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Abstract 
Artificial Intelligence (AI) is becoming a crucial 

part of our lives. Although AI applications, such as 
facial recognition, autonomous driving and ChatGPT, 
can benefit different industries, users are more and 
more concerned about the ethical issues associated with 
AI systems. As a result, various ethics frameworks and 
standards have been proposed for regulating AI 
systems. Nevertheless, existing ethics frameworks and 
standards are hardly actionable or implementable for 
AI developers. To fill this gap, the current study 
proposes an actionable ethics-aware guideline for AI 
developers, as well as a set of quality metrics for ethical 
AI systems. Further, we implement the guideline using 
numerous AI predictive models constructed on a 
national big data set that estimates children’s risk of 
experiencing abuse and neglect in the United States. 
Evaluation results indicate that the proposed guideline 
can effectively enhance the quality of predictive models 
in utility, ethicality and cost dimensions. 

Keywords: Artificial Intelligence, machine learning, 
implementable ethical guideline, AI quality metrics, 
child abuse and neglect 

1. Introduction

Artificial Intelligence (AI) has increasingly
impacted many aspects of our lives in the recent decade. 
While we embrace AI, we are concerned about its 
ethical challenges, primarily how it impacts and harms 
marginalized communities (Noble, 2018). The research 
community has thus created various ethical AI 
frameworks that introduce ethical AI application 
criteria, such as fairness, transparency, and non-

maleficence. Nevertheless, almost all the existing 
frameworks are neither implementable nor evaluable, as 
they provide little actionable suggestions for AI 
developers on satisfying those ethical criteria (e.g., 
Floridi & Cowls, 2022; Jobin et al., 2019). This is 
particularly concerning when AI is developed to address 
real-world problems, such as identifying child abuse and 
neglect (CAN) in health settings (Landau et al., 2022), 
or by applying welfare data to develop predictive 
models assessing risk for CAN (Vaithianathan et al., 
2023). 

CAN is a public health concern that has reached 
epidemic proportions, with nearly 4 million referrals to 
child protection services (CPS) in 2021 (Bureau, 2023). 
CAN is defined as any action (physical, emotional, 
and/or sexual) taken or failure to act by a caregiver that 
results in harm, potential harm, or threat of harm to a 
child (Bureau, 2022). A lack of "gold standard" 
objective assessments makes it challenging to identify 
CAN in clinical practice (Kuruppu et al., 2023). 
Furthermore, there is an agreement among clinicians 
that existing racial and socioeconomic biases may 
directly impact clinicians reporting, identification, and 
intervention practices for CAN (Najdowski & 
Bernstein, 2018). For example, the likelihood of Black 
children being investigated by CPS by adulthood is 
twice that of white children (Kim et al., 2017). These 
disproportionate rates have raised questions about 
reimagining social and child support systems and how 
CAN is defined in the United States (Dettlaff et al., 
2020). In recent years, the widespread adoption of 
digital medical and welfare data has led to the 
development of AI tools aiming to identify CAN. These 
tools mainly use supervised machine learning methods 
to predict children’s risk of experiencing various types 
of CAN. Prediction results can assist CPS in planning 
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the actions to take for the children at risk. Studying the 
prediction results, policy makers and researchers can 
also develop insights in the patterns of CAN at a 
location in advance, facilitating the production of timely 
child protection policies and research (Han et al., 2021; 
Negriff et al., 2023). Despite these innovations, there 
remains a gap in implementing ethical standards that do 
not cause further harm or exacerbate biases (e.g., racial, 
socioeconomic). 

In this paper, we extend the idea of adaptive 
machine learning system by (Han et al., 2021) and 
propose a guideline for ethical AI development which 
consists of implementable recommendations for AI 
developers. We also develop a set of quality metrics 
evaluating the utility, ethicality and cost of AI systems. 
Further, we conduct a comprehensive evaluation using 
numerous AI predictive models trained on a national big 
data set, the National Child Abuse and Neglect Data 
System (NCANDS) (Han et al., 2021; Kim et al., 2017), 
that estimates children's risk of experiencing recurrence 
of abuse and neglect in the United States. Evaluation 
results indicated that the recommendations in our 
guideline could effectively enhance the quality of the 
predictive models in the above three dimensions. 

