1− λ)||∆||22 ≤ ||ΣG||2 = vT ΣGv

= (1− λ)vT ΣHv + λvT ΣP v + λ(1− λ) ⟨∆, v⟩2

≤ ϕ2 + λ(1− λ) ⟨∆, v⟩2 .

The second line is due to ΣG ⪰ λ(1 − λ)∆∆T .
So we have ||ΣG||2 ≥ λ(1 − λ)||∆||22. The third line
holds given that the l2 norm of the matrix equals its top
eigenvalue for a symmetric orthogonal matrix. Since by
assumption ϕ2 ≤ λ

6 ||∆||22 and 0 ≤ λ ≤ 1/2, we have:

⟨∆, v⟩2 ≥
(
1− 1

6(1− λ)

)
||∆||22 ≥ 2/3||∆||22 ≥ 4ϕ2

λ
.

Next we show given | ⟨∆, v⟩ | > 2ϕ√
λ

, there exists a

τ = λ| ⟨∆, v⟩ |+ ϕ√
λ

such that:

Pr
X∼H

[| ⟨X − µG, v⟩ | > τ ] < λ,

Pr
X∼P

[| ⟨X − µG, v⟩ | < τ ] < λ.
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(a) λ = 5%, at 45-50 rounds. (b) λ = 10%, at 45-50 rounds (c) λ = 5%, at 40-50 rounds. (d) λ = 10%, at 40-50 rounds

Figure 2: λ-Coupling on CIFAR10 with source (Car) and target (Truck). Yellow dots are benign gradient updates, and blue crosses
are poisoned ones.

We first prove the left side. For | ⟨X − µG, v⟩ | > τ ,

| ⟨X − µH , v⟩ | = | ⟨X − µG, v⟩ − λ ⟨∆, v⟩ |
≥ | ⟨X − µG, v⟩ | − λ| ⟨∆, v⟩ |

> τ − λ| ⟨∆, v⟩ | = ϕ√
λ

The second line holds due to triangle inequality, and the
third line is due to | ⟨X − µG, v⟩ | > τ . Therefore,

Pr
X∼H

[| ⟨X − µG, v⟩ | > τ ] ≤ Pr
X∼H

[| ⟨X − µH , v⟩ | > ϕ√
λ
]

≤ λ.

The right-hand side is due to Chebyshev’s inequality.
Then we prove the right side: | ⟨X − µG, v⟩ | < τ ,

| ⟨X − µP , v⟩ | = | ⟨X − µG, v⟩ − (1− λ) ⟨∆, v⟩ |
≥ (1− λ)| ⟨∆, v⟩ | − | ⟨X − µG, v⟩ |
≥ (1− λ)| ⟨∆, v⟩ | − τ

= (1− λ)| ⟨∆, v⟩ | − λ| ⟨∆, v⟩ | − ϕ√
λ

= (1− 2λ)| ⟨∆, v⟩ | − ϕ√
λ

> (1− 2λ)
2ϕ√
λ
− ϕ√

λ

=
ϕ√
λ
− 4

√
λϕ >

ϕ√
λ
.

The second line is due to triangle inequality, and the
third line is because | ⟨X − µG, v⟩ | < τ . The fourth
line due to the assumption τ = λ| ⟨∆, v⟩ |+ ϕ√

λ
and line

six due to the assumption | ⟨∆, v⟩ | > 2ϕ√
λ

. Therefore,

Pr
X∼P

[| ⟨X − µG, v⟩ | > τ ] ≤ Pr
X∼P

[| ⟨X − µP , v⟩ | >
ϕ√
λ
]

≤ λ.

The right-hand side holds due to Chebyshev’s inequality.
Thus completes the proof.

