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Abstract

The rapid acceleration of technology and the
evolving global economy have led to a significant
surge in high-potential startups, presenting immense
opportunities for venture capital firms and investors
to support and benefit from these innovative ventures.
However, identifying startups with the highest likelihood
of success remains a complex task, necessitating
the examination of various information sources,
including firm demographics, management team
composition, and financial performance. The
effectiveness of existing methodologies, such as
feature-based and network-topological approaches,
is limited for predicting high-potential startups. In
response, we propose a novel Venture Graph Neural
Network (VenGNN) model, leveraging Heterogeneous
Information Networks (HIN) and Graph Neural
Networks (GNN) techniques to address the prediction
problem. Our experimental analysis reveals that
VenGNN outperforms state-of-the-art models by
15-20% across a wide range of performance metrics.

Keywords: high-potential startups, heterogeneous
information networks, graph neural networks

1. Introduction
Startup companies play an important role in today’s

economy. According to the U.S. Census Bureau, over
5 million startup companies were created in 2022, and
on average, more than 4 million have been created every
year in the United States over the past five years1. These
numerous startups have significantly contributed to the
U.S. economy by promoting innovation, increasing
production, and creating job positions. Investors, such
as venture capital firms and individuals, provide vital
capital and advice to support the development of startup
companies, and the success of these startups can bring

1https://www.census.gov/econ/bfs/index.html

substantial returns to investors. Unfortunately, over
two-thirds of startups never deliver a positive return to
investors2. Therefore, it poses a critical challenge for
investors to make informed investment decisions. A
promising way to tackle this challenge is to develop
a framework to predict high-potential startups using
historical data in the entrepreneurial ecosystem. This
approach will, in turn, benefit multiple stakeholders,
including investors, startup founders and employees, as
well as the U.S. economy and society.

In recent years, researchers from different
disciplines have studied the prediction of high-potential
startups. Some involve processing startups’
demographic information into features based on
insights gleaned from interviews, surveys, and expert
input (Gompers et al., 2009; Nanda et al., 2020). These
features are then utilized in supervised learning models
for predicting potential startups (Bargagli-Stoffi et al.,
2021; Sharchilev et al., 2018; Zhong et al., 2018).
Some use the interactions between startups to construct
information networks, and then topological features
extracted from these networks are employed to identify
high-potential startups (Bonaventura et al., 2020; Gloor
et al., 2013; Zhang et al., 2021). While the first group
of methods neglects the heterogeneous yet useful
connections among different entities (e.g., startups,
founders, VC firms), the second group fails to consider
the wealth of non-topological information (e.g., startup
size and industry) relevant to startup success. Given the
limitations of these prior studies, it becomes evident
that a more comprehensive and integrative approach
is needed to effectively address the high-potential
startup prediction problem. Such approaches should
consider not only static aspects of startups’ profiles
or topological features of startup networks, but also
the heterogeneous relations between entities and the
wealth of hidden information that exists within the

2https://hbr.org/2021/05/why-start-ups-fail
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entrepreneurial ecosystem.
To fill the research gap, we propose a novel

Venture Graph Neural Network (VenGNN) approach
for predicting high-potential startups. It consists of
three major steps. In the first step, we construct a
Heterogeneous Venture Information Network (HVIN)
from a publicly available startup database. The
constructed HVIN consists of various startup-related
entities, such as startups and VC firms, and different
connections among them. Second, we define and extract
multiple types of meta-paths from the HVIN, each of
which captures one type of heterogeneous connection
between startups. These extracted meta-paths enable
us to effectively measure the multifaceted relations
among startups. Built upon the HVIN and meta-paths,
third, we design a novel multi-head graph attention
network for predicting high-potential startups. The
designed multi-head graph attention network models
node features and startup connections. In contrast
to prior studies (Bonaventura et al., 2020; Gompers
et al., 2009; Nanda et al., 2020; Zhang et al.,
2021), our proposed VenGNN approach considers
both attribute and structure information of multiple
types of startup-related entities (e.g., startups, VC
firms, founders, educational institutes) and effectively
integrates all useful information.