2. Literature review and theoretical 
foundation 

2.1. Ethics frameworks and guidelines for AI 

Prior studies have proposed many ethics 
frameworks, guidelines, standards, and principles for AI 
systems and their development. In this paper, we denote 
them uniformly as AI ethical frameworks. Jobin et al., 
(2019) provided an overview of the global landscape of 
AI ethics guidelines by analyzing 84 documents from 
international companies, organizations, and 
governments and identified 11 common concerns. On 
top of the prevalence list are transparency (including 
explainability and interpretability): understanding how 
decisions are made by individuals; justice & fairness 
(including equality, (non-)bias): not perpetuating or 
amplifying existing biases and inequalities; non-
maleficence (including security and integrity): not 
causing harm or negative effects to individuals, society, 
or the environment. Floridi and Cowls (2022) added 
autonomy to the list above as “respect(ing) the 
autonomy of individuals and allow(ing) them to make 
informed decisions”. 

There are also AI regulations for auditing AI 
systems proposed by different countries, such as The AI 
and Data Act (AIDA) (Beardwood, 2023) in Canada, AI 
HLEG’s Ethics Guidance for Trustworthy AI in Europe 
(Trustworthy AI, 2019), and NIST AI Risk Management 

Framework (RMF) (Tabassi, 2023), The Organization 
for Economic Cooperation and Development (OECD) 
AI recommendation (OECD AI Principles Overview, 
2019), and Executive Order (EO) 13960 in the US. More 
broadly, the European-sourced Ethics Guidelines for 
Trustworthy AI (Trustworthy AI, 2019) promotes a 
human-centric approach to AI and prioritizes 
lawfulness, ethicality, robustness/safety, human 
oversight, privacy, and data governance, among others, 
as the principles for trustworthy AI. These concerns are 
echoed by other agencies. 

Nevertheless, it has been noted that the existing 
"high-level" ethical frameworks lack "substantive 
ethical analysis and adequate implementation 
strategies" (Jobin et al., 2019), and that they often lack 
"common aims and fiduciary duties, professional 
history and norms, proven methods to translate 
principles into practice, and robust legal and 
professional accountability mechanisms" (Mittelstadt, 
2019). It is argued that In-depth technical instructions 
should accompany normative AI ethics guidelines 
(Hagendorff, 2020). 

2.2. Measurement of AI quality 

So far, little work has been done to define and 
measure the quality of AI systems in general. However, 
specific aspects of AI quality have been explored, such 
as machine learning (ML) models’ prediction 
performance (Williams et al., 2006), their cost (Gómez-
Carmona et al., 2020), and their ethical properties such 
as fairness (Grgić-Hlača et al., 2018; Mehrabi et al., 
2021) and explainability (Burkart & Huber, 2021). 

Accordingly, numerous metrics measuring specific 
aspects of AI quality have been proposed, such as the 
various metrics measuring the prediction performance 
of ML algorithms (Tosun & Bener, 2009; Williams et 
al., 2006), the output quality of language models (Das & 
Verma, 2020), and explainability of ML models 
(Angelov et al., 2021; Burkart & Huber, 2021). 

Based on the analysis above we identified two 
major gaps in research. First, the existing AI ethical 
frameworks lack actionable and implementable guides 
for developers. Second, a comprehensive, multi-
dimensional metrics system for measuring the quality of 
AI systems is still missing. This study addresses these 
gaps and makes four contributions to the literature. First, 
we propose a novel hierarchy of metrics that measures 
the quality of AI systems in three major dimensions--
their utility, ethicality and cost. Second, based on the AI 
quality metrics, we propose an innovative AI 
development guideline consisting of recommendations 
for AI developers, helping them develop AI systems of 
desired quality in the three dimensions above. The 
guideline is implementable, actionable and evaluable. 
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Third, we propose a novel, ethics-aware software 
framework for automated AI development satisfying 
user-desired quality goals. Finally, we prototype and 
evaluate the guideline and software framework. To our 
knowledge, this study is the first to empirically analyze 
the impact of development decisions on AI systems’ 
ethicality. 

3. Guideline for Developing Ethical AI 
Systems 

3.1. Ethics-aware metrics of AI quality 

We propose that the overall quality of an AI system 
can be measured by three metrics--utility, ethicality and 
cost. This study focuses on measuring the quality of ML 
predictive models. 

3.1.1. Utility. On the basis of the utility of machine 
learning models (Zhang et al., 2020), we define the 
utility of an AI system as the degree of help or benefit it 
offers its stakeholders. In the case of ML predictive 
models, for example, a model has higher utility if it can 
make more correct predictions in any class. Decrease in 
utility may be caused by model underfitting or decrease 
in accuracy. 