Fashion-MNIST CIFAR10 LFW
# training data 60000 50000 2267

# validation data 10000 10000 756
# features 28*28 32*32*3 32*32*3
# classes 10 10 62

# data/client 600 500 300
# local iteration L 60 50 100
local batch size B 10 10 3

# rounds T 100 200 60
accuracy 0.893 0.743 0.695

Table 1: Benchmark datasets and parameters

Theorem 1 implies that the gradient updates
collected at the server would demonstrate two separated
clusters when the federated learning is under poisoning

attack, if (1) 0 < λ < 1/2 and (2) λ ≥ 6ϕ2

||λ∆||22
. Given

that the honest and poisoned distributions are different
under different datasets, data instances, and models, the
mean µH , µP and finite covariance ΣP ,ΣH ⪯ ϕ2I are
different as well. Therefore, the effect of λ-Coupling is
data-dependent and model-dependent. By rewriting the

second item as ||∆||22 ≥ 6ϕ2

λ , we can find the minimum
distribution difference that would enable λ-Coupling
under a given λ.

4. Evaluating λ-Coupling Effect

To investigate the behavior of λ-Coupling in
poisoning attacks, we conduct the study on three
benchmark datasets. Fashion-MNIST [27] is a
grey-scale image dataset associated with 10 clothing
classes such as T-shirt, Trouser, and Pullover.
CIFAR10 [14] is a dataset of colored images from 10
object classes such as dog, car, and plane. LFW [13]
is a human face dataset. Since most classes have a
very limited number of data points, we consider 3023
images from 62 classes with more than 20 images per
class. Table 1 provides a detailed configuration of these
datasets. For the label-flipping poisoning attacks, we
consider source-target pairs Trouser ⇒ Ankle boot for
Fashion-MNIST, Car ⇒ Truck for CIFAR10, Angelina
Jolie ⇒ Jennifer Aniston for LFW, respectively. Results
on other source and target classes demonstrate a similar
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Figure 3: Micro f1 score before and after the poisoning detection and removal.

phenomenon. To maximize the poisoning effect, we
follow [23] and start to inject malicious clients 10
rounds before the end of training for Fashion-MNIST
and 40 rounds for CIFAR10 and LFW. We use λ = 10%
and α = 0.6 unless otherwise specified. Besides PCA to
capture the two cluster phenomenon, we apply KMeans
with the classic Lloyd algorithm and set the number of
clusters to 2 with 10 initialization seeds and maximum
iteration to 300. The relative tolerance regarding the
Frobenius norm of the difference in the cluster centers
of two consecutive iterations to declare convergence is
set to 0.0004.

We measure the class-wise results using micro f1
score, which is the harmonic mean of Precision and
Recall: f1 = 2∗precision∗recall

precision+recall . Precision tp
tp+fp is

the ratio of correctly identified positive samples in all
predicted positive samples, where tp is the number of
true positives, and fp is the number of false positives.
Recall tp

tp+fn is the ratio of correctly identified positive
samples in all observed positive instances, where fn is
the number of false negatives. Our federated learning
setup follows the simulator in [23] with a total of N =
100 clients and the number of participating clients Kt =
10% of N in each round.

4.1. Vanilla λ-Coupling Evaluation

Recall Theorem 1, the distribution of benign
gradients from honest clients is separable from that
of poisoned gradients when the percentage λ of
compromised clients satisfies 0 < λ < 1/2. Figure 3
reports the results under the scenario with no poisoning
and poisoning scenarios with 5% and 10% attackers.
We make two observations: (1) The poisoning attacks
under both λ settings are stealthy. They succeed
in dropping the prediction accuracy of the source

(a) O-adaptive attacker. (b) S-adaptive attacker

Figure 4: λ-Coupling under adaptive attackers on
Fashion-MNIST. Source (Trouser) ⇒ target (Ankle boot).

class by up to 24% and yet have a little negative
impact on the prediction for the rest of the classes.
(2) With λ-Coupling-based poisoning detection and
removal, the defense can safeguard federated learning
systems against targeted poisoning attacks. While
we provide the theoretical cause of the λ-Coupling,
existing defenses against the targeted poisoning attacks
are mainly built upon the empirical observation [12, 22,
24, 26] of gradient separation with different concrete
implementation techniques.

