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Abstract

This paper considers the pricing of multi-product
request-for-quotes (RFQs) that are configured by a
buyer based on a large number of products or services
offered in a seller’s product catalog. The buyer
submits an RFQ for a desired bundle of line items in
a bid configuration to a seller. The seller reviews the
configuration and offers an approved price for each
line item in the bundle. The buyer can selectively
purchase any combination of products or services in
the bid configuration at the seller’s approved prices. In
addition to the line item pricing approach, we propose
a novel loss-leader model that uses machine learning
to calibrate the buyer’s preferences among correlated
line items, and dynamically optimizes the prices of
any configuration to maximize the seller’s expected
profit. The pricing strategies were implemented in
a business-to-business (B2B) sales environment with
a multinational technology company. Counterfactual
analysis shows that loss-leader pricing can generate
more than ten percent lift in gross profit over existing
pricing practices.

Keywords: Bundling, loss-leader pricing,
counterfactual analysis, data sparsity, win probability

1. Introduction

We analyze pricing strategies for request-for-quotes
(RFQs) for multi-product bid configurations, where a
buyer submits an RFQ for a desired personalized bundle
of products or services in the bid configuration to a
seller. The seller reviews the bid configuration and
offers a system-approved price for each item in the bid
configuration to the buyer. The buyer then decides
whether to purchase one or more line items in the

configuration at the price offered by the seller. The
process of determining an optimized price based on
estimated valuations and win probability assessments is
shown in Figure 1.

Artificial intelligence (AI) based pricing in
an environment of personalized bundles that are
dynamically configured from a large variety of products
or services presents challenges not found in single
commodity purchasing environments. This is not only
because the correlations of products within a bundle are
highly complex, but also because the configurations do
not have enough transaction repeats.

In an analysis conducted with a large technology
corporation, which provides customers with the option
to tailor a comprehensive IT solution from a vast array
of tens of thousands of products and services, it was
observed that the overwhelming majority of chosen
bundle configurations were distinct and one-of-a-kind.
Analysis of historical sales data also showed the many
bid configurations have a core product that plays a
leading role in a bid configuration. Such products can
be viewed as ”loss-leaders” where a discounted price
can significantly boost the buyer’s overall propensity to
purchase. As opposed to complete bid execution that
requires the buyer to purchase all line items in a bid
configuration (”all-or-nothing”), we analyze partial, or
unconstrained, bid execution that allows the buyer to
selectively purchase any number of line items from the
bid configuration at the approved price. The additional
flexibility offered with partial bid execution allows
customers to selectively purchase line items in the bid
configuration that are offered at the most attractive price,
a behavior called ”cherry-picking”, that may lead to
an actual decline in the seller’s revenue or profit. We
show that the loss-leader pricing strategy proposed in
this paper increases the seller’s expected revenue/profit,
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Figure 1. Process for determining the optimal price in response to a Request-For-Quote (RFQ).

all while anticipating the customer’s selective choices.
In this paper, we propose a general method to

identify loss-leader products in the aforementioned RFQ
setting that drive the customers’ purchase decisions,
estimate the self-price and cross-price elasticity through
machine learning, and effectively optimize the seller’s
pricing strategy that maximizes expected profit or
revenue. We develop win probability estimation models
that statistically compute the probability of winning a
bid configuration at a given set of line item prices,
and profit optimization models that compute the optimal
pricing strategy by balancing the likelihood of winning
each configuration at the prices of line items with the
profitability of selling each product at the given price.

The remainder of the paper is organized as follows:
Section 2 provides a review of the prior literature on
bundle pricing and delineates our contribution to the
existing literature. Section 3 analyzes the buyers’
purchase behavior of multi-product RFQs, and presents
a line-item pricing model to study their response to
a seller’s approved bid prices. More sophisticated
strategies that consider product correlations are studied
in Section 4. Given the tremendous computational
challenges of analyzing all possible demand correlations
among a large number of line items, we propose a
loss-leader model which is computationally efficient
and highly scaleable. Section 5 presents a case study
based on actual sales data collected from a large
technology corporation. Counterfactual comparisons
between loss-leader pricing and incumbent pricing
practices shows a significant profit increase from the loss
leader pricing strategy. Our findings are summarized in
Section 6.