Equation 1 states that the utility score, 𝑈𝑈 , is the 
average of 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (also called sensitivity or true positive 
rate) and 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠  (also called selectivity or true 
negative rate). They are popular metrics measuring a 
predictive model’s capability to identify      positive and 
negative cases correctly. The purpose of incorporating 
recall and specificity is to allow the utility score to 
reflect both capabilities of AI systems. 

 𝑈𝑈 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠�������������������������� (1) 
3.1.2. Ethicality. We define the ethicality of an AI 

system as how much it can satisfy standard ethical 
criteria, such as fairness, explainability, beneficence and 
non-maleficence (Jobin et al., 2019). While there are 
many ethical criteria proposed in different AI ethical 
frameworks, fairness and explainability have been 
commonly recognized as among the main ethical 
concerns of AI systems (e.g., Floridi & Cowls, 2022; 
Jobin et al., 2019). Accordingly, we propose that the 
ethicality score of an AI system is mean of its fairness 
score, 𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟, and explainability score, 𝑟𝑟𝑒𝑒𝑠𝑠 (see Equation 
2). All variables in the equation are normalized into real 
numbers between 0 and 1. 

 𝐸𝐸 = 𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟 + 𝑟𝑟𝑒𝑒𝑠𝑠�������������� (2) 
The fairness score, 𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟 , measures the group 

fairness of an AI system, namely, if the system delivers 
the same performance for different groups of its data 
instances. A data instance can be a human subject, such 
as a victim of a CAN incident. Groups of instances can 
be age groups or people of different income levels. 

Technically, group fairness for a ML predictive 
model is defined as follows: A model is considered fair 
if the probability of a data instance “in the positive class 
being correctly assigned a positive outcome” and the 
probability of a data instance “in a negative class being 
incorrectly assigned a positive outcome” are the same 
between any groups of instances (Mehrabi et al., 2021). 
This type of fairness is also called the equalized odds 
status (Mehrabi et al., 2021). Quantitatively, a predictive 
model with group fairness should deliver an equal true 
positive rate (also called recall or sensitivity) and equal 
false positive rate (also called fall-out) for all the groups 
(Mehrabi et al., 2021). Following the above description 
of fairness, we propose the function of fairness score in 
Equation 3: 

 𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟 = 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝚤𝚤−1 + 𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹𝚤𝚤−1������������������������� (3) 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 is the recall of the instance group 𝑠𝑠. 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 

is the standard deviation between recalls of all the 
groups, which represents the degree of spread of group 
recalls. Thus, the multiplicative inverse of the standard 
deviation, 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

−1 , measures the closeness of the 
group recalls. Similarly, 𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖

−1 measures the closeness 
of different groups’ false positive rates. All the variables 
in Equation 6 are normalized into real numbers between 
0 and 1. 

𝑟𝑟𝑒𝑒𝑠𝑠 in Equation 2, the explainability score of an AI 
system, measures the possibility and difficulty of 
explaining the reason for the AI’s behavior, to gain trust 
of users, and to produce insights about the causes of the 
AI’s prediction (Gilpin et al., 2018). As a crucial part of 
AI ethics, explainability is essential whenever a 
predictive model “needs to be validated before it can be 
implemented and deployed.” (Burkart & Huber, 2021) 
It is also pointed out that “domains that demand 
explainability are characterized by making critical 
decisions that involve, for example, a human life." 
(Burkart & Huber, 2021) In our study, child risk 
estimation is among such domains. 

In our study, 𝑟𝑟𝑒𝑒𝑠𝑠 refers to the quality score of Local 
Interpretable Model-Agnostic Explanations (LIME) 
(Ribeiro et al., 2016), a classic explanation for ML 
models, provided in the AI Explainability 360 library. 

3.1.3. Cost. Based on the concept of computational 
cost (Justus et al., 2018), we define “cost” of an AI 
system as the amount of resources consumed when 
operating the system. These resources are critical 
components of scalability and implementability of the 
system. The most common types of resource 
consumption considered in AI and advanced computing 
include the consumption of time, computational 
resources, and energy (Van Wynsberghe, 2021). Hence, 
we propose that the cost score of an AI system, 𝐶𝐶 , 
consists of the mean of the costs in time ( 𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟 ), 
computation resources (𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐), and energy (𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒), as 
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shown in Equation 4. All variables are normalized into 
real numbers between 0 and 1. 

 𝐶𝐶 = 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 + 𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐 + 𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒��������������������������� (4) 
𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑟𝑟  is the number of nanoseconds spent in 

constructing the AI system, such as training and 
evaluating a ML predictive model. 

𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐 is further decomposed into the consumption 
of three major types of computing resources in a non-
GPU environment: CPU, memory and disks (Equation 
5). 𝑢𝑢𝐶𝐶𝐹𝐹𝐶𝐶 is the average CPU utilization as a percentage. 
𝑢𝑢𝑡𝑡𝑟𝑟𝑡𝑡 is the average size of data (measured in bytes) 
stored in memory. 𝑢𝑢𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  is the total size of data 
(measured in bytes) read from and written to local disks. 
They were measured using the psutil library in Python 
and normalized between 0 and 1. 

𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑐𝑐 = 𝑢𝑢𝐶𝐶𝐹𝐹𝐶𝐶 + 𝑢𝑢𝑡𝑡𝑟𝑟𝑡𝑡 + 𝑢𝑢𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑��������������������������� (5) 
Finally, 𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒  in Equation 4, the score of energy 

cost, is expressed as the normalized sum of energy 
consumed by CPU and memory (see Equation 6). These 
are the major energy sources considered by prior studies 
in non-GPU, single computer environments (Prieto et 
al., 2022). 𝑟𝑟𝐶𝐶𝐹𝐹𝐶𝐶  and 𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡  are provided in Joules 
measured using the software package Intel Power 
Gadget 3.6. 

𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 = 𝑟𝑟𝐶𝐶𝐹𝐹𝐶𝐶 + 𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡 (6) 

3.2. Ethics-aware AI development guideline 

We propose an ethics-aware guideline for AI 
developers. The guideline consists of five 
recommendations which help developers construct AI 
systems with desired quality. The recommendations 
have covered the three major components of any AI 
system, including its input (i.e., data), procedure (i.e., 
algorithm) and output (i.e., result). Each 
recommendation addresses a unique aspect of AI 
development known to be able to influence the quality 
of AI systems substantially. Built upon the AI quality 
metrics above, all recommendations aim to optimize AI 
systems’ utility, ethicality and/or cost. 

3.2.1. Recommendation I. Data 
Representativeness. One of the major factors that could 
affect AI systems’ ethicality, especially fairness, is data 
unrepresentativeness (Nargesian et al., 2021). Data 
provided for training and testing AI systems, such as 
ML predictive models, are typically      samples of 
certain populations. A population might be 
underrepresented or overrepresented in data samples for 
various reasons, such as technical errors, bias in data 
collection, or an ill-design of the sampling process 
(Kountur, 2011). 

Unrepresentativeness of data samples can cause the 
subsequent predictive models to deliver disparate results 
for data instances from different populations, posing 

many technical, socio-economical, and ethical 
challenges in different fields, such as medicine (Mac 
Namee et al., 2002) and finance (Fuster et al., 2022). As 
a result, the ethicality and fairness of models might be 
affected. The most popular method to resolve data 
unrepresentativeness during AI development is over-
/under-sampling the data collection to adjust data 
prevalence of unrepresented groups (Bilheimer & Klein, 
2010). 

Recommendation I. Data Representativeness – 
Developers need to resolve data unrepresentativeness 
using proper methods, such as over/under-sampling 
certain groups, for improved utility, ethicality and cost. 

3.2.2. Recommendation II. Data Integrity. Data 
integrity refers to the accuracy, completeness, and 
quality of data or the absence of improper modification 
(Sandhu, 1993). Integrity of the data used in ML 
processes significantly impacts output models' quality 
(Fujii et al., 2020). Meanwhile, the enhancement of data 
integrity increases the costs of data preparation, 
including the costs of data collection, data validation, 
and data cleaning (Ding et al., 2019). Classic methods 
for managing data integrity include data cleaning and 
verification, among others. 

Recommendation II. Data Integrity – Developers 
need to control integrity of data using proper methods, 
such as data cleaning and verification, for improved 
utility, ethicality and cost. 

3.2.3. Recommendation III. Feature Selection. 
Feature selection is a crucial part of AI development. In 
this process, a subset of features are discovered, which 
allow the AI system to achieve the desired result (Li et 
al., 2017). 

In the utility dimension, feature selection plays an 
essential role, such as improving the performance of 
predictive models (Li et al., 2017). In the ethicality 
dimension, feature selection impacts ML models’ 
fairness (Grgić-Hlača et al., 2018) and explainability 
(Marcílio & Eler, 2020). In the cost dimension, feature 
selection is crucial for reducing computational costs (Li 
et al., 2017) of AI development and operation. Popular 
classes of feature selection methods include filters, 
wrappers, and embedded selection (Li et al., 2017). 

Recommendation III. Feature Selection – 
Developers need to select a proper set of features using 
techniques, such as filters, wrappers or embedded 
methods, for improved utility, ethicality and cost. 