We conduct intensive empirical evaluations to
demonstrate the superiority of our developed VenGNN
model. Specifically, we construct multiple evaluation
datasets from Crunchbase and use them to evaluate
VenGNN’s performance on predicting startup success in
three different funding rounds. We compare our model
with multiple state-of-the-art benchmark methods that
consist of three groups: feature-based classification
approaches (e.g., XGBoost (Xu et al., 2022)),
homogeneous graph-based ones (e.g., GAT (Veličković
et al., 2018)), and heterogeneous graph-based methods
(e.g., HAN (Wang et al., 2019)). The evaluation
results across the three funding rounds show that our
VenGNN significantly outperforms other benchmark
methods in terms of various evaluation metrics. The
results demonstrate how and to what extent different
factors contribute to the prediction of startup success,
providing useful insights for real-world practitioners.

2. Literature Review
2.1. Existing Methods for Identifying

High-potential Startups
In this section, we investigate two categories of

high-potential startup prediction models: feature-based
models and network-topological models, and another
set of recommendation-based models. Feature-based
models are designed to identify key information

from raw data and transform it into features that
reveal essential patterns with predictive power.
Specifically, in the context of predicting startup
success, relevant information is gathered from
data platforms like CrunchBase and LinkedIn,
including firm demographics, past funding rounds,
and founder/employee information (Sharchilev et al.,
2018). These sources are then used to extract features
such as the number of offices, total funding amount
raised, gender diversity on the board, employee
characteristics, and company milestones. Typically,
a machine learning algorithm is trained using these
features to predict the likelihood of a startup’s success,
which is commonly defined as 1) receiving follow-on
funding, 2) being acquired, or 3) going public. The
literature has a broad coverage of machine learning
models, including Logistic Regression (Zbikowski &
Antosiuk, 2021), Naive Bayes (Krishna et al., 2016),
Support Vector Machine (Zbikowski & Antosiuk, 2021),
Random Forests and Decision Trees (Krishna et al.,
2016), Gradient Boosting Classifiers (Bargagli-Stoffi
et al., 2021),and neural networks (Sharchilev et al.,
2018). However, such feature-based models focus
solely on static company characteristics and do not
consider interactions among different entities, such as
firm-firm connections and VC-firm investments.

To alleviate this issue, network-topological models
incorporate interactions between various actors in
entrepreneurial activities into network structures,
aiming to gain further insights. An illustration of
interaction networks can be observed in the context of
relationship networks, in which startups and individuals
are depicted as nodes and the presence of an interaction
(e.g., the founding or management of a company by an
individual) results in the creation of an edge between
the respective nodes (Bonaventura et al., 2020).
These studies usually construct a dynamic network of
connections among startups, by linking two startups
if they have at least one individual who holds, or has
held, a professional position in both entities. Then, a
centrality-based methodology is employed to compute
the centrality metric ranking of each startup node, with
a higher ranking indicative of an elevated probability
of success (Gloor et al., 2013; Hadley et al., 2018).
Alternatively, some studies have utilized the social
networks of entrepreneurs and employees to study the
connection between social proximity and the success
of startups (Song & Vinig, 2012; Zhong et al., 2016).
However, only one type of interaction is considered,
and the centrality-based approach cannot fully capture
interaction patterns, making prediction a challenge.

Another strand of recommendation-based
approaches also takes into account various actors
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(primarily investors and startups) involved in
entrepreneurial activities. However, different from
directly predicting the outcome of a startup, these
studies aim to identify the potential for investments
from VCs to startups, which serve as an indirect gauge
of startup success. In the context of network analysis,
it is similar to the problem of link prediction, i.e.,
predicting the existence of a link between two nodes
in a network. An early study by Stone (2014) framed
the task as a recommendation problem, recommending
startup candidates to investors which will eventually
lead to real funding commitments. The author
developed both an item-based k-Nearest Neighbor
collaborative filtering (CF) approach and a latent factor
model to make investment recommendations solely
based on investors’ preferences. Building on that,
Zhong et al. (2018) proposed another recommendation
model that considers both investors’ preferences
and risk-averse portfolio returns. Although these
recommendation-based approaches have the potential to
identify actual investment links, it has been found to be
challenging due to low top-k precision or AUC scores
shown in previous studies (Stone, 2014; Zhong et al.,
2018). Additionally, the startups with high investment
potential may not necessarily have a high probability of
success in the end.
2.2. Computational Design Science Research