2. Literature Review

Bundling, a strategy of pricing and selling product
combinations, has long been a topic of research in
the literature of economics, marketing, and operations
management. Typically, there are three types
of bundling strategies that offer different degrees
of purchase flexibility: seller-configured bundles,
customer-configured bundles (or personalized bundles)
with complete execution, and customer-configured
bundles with unconstrained execution.

A focus of previous research on seller-configured
bundling strategies was to identify consumer purchasing
behavior and cost structures under which bundling
is profitable. It was shown the driving factors for
bundling include complementarity and substitutability
of products, heterogeneity of consumers and marginal
cost. Prominent works in this literature include Adams
and Yellen (1976), McAfee et al. (1989), Hanson and
Martin (1999), Salinger (1995), Bakos and Brynjolfsson
(1999), Bakos and Brynjolfsson (2000), Venkatesh and
Kamakura (2003) and Stremersch and Tellis (2002).
Early case studies and implementations of bundling
were discussed in Eisenhardt (1989), Garfinkel et al.
(2006), Schoenherr and Mabert (2006), Ozkul et al.
(2012) and Li et al. (2015).

Computational complexity is a major concern while
applying these traditional bundling models to price a
large number of products for bundling in near real-time.
The computational time increases exponentially with the
number of combinations, particularly when the objective
function of profit or revenue maximization is not jointly
concave in their prices. Several papers have analyzed
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the performance of simple bundle policies to address this
challenge. Chu et al. (2011) showed that setting prices
that depend only on the size of bundle purchased tends to
be more profitable than offering the individual products
priced separately and tends to closely approximate the
profits from mixed bundling. Ma and Simchi-Levi
(2016) studied how to make bundling a more attractive
strategy than selling individual items when the items
have high production costs in a static model. They
proposed a new mechanism that sells all items in a single
bundle, but allows the customer to return any subset
of items for a refund equal to their total production
cost. In contrast, our model offers complete flexibility to
customers in the final execution by allowing a customer
to selectively purchase any subset of items from the
original configuration request. Abdallah et al. (2017)
considered a simple policy that prices a bundle based on
the size rather than the different possible combinations
of bundles. Abdallah (2018) analyzed situations where
a simple pure bundling mechanism in the presence of
non-negative marginal costs and correlated valuations
is preferable to more complicated mixed bundling
approached. Song and Xue (2021) analyzed the
bundling strategy for vertically differentiated bundles
and showed that the product inventory status and supply
chain agility also drive the seller’s bundling strategy.

The literature on personalized bundle pricing is
relatively scarce. The challenge with personalization is
that historical data for any given configuration is sparse
which limits the effectiveness of machine learning
in directly predicting customer preference or market
responses for a given bid configuration. Hitt and Chen
(1999) proposed a customized bundle pricing scheme
where customers can select a fixed number of goods for
a certain fixed price and compare it to other traditional
bundling approaches. Their focus is on bundle design
as their pricing is not really personalized to each bundle
configuration. Several subsequent works take a similar
approach, e.g., Wu et al. (2008), Jiang et al. (2011),
Basu and Vitharana (2011). In more recent practice,
configuration recommendation systems are designed
based on machine learning to meet customer’s demand
for personalization (Chowdhary et al., 2021).

Lastly, Xue et al. (2016) and Chu et al. (2021)
used a top-down and bottom-up method to analyze the
customer response to the bundle price of personalized
configurations based on sales data including over a
thousand products. The top-down method decomposes
the configurations into products and estimates the
market value of each item. These market values are
aggregated bottom-up to characterize the features of
each configuration. The procedure allows to cluster the
configurations into different segments and estimate the

customers’ purchase probability in each segment based
on the bundle price and configuration features, and
the optimal bundle price is calculated to maximize the
seller’s expect profit or revenue. However, this method
requires complete execution of the entire bundle.

To the best of our knowledge, this paper is the
first to propose a real-time strategy for loss-leader
pricing, allowing customers the flexibility to selectively
purchase products or services from their ’wish
list’ at seller’s approved prices. The proposed
approach optimizes pricing for individual line items by
considering the relationships between the loss-leading
items and the supplementary products or services within
the bid configuration. Simultaneously, it anticipates the
customer’s selective preferences and choices.

3. Customer Choice and Bid Execution

Consider an RFQ for a bid configuration consisting
of a core product or service and a set of secondary
products or services under an unconstrained execution
policy. We define a purchase option as a subset of line
items that can be purchased by the buyer from a given
configuration denoted by C.