3.2.4. Recommendation IV. Algorithm Selection 
and Configuration. An AI system's functionality is 
realized by its decision algorithms. Two activities 
associated with the algorithms can impact the quality of 
AI systems significantly, the algorithm selection and 
algorithm configuration. Algorithm selection refers to 
the discovery of proper algorithms which deliver desired 
results. Algorithm configuration, also called 
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hyperparameter tuning or optimization, refers to 
configuring an algorithm's parameters toward the 
desired result. 

Algorithm selection and configuration can 
influence the performance (e.g., Williams et al., 2006), 
fairness (Pessach & Shmueli, 2020), explainability 
(Angelov et al., 2021), and computational cost (Gómez-
Carmona et al., 2020) of ML predictive models. 

Recommendation IV. Algorithm Selection and 
Configuration – Developers need to select proper 
algorithms and configure them appropriately for 
improved utility, ethicality and cost. 

3.2.5. Recommendation V. Result 
Transformation. We define result transformation as a 
two-stage process: (1) raw computational results of the 
decision algorithms are converted into information the 
user can understand and manage; (2) the user makes 
decisions and performs actions in real-world practice 
according to the result of (1). 

While the second stage is typically beyond the 
scope of AI development and thus not considered in the 
recommendation, the first stage is necessary in many 
scenarios. For example, the classification algorithm 
could output risk scores in a continuous space, such as 
0.85. However, the user could only manage categorical 
information, such as “high”, “low”, “positive” and 
“negative”. In another example, the algorithm could 
output price values between $500 to $10,000. But the 
user could only manage a price indicator between 0 and 
1. In scenarios like these, AI developers need to decide 
how to translate algorithm output for the user properly. 
Different translations can heavily impact the 
performance (and thus utility) of the AI system (Tosun 
& Bener, 2009). 

Recommendation V. Result Transformation - 
Developers need to transform algorithm results into 
proper information for the user for improved utility, 
ethicality and cost. 

3.3. Ethics-aware AI development framework  

We propose a software framework that develops AI 
systems autonomously following the AI development 
guideline and end-user’s requirements. The framework 
extends the adaptive machine learning system proposed 
by (Han et al., 2021). 

First, as shown in Figure 1, the framework 
translates each recommendation in the guideline into a 
set of AI model specifications (details of the translation 
of each recommendation are provided in Section 4.2.). 
Model specifications from all the recommendations 
form a space of model specifications called the Trial 
Model Space. 

Then, the optimal model discovery process starts, 
where (1) Trial Model Builder selects a different model 

specification from the Trial Model Space and trains an 
AI model, called trial model, following the specification 
using a small sample of the data; (2) Model Evaluator 
evaluates the trial model for its utility, ethicality and 
cost. These two steps are typically executed iteratively 
multiple times resulting in a part of the Trial Model 
Space being evaluated. The discovery process 
terminates when a trial model, called the optimal trial 
model, has been evaluated (or discovered) which 
satisfies the end-user’s requirements about model 
utility, ethicality and cost. Finally, the model 
specification of the optimal trial model is taken to the 
Full Model Builder and trained into the final, full model 
using the full data ready for real-world deployment. 

Thanks to the algorithmically efficient sizes of the 
data samples used in step (1), the optimal model 
discovery process is fast and thus can be repeated many 
times as an experiment in each development cycle. 
Furthermore, selection of the model specification to be 
evaluated in (1) can be guided by an intelligent 
algorithm, such as an instance of heuristic search or 
reinforcement learning in order to minimize the length 
of the discovery process and maximize the quality of the 
full model. 

 
Figure 1. AI Development Framework 

4. Implementation and evaluation 

4.1. Settings of implementation and evaluation 

4.1.1. Settings and environment. In this study, the 
AI development framework has been prototyped in the 
way that (1) the guideline with all the recommendations 
were implemented; (2) all the possible trial models were 
trained and evaluated instead of discovering the optimal 
trial model. Implementation and evaluation results are 
presented to demonstrate (1) how applying the guideline 
recommendations in AI development would potentially 
impact the quality of AI systems regarding their utility, 
ethicality and cost, and (2) the diverse effects of the 
same recommendation executed in different ways. 

All the “models” mentioned in Section 4.2 refer to 
trial models in the AI development framework. Each 
trial model was trained and evaluated on two random 
samples from the full data of N=1,000. Each data point 
presented in the figures is an average of measurements 
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from five identical trial models constructed on different 
data samples. 