However, simply relying on analyzing the
eigenvalue of the client’s gradient update over one
or multiple rounds to conclude that the smaller cluster
contains the poisoned gradient updates and expel those
corresponding clients may not be accurate.

4.2. No Guaranteed Existence of Two Clusters

We first examine whether there must be two separate
clusters for the targeted dirty-label poisoning attacks.
We argue that the λ-Coupling is not guaranteed.

O-adaptive attacker. The first scenario is the
Occasional adaptive attacker who aims to bypass
anomaly detection. For instance, the malicious clients
camouflage in the crowd of the benign clients and only
perform the label flipping occasionally instead of each
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vanilla
poisoning

O-adaptive S-adaptive Noise injection
10% 20% 60% 80% N (0, 0.052) N (0, 12)

Fashion-
MNIST

no poisoning 0.97 0.97 0.97 0.97 0.97 0.964 0.913
λ=5% 0.822 0.834 0.866 0.871 0.845 0.851 0.805
λ=10% 0.449 0.523 0.581 0.602 0.517 0.823 0.726

CIFAR10
no poisoning 0.881 0.881 0.881 0.881 0.881 0.868 0.809

λ=5% 0.756 0.771 0.795 0.794 0.758 0.746 0.677
λ=10% 0.503 0.511 0.534 0.582 0.516 0.732 0.618

LFW
no poisoning 0.687 0.687 0.687 0.687 0.687 0.681 0.644

λ=5% 0.591 0.616 0.644 0.625 0.592 0.577 0.565
λ=10% 0.468 0.47 0.492 0.561 0.483 0.465 0.556

Table 2: F1-score of the victim source class under adaptive poisoning attacker and Gaussian noise. For the poisoning source class
and target class, Trouser ⇒ Ankle boot for Fashion-MNIST, Car ⇒ Truck for CIFAR10, Angelina Jolie ⇒ Jennifer Aniston for
LFW, respectively.

(a) N (0, 0.052). (b) N (0, 12)

Figure 5: λ-Coupling under Gaussian noise on
Fashion-MNIST. Source (Trouser) ⇒ target (Ankle boot).

time it is selected. Figure 4a demonstrate the PCA
result of the client gradients in 5 rounds (round 45
- 50) under the O-adaptive attacker. The malicious
clients, even though being selected to participate in
one round, choose not to poison the local dataset
during the local model training at the percentage of
10%. When O-adaptive attackers contribute to the
cluster with poisoned and benign gradient updates,
they can circumvent the λ-Coupling-based detection.
Table 2 indicates that the attack effect of the occasional
adaptive attack would be weaker compared to the
vanilla poisoning attack due to the fewer chances of the
poisoned gradient update.

S-adaptive attacker. The second scenario is the
Selective adaptive attacker. The malicious clients only
poison a selected percentage of the training examples in
its datasets. The corresponding local gradient updates
are computed over a mixture of clean and poisoned
training samples. Figure 4b demonstrate the PCA result
of the client gradients in 5 rounds (round 45 - 50) of the
S-adaptive attacker. Even though the malicious clients
are selected to participate in one round, they can choose
only to flip 60% of the victim source class they own.
Consequently, the λ-Coupling cannot have two cleanly
separated clusters under the S-adaptive attacker. Table 2
shows the effect of the selective adaptive attacker. The
gradient update mixed with benign and poisoned data
is less destructive on the poisoning attack effect when
compared to vanilla poisoning.