We use discrete choice models to estimate the win
probability of a product, which is also the likelihood
of the buyer purchasing the product. We develop a set
of extended logit models based on the buyer utilities
for various purchase options, including the no-purchase
option. We model the buyer’s utility for a purchase
option, denoted by S ⊆ C, as a function of the
following attributes: approved price (pj), list price (p̄j)
and manufacturing or service cost (cj) for each line item
j in the configuration C. The ’competitive advantage’
of a line item can be defined as aj = p̄j/cj . Another
useful derived attribute of a line item is its contribution
ratio, defined as wj = cj/CC , or the weight of cost cj
relative to the total configuration cost CC =

∑
j∈C cj .

Next, we provide the notations for the consumer
choice model. The seller offers J line items to
customers, indexed by j ∈ J = {1, ...J}. Here
all vectors, expressed by boldface letters, are column
vectors with the same dimension as the corresponding
product set, for instance vJ = {vj}j∈J . We use vS
to denote a subvector of vJ whose component indices
are restricted to the subset S, for any S ⊆ J . The
seller offers the price pC for a configuration C ⊆ J .
Let qj(pC) be the seller’s win probability with respect to
product j in configuration C, which is the likelihood of a
customer purchasing product j at the price of pC , for any
product j ∈ C. These win probabilities are estimated
based on pj , p̄j , cj , wj , aj , etc., for any j ∈ C.

In the following, we describe three different
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choice models that characterize the customer’s purchase
behavior. We first describe a Line Item Choice (LIC)
model that ignores cross-item price correlations and
calibrates the win probability of each line item based on
its own-price effect. Next, we present a Whole Bundle
Choice (WBC) model and Loss Leader Choice (LLC)
model. Both models take into account correlations
between line items, and demonstrate how to estimate
their cross-price effects in a bid configuration. To learn
the consumer choice behavior, we formulate a buyer
utility function and calibrate the purchase probability
based on the utility. We use logit models as an example
to demonstrate the win probability estimation and price
optimization. The methods can be extended to other
discrete choice models.

3.1. Line Item Choice Model (LIC)

Here we assume that the execution of each line
item is independent of other line items in the bid
configuration with utility function Uj = Θj − γj1pj +
εj , for any customer buying product j. Here, Θj

summarizes the utility from all non-pricing related
factors, for example, Θj = γj2cj + γj3(p̄j − cj).
Here, we assume that the product value is positively
correlated to the manufacturing cost cj and list price
p̄j . The own-price effect is measured by γj1. Customer
heterogeneity is characterized by a random factor
εj , representing a buyer’s deviation from the average
perceived value.

In practice, it is difficult to estimate (γj1, γj2, ...),
if product j has sparse sales history. We therefore
group line items with similar characteristics to obtain
sufficient training data by clustering them based on
their features (e.g., server, memory, processor, hard
drive, on-site support, warranty etc.), and competitive
advantage (ratio of list price to cost aj), among
others. With respect to the customer response, further
segmentation is applied based on factors such as RFQ
size (total configuration revenue), customer incumbency
(e.g., acquisition, development, or retention account),
and business sector (financial services, automotove,
government, etc.). We assume that the coefficients
(γ1, γ2, ...) are the same over all products within a given
segment.

To consistently measure the utility of different
products in a segment, we normalize the utility function
Uj by the cost cj , and have

uj = θj − β1zj + ϵj = uj + ϵj . (1)

Here, zj = (pj − cj)/cj is the profit margin based
on cost. θj = β2 + β3aj is the normalized value
of the product, measuring the value created from each

dollar input to production. Intuitively, we can define
high-end products to be those with the highest θj (or
aj). Such normalizations allow us to group sales data
for similar line items into clusters, because it measures
their attributes based on a percentage value instead
of an absolute value. This significantly mitigates the
challenges associated with data sparsity in machine
learning. Normalization can also be applied to other
attributes such as list price p̄j when the variable cost cj
is equal to zero or is not well defined as is often the case
in the services sector.

Compared to other non-linear classifying machine
learning models such as the probit model that assumes
normal distributed errors, the logit model shows minor
difference in the probability estimation but significant
advantage in the price optimization, e.g., Agrawal and
Ferguson (2007). Hence, we also use the logit model
to study the customer choice based on the normalized
utility function as in (1).