All implementation and evaluation were conducted 
in Python v3.11.1. All ML components were built using 
scikit-learn v1.1.3. Evaluation of the prototype and 
guideline was performed on a Dell computer with 16 GB 
RAM and 12th Gen Intel i7 CPU (14 Cores) at 2300 
Mhz. The operating system is Windows 11 Pro. No GPU 
or virtual machines were employed. 

4.1.2. Real-world problem and data. The 
guideline was implemented to address a crucial social-
technological problem, predicting the recurrence of 
child abuse and neglect (RCAN) in the United States. A 
vast national data set, the National Child Abuse and 
Neglect Data System (NCANDS) (Han et al., 2021; Kim 
et al., 2017), is available, which includes case reports of 
CAN incidents since 2003. In the evaluation, the 
framework prototype was used to develop predictive 
ML models that predict the risk of victims (namely, 
children who have experienced CAN and been included 
in the data set) to experience RCAN, namely, further 
incidents, within 24 months after their initial incidents. 
The problem was implemented as a supervised 
classification with two classes (True – victim will 
experience RCAN, False – will not). 

The data resampled, class-rebalanced, cleaned and 
used in the evaluation was a portion of the NCANDS 
data from 2011 to 2013 (N=583,938). We included 20 
features presenting information in three areas: (1) victim 
demographics (gender, race, age, etc.); (2) family 
information (financial difficulty, caretaker suffering 
from alcohol, etc.); (3) incident information (victim with 
prior cases, source of the report, type of abuse and 
neglect, etc.). 

4.2. Evaluation results 

Each of the subsections below describes how a 
recommendation was translated into trial models and 
evaluated in the implementation. 

4.2.1. Recommendation I. Data 
Representativeness. We examined the variable 
“Victim Has Prior Case” to explore the data set between 
children with prior cases and children with no prior 
cases of abuse or neglect at CPS. Five data samples were 
created, each assigned a different set of group weights. 
The group weights are children with prior cases vs 
without prior cases at 1:10, 1:5, 1:1, 5:1 and 10:1 (see 
Figure 2). Moreover, a data sample (denoted as None) 
without group weights was created, representing the 
original data distribution among children with or 
without prior cases. Finally, six trial models were 
trained and evaluated on these data samples. 

Evaluation results presented in Figure 2 
demonstrate how applying Recommendation I impacts 

the quality of AI systems. Figure 2a indicates that 
applying no group weight (None) outperforms any 
group weights on the model’s utility (outperforming by 
37.3% to 40.5%) and ethicality (by 12.5% to 31.9%). By 
contrast, applying no group weight incurs a higher cost 
than three of the group weights, including 1:10, 5:1 and 
10:1 (higher by 6.8% to 22.5%). This result implies that 
applying a group weight may not help improve the 
models’ utility or ethicality however potentially reduces 
models’ cost. 

 
Figure 2. Impact of data representativeness 
Breaking down the utility metric (Figure 2b), we 

see that applying any group weight would result in 
almost equally low recall and specificity. This means 
using a group weight would deduct the models’ 
capability in detecting positive (victims with risk of 
being revictimized) and negative (victims without risk) 
instances. In the ethicality dimension (Figure 2c), the 
ethicality behavior of the models is influenced by their 
fairness more than by explainability. In the cost 
dimension (Figure 2d), the cost reduction of applying 
certain group weights resulted mainly from the decrease 
in computational resource consumption. 

4.2.2. Recommendation II. Data Integrity. First, 
10 data samples were created with different proportions 
of data replaced by random errors. As a result, these 
samples contain an increasing proportion of valid 
(namely, non-error) data, ranging from 10% to 100%, 
representing an increasing degree of data integrity. 
Then, a model was constructed on each data sample. 

Figure 3a suggests that maintaining very low (10% 
and 20%) or very high (90% and 100%) data integrity 
potentially affects models’ utility and ethicality. 
Meanwhile, increasing data integrity reduces models’ 
cost monotonously. 

Further, we can see in Figure 3b to Figure 3d that 
the top-level metrics (utility, ethicality and cost) behave 
similarly to their low-level constituent metrics, and that 
different low-level metrics in the same group also 
behave similarly. Therefore, the ups and downs in the 
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top-level metrics resulted from the changes in multiple 
low-level metrics. 