Impact of noise. In addition to the O-adaptive and

the S-adaptive attacker, we find that injecting a large
amount of noise would also blend the two clusters.
The resulting tight coupling is because noise injection
takes a uniform effort on both the benign gradients from
the honest clients and the poisoned gradients from the
malicious clients. Therefore, the two clusters under
the λ-Coupling could either come close to one another
as shown in Figure 5a or even mix together when the
noise is large enough as shown in Figure 5b. Table 2
shows the effect of Gaussian noise with zeros means and
variance 0.052 and 12. We can see that the injected noise
would lower the f1 score performance even without
the poisoning attack. When λ is 5% or 10%, a small
noise N (0, 0.012) does not affect the poisoning effect
much. However, a large noise would compensate for the
poisoning effect on the victim but at the cost of a larger
f1 score drop on the rest of the classes.

4.3. Smaller Clusters Must Be Malicious? No.

Next, we explore whether the smaller cluster in the
λ-Coupling always represents the gradient update from
the malicious clients. We consider three scenarios:
attacker domination with a large λ, skillful attacker
domination with a small λ but a large α, and non-IID
federated learning. We argue that the smaller cluster
may not always reflect the malicious clients.

Poisoning Attacker Domination. Due to the
distributed nature of federated learning, the server has
no control over the client. The malicious clients may
take over the gradient direction. Figure 6a demonstrates
the λ-Coupling in one round at round 50 when λ =
60%. Even when the malicious clients are not purposely
available (no α control), the gradient update with
random sampling is dominated by the poisoned gradient,
and the larger cluster represents the malicious client.

Skillful Poisoning Attacker Domination. As
discussed earlier, the adversary could purposely increase
its availability to cause damage to the federated learning
model. Therefore, even though the percentage λ of
the malicious client is small, the attacker could take

Page 7607



(a) Large λ = 60%. (b) λ = 10%, large α = 0.8.

Figure 6: λ-Coupling under different data distribution on
Fashion-MNIST. Source (Trouser) ⇒ target (Ankle boot).

control of the gradient update on the victim source
class. Figure 6b shows the λ-Coupling in one round
of federated learning (round 50) when λ = 10% but
α = 0.8. The poisoned gradient update out-numbers the
benign gradient update, and the larger cluster represents
the malicious client. As such, the randomness in client
selection can lead to an incorrect revocation.

Non-IID Setting. In the non-IID setting, the benign
gradients may construct two different distributions. For
instance, when we have 30 out of 100 clients who
do not have class Trouser in their local dataset, the
gradient update from the 70 clients with class Trouser
and the gradient update from the 30 clients without
class Trouser would form two clusters. Figure 7a
visualize the λ-Coupling in five rounds of federated
learning (round 45- 50) caused by the vanilla non-IID
data distribution. We argue that the λ-Coupling can
cause false positive detection of the poisoned gradients
in the non-IID setting without the attacker.

Next, we inject poisoning attacks into the non-IID
setting. Specifically, among 70 out of 100 clients, λ =
10% and α = 0.6 is applied. Figure 7b visualize
the λ-Coupling in five rounds of federated learning
(round 45- 50) under the non-IID data distribution with
poisoning. We observe that there are three clusters under
PCA, making it even harder to determine which cluster
represents the poisoning attacker. Given the typical
use case of the non-IID setting in federated learning,
our result indicates that existing defense approaches
leveraging the λ-Coupling may fail as an indicator for
poisoning attack mitigation.

4.4. The Larger Detection Window No Better

Existence of the Occasional adaptive attacker makes
a per-round based λ-Coupling analysis inaccurate, and
the randomness in federated learning client selection
may result in different portions of the malicious client.
Both may lead to incorrect outlier detection and removal
since the smaller cluster may not be guaranteed to be the
poisoned gradient update. Thus, the one-round-based
detection window may not be ideal for λ-Coupling

(a) Benign non-IID setting. (b) non-IID under attack

Figure 7: λ-Coupling under non-IID setting. Yellow dots
mean benign clients with the source class (Trouser), Blue
squares represent benign clients without the source class, and
red triangles denote malicious clients.

analysis. We demonstrate the detection window size
of 1 (round 50), 5 (round 45-50), 25 (round 25-50),
and 50 (round 1-50) under for λ-Coupling analysis
using PCA in Figure 8 and KMeans in Figure 9.
We show that it is prone to have false positives on
cluster analysis when the detection window is large, and
such false positive instances persist for both PCA and
KMeans-based λ-Coupling analysis. The two clusters
are not as cleanly separated when the detection window
is 25 rounds or 50 rounds when compared to 1 round and
5 rounds. Therefore, neither a large nor small detection
window is guaranteed to capture the λ-Coupling well.