Assuming ϵj satisfies the i.i.d. doubly exponential
distribution in each segment, a customer will purchase

product j with probability qj =
exp(uj)

exp(0)+exp(uj)
,

where the no-purchase option has zero utility. The
coefficients (β1, β2, β3) corresponding to (zj , wj , aj)
can be obtained as outputs of the logistic regression.
Now, the coefficients β can also be calibrated for a group
of products compared to the γj’s defined for each line
item. Therefore, it enables the regression model to use a
hierarchical classification tree to splits the data set into
clusters at different tiers (e.g., from product category to
product family to line item) consequently alleviating the
issue of data sparsity.

3.2. Whole Bundle Choice Model (WBC)

Next, we analyze the choice models for
unconstrained execution in the presence of
cross-product price correlations. Consider a buyer’s
utility for a configuration C, at the seller’s approved
prices pC . If the whole configuration C has been
executed, it provides a net utility UC = ΘC−γC1PC+εC ,
with ΘC =

∑
j∈C Θj .

Under complete execution, Xue et al. (2016)
proposed an approach to analyze the win probability
of such personalized bundles at a total price PC =∑

j∈C pj . Under unconstrained execution, however,
the buyer might purchase any subset of the whole
configuration, S ⊆ C, at the approved line item prices
(pC) rather than a single price (PC) of the entire bundle.
Ideally, we can evaluate the utility of each subset,
and estimate the corresponding coefficients such as ΘS
and γS1. These coefficients depend on the correlation
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between line items, for instance ΘS = g
(
{Θj}j∈C

)
.

With respect to the configurations that include a
core product, we impose the following assumption on
the correlation between the core product and secondary
products or services:
Assumption 1 For any configuration that consists of a
core product k ∈ K and secondary items Lk, consider
any combination S ⊆ C. We have ΘS = −∞, if k is not
in S , and ΘS =

∑
j∈S Θj , if k ∈ S.

I.e., we assume a strongly negative utility for purchasing
any subset that does not include a core product.

To enable the analysis on a variety of product
combinations, we normalize the utility function by the
total cost CC =

∑
j∈C cj . For any subset S including the

core product k, we have the following utility function:

uS = θS − β1

∑
j∈S

(pj − cj)/CC + ϵS , for k ∈ S. (2)

Here, θS = β2wS + β3wSaS , with CS =
∑

j∈S cj ,

wS = CS/CC and aS = P̄S/cS respectively.
Compared to the LIC model where the win/loss

of a line item is explicitly labeled, the win/loss of
a configuration cannot be simply defined in a binary
manner for RFQs where line products were selectively
purchased. There are two possible ways to label the
win/loss for a partially executed configuration.

Firstly, we can consider labeling a configuration C as
a win if any subset S ⊆ C of the original configuration
was eventually purchased by the customer. Accordingly,
label a configuration as a loss if no line item has been
purchased. Then we can use the method proposed by
Xue et al. (2016) and Chu et al. (2021) to estimate the
seller’s win probability. However, we may overestimate
the chance to win by ignoring the non-purchased items
j ∈ C/S in any partially executed RFQ. Moreover,
this approach can only optimize the total price of entire
configuration and not the price distribution for each line
item.

Secondly, we can consider all possible subsets
of each configuration, in which each meaningful
combination of products is seen as a ’purchase option’.
In this case, each purchase option has plenty of
sales data. However, such method will encounter
the curse of dimensionality when the number of line
products increases. Let F be the set of all the
possible product combinations corresponding to the
configuration C. Let FS be the set of all the possible
product combinations that contain S, for any subset
S ⊆ C. Particularly, let Fj = F{j} be the set of all
the possible product combinations that contain product
j. Then we have F{k,l} = Fk ∩ Fl. For example,

consider the configuration C = {1, 2, 3}. We have
F = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},
F1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, and F{1,2} =
{{1, 2}, {1, 2, 3}}.

Now we use these notations to analyze a
configuration that contains a core product indexed
by k and multiple accessories indexed by l ∈ L, and
have the win probability of product k:

qk = Pr(k ∈ S) =
∑

S∈Fk
exp(uS)

exp(0) +
∑

S∈Fk
exp(uS)

.