Our work adds to the growing body of computational
design science research in information systems
(IS) (Padmanabhan et al., 2022; Rai, 2017). This
paradigm emphasizes an “interdisciplinary approach in
developing novel data representations, computational
algorithms, business intelligence, and analytics
methods” (Rai, 2017). They utilized natural language
processing (NLP) and deep learning models to
analyze customers’ social media activity. They
worked with a leading apparel firm to mine this data
and found that their algorithmic solution performs
7%-9% better at detecting misbehavior than traditional
methods. Yang et al. (2023a) designed an IS artifact,
DeepPerson, for text-based personality detection using
advanced deep learning strategies and psycholinguistic
theories. It incorporates novel transfer learning and
hierarchical attention network methods, along with data
augmentation and person-level linguistic information.
Yang et al. (2023b) utilized a design science approach to
create DeepVoice, a new system for predicting financial
risk during quarterly earnings calls. DeepVoice’s design
analyzes both what and how managers speak during
these calls to forecast risk and tackles several challenges
in analyzing nonverbal communication. Likewise,
our research adopts a design science approach to
develop a novel IS artifact, VenGNN, for predicting

startup success. Our contribution is distinguished
by the utilization of graph neural networks, which
effectively capture the heterogeneity of the focal
business information network.
3. Research Methodology

In this section, we introduce our novel method,
Venture Graph Neural Network (VenGNN), for
predicting high-potential startups. An illustration of
VenGNN is shown in Figure 1, which mainly includes
three components. In the first component, we construct
an HVIN from the collected Crunchbase data, where we
define six types of nodes and eight types of connections.
In the second one, we define eleven different types of
meta-paths between startups based on related theory
and literature from the constructed HVIN, and identify
and operationalize other startup-related features. Each
type of meta-path captures the proximity between
startups based on one kind of composite relation. In the
third component, we develop novel multi-head graph
attention networks to predict startup success, where
the proximity among startups based on different types
of meta-paths is combined. Next, we will provide a
breakdown of each individual component, along with
its respective details.
3.1. Heterogeneous Venture Information

Network (HVIN) Construction
There are various entities and relations in the

Crunchbase data. We construct a Heterogeneous
Venture Information Network (HVIN) to model them.
Our HVIN-based prediction is grounded in the
theoretical foundation of the homophily principle that
originated from McPherson et al. (2001). The
homophily principle indicates that connections tend to
be formed between similar objects (such as connected
people with shared demographic information). Prior
studies have applied and examined the homophily
principle in both homogeneous networks (e.g., social
networks (McPherson et al., 2001)) and bipartite
networks (e.g., startup-person graph (Bonaventura
et al., 2020)). Through the constructed HVIN, we
consider multiple-typed connections among startups
and hypothesize that the startups connected together
share a similar likelihood of success. Specifically,
the constructed HVIN consists of six types of nodes:
Startup nodes (S), Person nodes (P), VC Firm nodes (V),
Institute nodes (I), Location nodes (L), and Category
nodes (C); eight types of edges representing various
relations between all types of nodes are defined:
Co-work between Persons, Investments between Persons
and Startups, Investments between VC Firms and
Startups, Employment between VC Firms and Persons,
Foundation/Execution between Persons and Startups,
Education between Persons and Institutes, Locate in
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Figure 1: Overview of Our Proposed Framework

between Startups and Locations, and Belong to between
Startups and Categories.
3.2. Meta-path Construction