5. λ-Coupling in Poisoning Mitigation

In this section, we study the coupling effect
of poisoning attacks under two existing poisoning
mitigation strategies: differential privacy controlled
noise [1,15,19,25] and byzantine-robust aggregation [1,
8]. We resolve the misunderstanding that the tight
coupling of benign and poisoned gradients brought
by these approaches does not necessarily make the
poisoning effect disappear.

λ-Coupling under Differential Privacy.
Differentially private federated learning [10, 17]
uses privacy parameter controlled noise to perturb
the gradients before performing server-side stochastic
gradient descent for participation-level differential
privacy guarantee. While the technique is not designed
to defend against poisoning attacks, the two key steps
effectively limit the poisoning effect. First, the local
parameter update shared for the differentially private
global aggregation is clipped to bound its sensitivity
S in terms of its l2 norm. Second, Gaussian noise
N (0, σ2S2) is added to the local parameter update for
sanitization, where σ is defined as the noise scale.

Table 3 shows the results of poisoning attacks under
different kinds of differential privacy noise parameter
settings. We make three observations: (1) a small
differential privacy noise would provide insufficient
protection against poisoning attacks. Under λ = 5%
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(a) 1 round at round 50. (b) 5 rounds, at 45-50 rounds. (c) 25 rounds, at 25-50 rounds. (d) 50 rounds, at 1-50 rounds

Figure 8: Comparisons of λ-Coupling using PCA, with different detection window sizes.

(a) 1 round at round 50. (b) 5 rounds, at 45-50 rounds. (c) 25 rounds, at 25-50 rounds. (d) 50 rounds, at 1-50 rounds

Figure 9: Comparisons of λ-Coupling using KMeans, with different detection window sizes.

λ no attack 1% 5% 10%

Fa
sh

io
n-

M
N

IS
T vanilla victim class 0.97 0.948 0.822 0.449

rest classes 0.884 0.883 0.883 0.881
σ=0.1, S=0.1 victim class 0.956 0.931 0.799 0.451

rest classes 0.876 0.876 0.877 0.876
σ=2, S=0.5 victim class 0.856 0.847 0.809 0.754

rest classes 0.782 0.782 0.782 0.782
σ=0.5, S=0.1 victim class 0.883 0.881 0.86 0.829

rest classes 0.834 0.834 0.834 0.833

C
IF

A
R

10

vanilla victim class 0.881 0.856 0.756 0.503
rest classes 0.726 0.726 0.721 0.720

σ=0.1, S=0.1 victim class 0.855 0.821 0.704 0.506
rest classes 0.722 0.723 0.723 0.723

σ=2, S=0.5 victim class 0.725 0.719 0.692 0.63
rest classes 0.609 0.608 0.608 0.609

σ=0.4, S=0.1 victim class 0.787 0.783 0.725 0.701
rest classes 0.681 0.682 0.682 0.683

L
FW

vanilla victim class 0.687 0.667 0.591 0.468
rest classes 0.696 0.696 0.692 0.689

σ=0.2, S=0.1 victim class 0.669 0.64 0.589 0.473
rest classes 0.679 0.679 0.68 0.679

σ=2, S=0.5 victim class 0.614 0.611 0.581 0.503
rest classes 0.637 0.637 0.637 0.637

σ=0.8, S=0.1 victim class 0.654 0.649 0.602 0.578
rest classes 0.662 0.662 0.661 0.661