 
Figure 3. Impact of data integrity 

4.2.3. Recommendation III. Feature Selection. 
As shown in Figure 4, five data samples were created, 
each with an increasing number of features selected and 
maintained, ranging from 4 (meaning 20% of features 
selected) to 20 (meaning all features selected). Each of 
these feature sets was selected using one of the most 
popular feature selection methods, the filter-based 
method, which selects the most important features based 
on a user-specified importance score (Ambusaidi et al., 
2016). Following prior studies (e.g., Khandezamin et al., 
2020; Thakkar & Lohiya, 2021), we employed the 
coefficients of multiple logistic regression as the 
importance scores for the features. In this scenario, the 
point at 8, for example, represents selecting eight 
features with the highest absolute values of their 
regression coefficients. 

 
Figure 4. Impact of feature selection 

We did not adopt the other major feature selection 
method, the wrapper method, for its potentially higher 
computational cost due to the invocation of model 

training when evaluating each candidate feature set (Li 
et al., 2017). The wrapper method would slow down the 
optimal trial model discovery in our AI development 
framework (see Section 3.3), making the discovery 
process impossible to be executed easily and frequently 
as an experiment in a development cycle. The embedded 
method was not adopted either because it requires 
developing a unique feature selection process specific to 
the choice of the prediction algorithm selection (Li et 
al., 2017). Since our AI development framework is 
expected to accept a wide range of prediction 
algorithms, the embedded method would increase the 
development cost hugely. 

Figure 4a suggests that, in general, selecting more 
features could increase models’ utility and ethicality as 
well their cost. In the utility dimension (Figure 4b), 
selecting more features improves both recall and 
specificity, namely, models’ capabilities of detecting 
positive and negative instances. In the ethicality 
dimension (Figure 4c), selecting more features only 
benefits model fairness, not explainability. In the cost 
dimension (Figure 4d), the growth of cost can be more 
attributed to the growing consumption of computational 
resources and energy as the feature count increases. 

4.2.4. Recommendation IV. Algorithm Selection 
and Configuration. Five models were constructed with 
supervised ML algorithms commonly applied in many 
fields (Jiang et al., 2020), including Artificial Neural 
Network (ANN), Gradient Boosting (GB), Logistic 
Regression (LR), Random Forest (RF) and Support 
Vector Machine (SVM) (see Figure5). Their 
hyperparameters were determined through a classic grid 
search with five-fold cross validation maximizing the 
utility score. 

 
Figure 5. Impact of algorithm selection and 

configuration 
We can see in Figure 5a that these algorithms have 

a diverse impact on models’ utility, ethicality and cost. 
Among them, the ensemble algorithms, GB and RF, 
outperformed the others on utility (outperforming by 
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5.5% to 70.8%) and ethicality (by 1.6% to 22.6%). 
However, RF also incurred the maximum cost. 

In the utility dimension (Figure 5b), algorithms tend 
to have the same effect on recall and specificity, 
resulting in the same pattern in these two metrics. 
However, in the ethicality dimension (Figure 5c), some 
algorithms have opposite effects on fairness and 
explainability, such as RF (high in fairness but low in 
explainability) and LR (low fairness, high 
explainability). In the cost dimension (Figure 5d), 
algorithms pose opposite effects between timing/energy 
cost and cost of computational resources. For example, 
algorithms of the highest timing/energy cost, RF and 
SVM, present the lowest cost of computational 
resources. 

4.2.5. Recommendation V. Result 
Transformation. We chose to optimize models’ result 
transformation by tuning their decision threshold. Five 
models were constructed with an increasing decision 
threshold, ranging from 0.1 to 0.9 (see Figure 6). A 
decision threshold of 0.1, for example, offers the highest 
chance of making positive predictions. It means that 
data instances estimated to have a higher than 0.1 
likelihood to be positive will be predicted positive. 

It can be seen in Figure 6a that tuning the decision 
threshold could pose opposite, close-linear impacts on 
models’ utility and ethicality. A decision threshold of 
0.5 results in the maximum of utility and minimum of 
ethicality at the same time. Meanwhile, higher threshold 
values (meaning higher difficulty for positive 
prediction) tend to introduce higher costs. 

 
Figure 6. Impact of result transformation 

In the utility dimension (Figure 6b), increase of 
decision threshold leads to a decline in models’ recall or 
capability of making (correct) positive predictions. 
Simultaneously, it also results in a rise of models’ 
specificity or capability of making (correct) negative 
predictions. Both effects contribute to the roof-shape 
pattern of the utility score. 

In the ethicality dimension (Figure 6c), decision 
thresholds only impact models’ fairness, not 

explainability. Using either an extremely high or low 
threshold would improve fairness.  Finally, in the cost 
dimension (Figure 6d), using the lowest threshold (0.1) 
minimizes models’ costs in time, computational 
resources and energy. 