Also, we have the joint probability of purchasing core
product k together with some secondary product l:

qkl = Pr(k, l ∈ S) =
∑

S∈Fk∩Fl
exp(uS)

exp(0) +
∑

S∈Fk
exp(uS)

.

Similarly, we can define the win probability for all
product combinations.

A logit model works well when customers are
fully aware of each combination in their choice set.
Also, it is well-known that the IIA (independence of
irrelevant alternatives) assumption of the logit model
is difficult to satisfy in practice. Alternatives like
the nested-logit or mixed logit model can help in
this regard but unfortunately tend to increase the
computational complexity of both machine learning and
price optimization for large bids. Considering this,
the logit model was an acceptable tradeoff in the RFQ
pricing context.

Next, we propose a new method to overcome the
data sparsity in the analysis of product correlations,
especially for configurations that consist of one or more
core products and many secondary products or services.

3.3. Loss Leader Choice Model (LLC)

An LIC model ignores the price correlation
among products, whereas a WBC model exhaustively
considers all the possible correlations of product
prices in each configuration. The former has
the least computational challenges, but may yield
sub-optimal solutions. On the other hand, the latter
would theoretically provide optimal solutions, but any
real-time implementation is strongly impacted by data
availability and computational complexity. In this
section, we propose a new loss-leader model that detects
the most important pairwise correlations between a core
product and accessories.

Consider a basic configuration composed of a
core product, e.g., server, indexed by k and multiple
secondary products, or accessories, indexed by l ∈ L.
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In this setting it is reasonable to assume that the buyer
would not purchase the accessories in the absence of the
server, because their add-on value is completely tied to
the server purchase. Corresponding to Assumption 1,
we have
Assumption 2 Consumers will not buy any accessory
unless they buy the server in the configuration, i.e.,
Prob(l ∈ S|k /∈ S) = 0.
Any subset S ̸= ∅ of the initial configuration is
purchased if and only if the server is included, k ∈
S. The win probability Pr(S ̸= ∅) = qk. Let
qj|k = Pr(l ∈ S|k ∈ S) be the conditional
probability of purchasing accessory j given that the
customer purchased the server. We use a set of extended
logit models to calibrate the win probabilities. Again,
using the normalized price, or profit margin, zj as the
explanatory variable we have

qk(zk, zL) =
exp(θk − βkzk −

∑
j∈L βkjzj)

1 + exp(θk − βkzk −
∑

j∈L βkjzj)
,

qlk(zk, zL) =
exp(θl − βlkzk −

∑
j∈L βljzj)

1 + exp(θl − βlkzk −
∑

j∈L βljzj)
.

The computational complexity heavily depends on the
number of cross-price effects characterized in qk and
qlk. The following assumption effectively simplifies the
win-probability computations:

Assumption 3 Assume

H1 : qk depends on its own profit margin zk, but not
on the profit margin of its accessory, zL.

H2 : qlk depends on its own profit margin zl and the
server’s margin zk, but not on the profit margin of
the other accessory zL\{l}.

If H1 does not hold, the win probability of the server
depends on (zk, zJ ). If H2 does not hold, the win
probability of the accessory depends on the profit margin
of the other accessories. In the following, we explore
pricing optimization under hypotheses H1 and H2.

4. Optimal Pricing Strategy

First, we consider a line item pricing strategy (LIP)
focused on individual products where cross-price effects
in the customer’s choice are ignored. Then, a whole
bundle pricing (WBP) strategy is proposed to include
all possible product combinations and price correlations.
However, the computational time rapidly increases for
large-scale bid configurations. Thus, a loss leader
pricing (LLP) strategy, with favorable computational

efficiency, is applied to configurations that consist of a
core product and several accessories.

To develop an explicit formulation, we use the
logistic model to illustrate the pricing optimization.
For ease of notation, we drop the subscript “C” in
this section, since all the variables and coefficients are
defined in a configuration for the pricing optimization
of all products. Let G be the expected profit and R be
the expected revenue of a configuration C. We have

max
p

G(p) =
∑
j∈C

(pj − cj)qj(p) (3)

s.t. R(p) = p · q(p) ≥ R,

p̄ ≥ p ≥ p

Here R ≤ maxp R(p) must be a meaningful lower
bound on the expected revenue target. Moreover, there
can be some bounds on the pricing decisions. Typically,
we have the list price as the upper-bound and the cost as
the lower-bound.