Table 3: Impact of differential privacy noise on the targeted
dirty-label poisoning, measured in Micro f1.

malicious clients, poisoning attacks may cause about
10% to 18% accuracy loss on the source class being
poisoned, and when λ = 10%, the poisoning effect may
cause 21% to 52% accuracy lost on the victim source
class. Recall Section 4.2, we can observe λ-Coupling
when the injected noise is small but the poisoning effect
remains strong. By comparison, a large noise would
offer good protection but at the cost of accuracy. For
example, the f1 score of the rest classes other than the
victim class drops 10.2% on Fashion-MNIST, 11.7% on
CIFAR10, and 5.9% on LFW. (2) Empirically, we find
the differential privacy noise setting that best balance
poisoning protection and overall accuracy utility: σ=0.5,
S=0.1 for Fashion-MNIST, σ=0.4, S=0.1 for CIFAR10,

(a) PCA. (b) KMeans.

Figure 10: λ-Coupling under sufficient differential privacy
noise.

σ=0.8, S=0.1 for LFW. However, it has been challenging
to search for the right balance of noise to bring back
the gradient from poisoning. Yet the noise injection
is not too much to prevent federated learning from
converging to a reasonable accuracy point. This is
because such privacy noise setting is dataset-dependent
and model-dependent. As shown in Figure 10, tight
coupling is observed, and the malicious gradients are
blended with the benign gradients under PCA and
KMeans. While differential privacy noise encourages
tight coupling, the poisoning effect can be partially
neutralized but does not go away. (3) the additional
clipping operation in the differentially private training of
noise setting σ=2, S=0.5 makes the model slightly better
protected against the poisoning attacks when compared
to the random noise alone (recall Table 2).

While adding noise delays the poisoning effect,
we show that such mitigation is only helpful when
the number of adversaries is small. The perturbed
gradient must be an eϵ − 1 dominating strategy [18]
slightly deviated from the main-stream gradients to be
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λ no attack 20% 40% 60%

F.
-M

N
IS

T vanilla victim class 0.97 0.172 0 0
rest classes 0.884 0.882 0.882 0.882

σ=0.5, S=0.1 victim class 0.883 0.536 0.149 0
rest classes 0.834 0.829 0.828 0.831

C
IF

A
R

-1
0 vanilla victim class 0.881 0.104 0 0

rest classes 0.726 0.723 0.726 0.722
σ=0.4, S=0.1 victim class 0.787 0.441 0.112 0

rest classes 0.681 0.678 0.684 0.677

L
FW

vanilla victim class 0.687 0.035 0 0
rest classes 0.696 0.695 0.693 0.694

σ=0.8, S=0.1 victim class 0.654 0.371 0.076 0
rest classes 0.662 0.659 0.655 0.658

Table 4: Impact of differential privacy noise in Micro f1 when
the malicious clients dominate the training, α = 0.6.

protective. As shown in Table 4, when we set λ =
60%, the majority of the gradient updates on the source
victim class at each round would optimize towards the
poisoning target class. Then, differential privacy noise
would preserve the poisoning dominance.

λ-Coupling under Byzantine-Tolerant
Aggregation. Recent proposals for Byzantine-tolerant
distributed learning are also frequently studied in
the context of poisoning mitigation. We evaluate
λ-Coupling with a representative approach called
Krum [3]. Krum selects κ number of models that is
most similar to other models as the global models
for the next round by computing pairwise distances
between all models submitted in a given round and
summing up the Kt − κ − 2 closest distances for each
model. We consider the κ Byzantine participants the
same number as λ, which is the percentage of malicious
clients in training. We present the results in Table 5
and make four observations. (1) Krum can mitigate
the targeted poisoning attack when the percentage λ
of malicious clients is small. (2) When λ is as large
as 20% or 40%, models most similar to other models
contain both benign and malicious gradients. Thus,
even with tight coupling, the poisoning effect does not
go away. (3) Krum causes significant degradation in the
performance of the global model, even in the absence of
attacks. (4) Krum bring significant additional costs to
federated learning. The computation cost of finding the
most similar model in Krum brings the cost of federated
learning up to 3.52s per round for Fashion-MNIST,
8.33s for CIFAR10, and 7.52s for LFW.