5. Discussion and implication 

Results of the evaluation have revealed several 
insights. First of all, applying the proposed guideline 
can enhance the quality of AI systems in each of the 
utility, ethicality and cost dimensions. For example, 
applying Rec. IV. Alg. Sel. & Con. with the Random 
Forest (RF) algorithm resulted in the globally maximum 
utility score of 0.992 in the entire evaluation (see Figure 
5a), which is significantly higher than the global mean 
utility of 0.692 (t-test result: 𝑠𝑠(156.19) = 27.505,𝑠𝑠 <
2.2𝑟𝑟 − 16) ). Similarly, applying Rec. V. Res. Tran. 
with decision threshold = 0.1 resulted in the global 
maximum ethicality of 0.753 (Figure 6a), which is 
significantly higher than the global mean ethicality of 
0.557 (t-test result: 𝑠𝑠(4.908) = 4.335,𝑠𝑠 = 0.008) ). 
Furthermore, applying Rec. I. Data Rep. with prior case 
vs no prior case = 1:10 resulted in the global minimum 
cost of 0.078 (Figure 2a), which is significantly lower 
than the global mean cost of 0.314 (t-test result: 
𝑠𝑠(7.847) = −9.438,𝑠𝑠 = 1.486𝑟𝑟 − 5)). 

Second, effects of applying the guideline are 
complex. To improve AI quality, the guideline has to be 
applied in well-considered ways. It might benefit one 
quality metric while sacrificing the other metrics. For 
example, as mentioned above, applying Rec. IV Alg. 
Sel. & Con. with Random Forest (RF) produced the 
globally maximum utility (Figure 5a). However, the 
same recommendation also produced a high cost of 
0.679, which is higher (but not statistically significantly) 
than the cost of any other algorithm, such as Support 
Vector Machine (SVM) with the second highest cost of 
0.46 (t-test result: 𝑠𝑠(7.028) = 1.772,𝑠𝑠 = 0.1196) ). 
These results are aligned with the literature. Fu et al. 
(2022) claim that “fair” algorithms, which require 
impact parity, may not always have the anticipated 
results in the long run, especially in profit-maximizing 
firms. 

Furthermore, applying the guideline has diverse 
effects on the low-level quality metrics. For example, 
both recall and specificity in the utility dimension 
received a positive influence from Rec. III. Fea. Sel. 
(Figure 4b). But the same metrics received opposite 
influences from Rec. V. Res. Tran. (Figure 6b). 

With their enhancing effect on AI quality, the 
proposed guideline and software framework offers a 
powerful tool for improving AI development efficiency, 
productivity, and product quality. Thanks to its ethics 
awareness, the guideline would help introduce more and 
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more advanced AI applications into fields holding high 
ethical standards for IT products, such as healthcare and 
social work. On the other hand, researchers concerned 
with developing AI for real-world problems suggest that 
it must be used carefully, ethically, and in suitable 
scenarios. In response, clinicians and researchers 
working with children suffering from CAN have the 
opportunity to adapt, develop, and extend ethical 
guidelines, such as those aimed at reducing racial or 
socioeconomic biases. 

6. Conclusion, limitation and future work 

This paper provides a first-step guideline for 
developing AI systems to estimate the risk of child 
abuse and neglect (CAN). The guideline was 
implemented, prototyped and evaluated to demonstrate 
its impact on utility, ethicality and cost of AI systems. 
Results show that the proposed guideline and software 
framework were able to enhance the quality of ML 
predictive models in each of the three dimensions 
significantly. Meanwhile, the guideline influences 
model quality in diverse ways, making it an interesting 
research topic to further explore the utilization of the 
guideline in specific scenarios. 

One of the limitations is that, due to the space limit 
of the paper, we are not able to present further 
evaluation of the proposed guideline to demonstrate, for 
example, discovery of optimal models and comparison 
between selected and baseline models with full data. 
These evaluations will be presented in the future. Future 
research should also include the participation of domain 
experts with lived and professional experience, such as 
caregivers, social workers, and youth, in designing and 
evaluating AI for CAN prediction. Specifically, we 
recommend that CPS survey these parties and use their 
requirements as limiting conditions in the optimal model 
discovery process in Figure 1 in addition to the AI 
quality metrics. In this way, the framework would be 
able to produce AI systems meeting custom quality 
standards required by its stakeholders. Furthermore, 
researchers should continuously examine the databases 
used and review the ethical metrics incorporated in the 
model development. Finally, stakeholders using AI 
models developed for real-world problems, such as 
CAN, should be responsible for their final decisions and 
continuously discuss the harms that can potentially 
occur when using these innovative technologies. 
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