4.1. Line Item Pricing (LIP)

Obtaining the optimal price based on the line item
choice model is a straightforward solution to any
configuration where the cross-price effects have been
ignored among all products. Thus, we have qj(p) =
qj(pj) as in (3), which means G(p) =

∑
j∈C(pj −

cj)qj(pj) =
∑

j∈C Gj(pj). To this end, maximizing
the total expected profit of a configuration is equivalent
to maximizing the expected profit of each line item
respectively, based on its self-price effect estimated in
the LIC model.

To solve the constrained optimization problem, we
employ a variable transformation, using the profit
margin zj as the explanatory variable in the win
probability instead of the price pj and using the purchase
probability qj as the decision variable instead of the
price pj . Since qj(zj) is an decreasing function, it
admits a monotone inverse function zj(qj) that we
use to revise the constrained maximization problem.
Thus, we have Gj(pj) = Gj(zj) = cjzjqj(zj) =
cjzj(qj)qj = Gj(qj), throughout the transformation.
Such transformation is particularly useful when the win
probability qj is characterized by a logit model. We have

max
qj

Gj(qj) = cjzj(qj)qj (4)

s.t. Rj(qj) = cj · (zj(qj) + 1) · qj ≥ Rj (5)
z̄j ≥ zj(qj) ≥ zj .

Let q◦j = argmax
qj

Gj(qj) and q̄◦j = argmax
qj

Rj(qj)

be the unconstrained profit maximizer and revenue
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maximizer respectively. Note, we have q◦j ≤ q̄◦j , and
Rj(qj) is increasing in 0 ≤ qj ≤ q̄◦j , which leads to an
inverse function Qj(Rj).

Proposition 1 The following properties hold for the
revised optimization problem as in (4).

(1) Gj(qj) is strictly concave in qj . It admits a unique
optimum solution q◦j = argmax

qj
Gj(qj);

(2) In the presence of the revenue constraint, the
optimal solution q∗j = max(q◦j , Qj(Rj));

(3) In the presence of the price bounds, the optimal
solution q∗j = min(qj(zj),max(q◦j , qj(z̄j)).

Proposition 1 shows that the logit model has
attractive properties that support real-world industrial
implementation. A similar optimization is applicable to
the probit model and other generalized choice models,
although a closed-form solution may not exist.

Accordingly, the computational complexity of
pricing optimization is linearly increasing in the number
of line items, denoted by O(n). To this end, the LIP
strategy can be used as a benchmark as well as a starting
point for finding more sophisticated pricing solutions.

4.2. Whole Bundle Pricing (WBP)

A whole bundle pricing model requires a large
volume of data that contains sufficient data samples
for each possible combination of products, which is
typically not satisfied in practice for a large product
assortment. Furthermore, it needs to estimate and
optimize for all possible demand interactions among n,
resulting in an exponential complexity of computation,
O(en). Given these limitations, WBP is ill-suited for
our RFQ application that requires near real-time pricing
for an incoming RFQ.

4.3. Loss Leader Pricing (LLP)

Unlike WBP, the loss leader model does not
significantly increase the computational time and has a
polynomial complexity, O(nc) to price n line items by
focusing on the most important product correlations in
the configuration. Thus it can price large configurations
selected from thousands of product catalog offerings.

The business application shown in Figure 1 requires
an RFQ to be priced on-the-fly, i.e., within 200-300ms.
To satisfy this practical requirement, we consider the
win probability expressed in the form of qk(zk) and
qlk(zk, zl) under H1 and H2 and optimize the product

prices of each configuration as follows:

G∗(zk, zL) = max
zk

(
ckzkqk +max

zL

∑
l∈L

(clzlqlk)

)
(6)

qk(zk) =
exp(θk − βkzk)

1 + exp(θk − βkzk)
,

qlk(zk, zl) =
exp(θl − βlkzk − βllzl)

1 + exp(θl − βlkzk − βllzl)
,∀l ∈ L.

With regard to qlk, it is common to assume the self-price
effect dominates the cross-price effect.
Assumption 4 We have |βkk| ≥ |βlk|.
Under this assumption, the following properties hold for
the total expected profit of each configuration.