6. Related Work and Contributions
Existing defense solutions against targeted

dirty-label poisoning assume that the federated
learning server is trusted and can detect anomalies by
separating poisoned contributions from non-poisoned
contributions. The defender can flag those poisoned
gradients and remove them. [23] directly apply PCA
on the local model updated collected over multiple
rounds. [24] perform spectral analysis with SVD to
generate two clusters. [22] identify the indicative

λ no attack 5% 10% 20% 40% cost

F.
-M

N
IS

T vanilla victim 0.97 0.822 0.449 0.172 0 1.96srest 0.884 0.883 0.881 0.882 0.882
Krum victim 0.925 0.903 0.874 0.669 0.105 3.52srest 0.813 0.813 0.813 0.812 0.812

C
IF

A
R

-1
0 vanilla victim 0.881 0.756 0.503 0.104 0 3.83srest 0.726 0.721 0.720 0.723 0.726

Krum victim 0.801 0.786 0.746 0.503 0.097 8.33srest 0.66 0.661 0.662 0.660 0.661

L
FW

vanilla victim 0.687 0.591 0.468 0.035 0 3.06srest 0.696 0.692 0.689 0.695 0.693
Krum victim 0.587 0.573 0.551 0.433 0.075 7.52srest 0.646 0.645 0.643 0.642 0.640

Table 5: Impact of byzantine-tolerant aggregation in Micro
f1. Cost measured by second per round.

Contribution 1
provided theoretical foundation of

the weak coupling effect
in data poisoing

Contribution 2 showed weak coupling effect could
fail as the attack indicator

Contribution 3
demonstrated tight coupling brought by

poisoning mitigation approaches may not
neutralize the poisoning effect

Table 6: Contributions andTakeaways

features for comparison by collecting masked user
features. These approaches are based on the theoretical
foundation studied in Section 3 but with different
representations on the eigenvalues of the covariance
of the gradient update [12, 26]. Another line of
work concerns differential privacy controlled noise
injection [1, 15, 19, 25]. However, it is challenging
to find the right amount of noise that can largely
mitigate the poisoning effect while maintaining the
good accuracy of the main task. Byzantine-robust
aggregation rules [3, 9, 11, 29] are another option for
targeted poisoning mitigation. [5] claims their approach
is robust against label-flipping attacks. However, they
require the service provider to collect a clean small
training dataset, which may incur privacy concerns
when the server is not trusted.

Our takeaway on the gradient coupling effect
of data poisoning attack in federated learning is
three-fold. We summarize the contributions in Table 6.
Our statistical characterization with strong empirical
evidence provides transformative enlightenment on
mitigation strategies towards effective countermeasures
against present and future data poisoning attacks in
federated learning.

7. Conclusion
We have presented the first study on the gradient

coupling effect of poisoning attacks in federated
learning. We formulated the λ-Coupling phenomenon
of poisoning attacks through formal analysis and
empirical evidence from extensive experimentation.
We showed that the distribution of benign gradients
from honest clients could be separable from the
distribution of poisoned gradients from compromised
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clients. Then we analyzed the four failure situations
where the λ-Coupling fail to serve as the poisoning
detection indicator: adaptive attacker, skewed client
selection, non-IID data distribution, and different
gradient window sizes. At last, we studied the
behavior of λ-Coupling under two poisoning mitigation
approaches: differential privacy-controlled noise and
byzantine-robust aggregation. We observed that the
resulting tight coupling under these defenses cannot
neutralize the poisoning effect. The two defense
methods also severely lower the performance of the
trained global model while at additional communication
and computation costs.
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