Proposition 2 Under Assumption 4, we have:

(1) The win probability functions are convertible to
inverse functions, where we have a unique profit
margin function, zk(qk) and zl(qk, qlk), for l ∈ L.

(2) The total expected profit is jointly strictly concave
in qk and qlk, for ∀l ∈ L.

Accordingly, the profit margins can be expressed as the
function of win probabilities.

zk =

(
θk − ln(

qk
1− qk

)

)
/βkk,

zL = B−1

[
θL − βL,kzk − ln(

qlk
1− qlk

)l∈L

]
.

As long as Assumption 4 holds, we can use (qk,qL) as
the decision variables instead of profit margins (zk, zL).
Here B−1 is the inverse matrix of correlation coefficients
of all the accessories in each configuration. Although
we are able to explicitly characterize the objective
function, it still takes a considerable time to compute the
optimal prices for thousands of line items. The pricing
optimization can be further simplified under additional
assumptions.

Assume the conditional win probability ql|k(zl) of
accessory j given the configuration win only depends
on its own price, then we have qlk(zk, zl) = qk(zk) ×
ql|k(zl) and the total expected profit function (6) can be
further simplified as follows:

G∗ = max
zk

(
ckzk +

∑
l∈L

max
zl

(clzlql|k)

)
qk.

Also we assume the cross-price effect of the server on
the accessory l is much stronger than that of any of the
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other accessories, that is βkl ≫ βjl, and βll ≫ βjl, for
any j ∈ C \ {k}. Accordingly, we formulate the profit
margin as the function of win probabilities.

zk(qk) =

(
θk − ln(

qk
1− qk

)

)
/βkk, (7)

zl(qlk, qk) =

[
θl − βlkzk − ln(

qlk
1− qlk

)

]
/βll. (8)

The server’s profit margin has a one-to-one mapping
to its win probability as in (7), but it does not depend
on any accessories. Given the purchase probability
of a server qk, the optimal price margin z∗l (qk) can
be calculated for each accessory l by optimizing qlk.
The corresponding win probability is characterized as
q∗lk(qk). Meanwhile, an accessory’s profit margin (8)
can be characterized by the server’s profit margin (zk)
and a function of its own purchase probability (qlk). The
former is concave in qk whereas the latter is concave
in qlk. We have the optimal q∗lk(qk) monotone in qk,
then we have z∗l (qk) concave in qk, which is the win
probability of a server regardless of any purchase of
accessories. Therefore, the profit maximization can
be solved efficiently under Assumptions H1 and H2.
If these assumptions are relaxed, the computational
complexity will increase accordingly.

5. Counterfactual Analysis

The pricing models presented in the previous
sections were implemented for a large technology
corporation and deployed for general business and large
enterprise customers across several countries. The
data generation process was fully automated and all
the required information for pricing including win/loss
outcomes, product, customer, and bid attributes were
recorded for each RFQ. Additional features derived
from the raw data were generated and added to the data.
To illustrate the value that the business derived from the
new pricing models, we present a case study based on
1,133 RFQs that were configured from more than 200
product catalog offerings. RFQ data was collected over
a three-month period from direct ( 15%) and indirect
sales channels ( 85%). The accessories included in the
study consisted of memory, processors and hard drives.

An initial data exploration showed that 343 out of
the 1,133 RFQs included in the data set involved the
purchase of a core item (server). In instances where
a server was purchased, the win rate of accessories
reached 72.5%. In the 790 remaining cases where a
server was not bought, the success rate for accessories
was notably lower, standing at 8.1%. In other words,
customers that purchased a server that was quoted in

a bid configuration were 9 times more likely to also
purchase accessories. Table 1 displays the win rates
under specific conditions for memory, processors, and
hard disk drives. It distinguishes between RFQs that
included the acquisition of a server and those that did
not.

Product Category Server win Server loss
Memory 73.0% 7.1%
Processor 62.0% 3.1%
Hard disk drive 77.7% 11.2%

Table 1. Conditional win probabilities of accessories.

Next, we compare the optimal prices recommended
by the line-item pricing (LIP) and loss-leader pricing
(LIP) models by defining a ratio pLIP

j /pLLP
j for

line item j. A ratio greater than 1 denotes cases
where the LIP-recommended price is higher than the
LLP-recommended price.

Figure 2 depicts a histogram representing the price
ratio for all RFQs in the data set, categorized by
commodity. Under the LLP strategy, the loss-leader
items (i.e., server in this instance) were priced 0.5%
lower on average compared to the LIP strategy, in
particular in configurations with a high nominal bid
value. On the other hand, accessories were priced
between .7% and 4% higher under the LLP strategy.

To evaluate the influence of the proposed pricing
strategies on the achievable gross profit, we conduct
a counterfactual analysis following the approach
described in Xue et al. (2016) and Ye et al. (2018):

• Scenario 1: if the optimal price p∗k is greater than
or equal to the actual price pk, and pk resulted
in a win, the optimal price would have led to a

win with probability q(p∗
k)−ck)

qk(pk)
. This conditional

probability measures the odds of winning at
the optimal price p∗k, given that the approved
price resulted in a win. The incremental profit
pertaining to this scenario is ∆G1 = (p∗k −

ck)
q(p∗

k)
q(pk)

− (pk − ck).

• Scenario 2: if the optimal price p∗k is less than pk,
and pk led to a win, the optimal price is certainly
accepted by the buyer. However, the incremental
profit pertaining to this scenario is a net loss of
∆G2 = p∗k − pk < 0.

• Scenario 3: if the optimal price p∗k is greater or
equal pk, and pk yielded a loss, the higher optimal
price would also have resulted in a loss and the
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Figure 2. Frequency diagram of the ratio of LIP to LLP recommended prices for all commodities.

net profit gain pertaining to this scenario is zero,
∆G3 = 0.

• Scenario 4: if the optimal price p∗k is less than
pk, and pk resulted in a loss, the lower optimal
price would have converted the loss to a win

with conditional probability 1 − 1−qk(p
∗
k)

1−qk(pk)
. The

incremental profit pertaining to this scenario is

∆G4 =
(
1− 1−qk(p

∗
k)

1−qk(pk)

)
(p∗k − ck).

With this, the total incremental gross profit improvement
can be estimated as

∆G =
{
(p∗k − ck)

[qk(p∗k)
qk(pk)

− 1
]−

+ (p∗k − pk)
}
1w

+
{[

1− 1− qk(p
∗
k)

1− qk(pk)

]+
(p∗k − ck)

}
(1− 1w).

where [x]+ = max(x, 0) and [x]− = −min(x, 0).
The indicator function 1w is the indicator of a win at
the approved price. The findings of the counterfactual
analysis are summarized in Figure 3.

Figure 3. Counterfactual comparisons of gross profit

margins.

For comparison, we report the historical gross
profit that was measured from business-as-usual pricing
practice as a benchmark. Upon consolidating the
total gross profit gains across all product categories,
we observe that the LIP strategy increases the gross
profit margin from 17.7% as achieved by the incumbent

pricing strategy to 19.4% for a relative lift of 9.5
percent. Under the LLP strategy, the gross profit margin
increases even further to 20.1% for a relative lift of 13.6
percent over the benchmark.

6. Concluding Remarks

In this paper we described the challenges of the
pricing problem for multi-product request-for-quotes
(RFQs) and presented a novel loss-leader pricing model
that was deployed in production at a multi-national
technology corporation. The loss-leader model proves
especially valuable in scenarios where customized
bundles are tailored to individual buyer preferences,
with a focus on a core product. Offline counterfactual
evaluations showed that the proposed loss-leader pricing
model performs significantly better than the incumbent
pricing strategy at the company, and that it also
outperforms a direct line-item pricing strategy.

We illustrated the use of advanced bundle pricing
strategies in the context of manufacturing, but the
concepts and benefits apply equally to the services
sector. For instance, a bundle pricing strategy
in consumer-focused industries that involves offering
multiple products or services together as a package is
widely used to attract and retain customers, increase
sales, and maximize revenue. Customers with a
perceived value proposition can purchase a combination
of items at a lower price than if they were to buy
each item individually. This encourages consumers to
make larger purchases. Many businesses use bundle
pricing during holidays or special events to encourage
spending. Allowing customers to customize their
bundles by choosing from a selection of products or
services can further increase customer satisfaction and
engagement. Pricing bundles strategically can also play
on consumers’ psychological tendencies. For example,
offering three items in a bundle can make it seem like
a better deal than two. A data-driven pricing approach
as outlined in this paper allows companies to fine-tune
their bundle offerings for maximum effectiveness.
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