Within the constructed HVIN, startups indirectly
connect to each other through one or multiple types
of nodes. Meta-path, which is used to capture the
composite relations between two nodes on a graph (Sun
et al., 2011), is a natural fit to measure the indirect
relations between startups. Specifically, a meta-path
between two startup nodes on the HVIN has a form

of Startup1
R1−−→ A1

R2−−→ ...
Rl−→ Startup2,

where there is a composition of relations R = R1 ⋄
R2 ⋄ ... ⋄ Rl between the two startups. ⋄ denotes
the composition operation of relations, and the length
of the meta-path is set as the number of composite
relations, i.e., l. With the constructed HVIN, we define
a total of 11 types of meta-paths that start from and
end with startup nodes. We construct each type of
meta-path based on the relevant literature. Each type of
meta-path reflects a specific kind of composite relation
and measures the proximity between startups. All the 11
types of meta-paths together capture the heterogeneous
proximity between startups from different perspectives.
We will build multiple adjacency graphs among startups
based on these meta-paths and fuse the graphs using
multi-head graph attention networks towards predicting
startup success. Figure 2 shows a sub-graph of our
constructed HVIN, which exemplifies all the elevent
types of meta-paths.
3.3. Company Feature Construction

Our Heterogeneous Venture Information Network
(HVIN) depicts the intricate relationship between
various entities, such as firms, individuals, and
institutes, among others. While these relationships
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Figure 2: Instances of the Constructed HVIN and the
Theory-guided Semantic Meta-paths

can be helpful in predicting the success of a startup,
certain characteristics of these entities can also play a
crucial role in the outcome. For example, previous
research (Sharchilev et al., 2018; Xu et al., 2022) has
demonstrated that firm demographics, including the age
of the company, its history of acquisitions, the number of
products launched, and the company’s online presence,
can provide valuable insights into the current state of
the firms. As a result, our study incorporates these
characteristics to enhance the HVIN and deliver more
precise predictions of startup success. More specifically,
we have compiled a comprehensive list of 52 relevant
features to facilitate our analysis, which is omitted due
to the space limit. These features include key company
demographics, such as firm age, size, industry, and
number of employees. Our feature selection process
is grounded in the latest research, ensuring that we are
well-equipped to make informed predictions.

3.4. Definition of Startup Success
We have framed the problem of startup success

prediction as a node classification task. However,
the definition of a successful startup still remains
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unclear. In this section, we will discuss multiple
indicators of success and provide our definition of
a successful startup. According to Salamzadeh and
Kawamorita Kesim (2015), each series funding round is
crucial to startups as it helps them maintain fast-growing
momentum. However, obtaining additional series
funding rounds can be challenging, making each
successful round a significant achievement for a startup.
Aside from funding rounds, other signs of success for
startups are IPOs and mergers and acquisitions (M&A)
events (Hegde & Tumlinson, 2014; Hochberg et al.,
2007; Xu et al., 2022). Therefore, we can also view
IPOs and acquisitions as key metrics for gauging a
startup’s success. On the other hand, time is another
critical factor in evaluating startup success. Numerous
research studies have emphasized the significance of
time when evaluating the success of startup companies
(Bonaventura et al., 2020; Hochberg et al., 2007;
Sharchilev et al., 2018; Zhang et al., 2021). Therefore,
our definition of success for startups is as follows:
If a startup secures initial or series funding and
then receives additional funding, goes public, or gets
acquired during a specified observation time interval,
it is considered a success. It is important to note that
this definition takes into account both the timing and
the stage of the startup, and therefore a startup must be
evaluated multiple times throughout its lifecycle.
3.5. Venture Graph Neural Network for

Startup Success Prediction
With the constructed meta-paths and startup-related

features, we are now ready to present our developed
Venture Graph Neural Network (VenGNN) for
predicting the defined startup success. Figure 3
shows the architecture of our proposed VenGNN.
The VenGNN extracts meta-path-based proximities
and company features, and combines them with
a closeness-centrality-based encoding, generating
encoded features. The encoded features and meta-path
proximities are fed to a fused heterogeneous
graph attention network for proximity fusion,
and a random-walk-based graph sampling is fed
to a self-attention block to capture long-distance
information. The graph attention output and
self-attention output are combined and fed to a
feed-forward network (FNN) to generate the final
prediction. Additionally, we combine transfer learning
with the VenGNN to further enhance the prediction of
startup success.

Meta-path Knowledge Fusion. Given the eleven
types of meta-paths constructed in Subsection 3.3, we
introduce how to fuse all meta-paths and quantify the
closeness between startups. Specifically, we utilize
the PathCount (Xu et al., 2022; Zhang et al., 2021),
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Figure 3: Architecture of Our VenGNN Model

which is essentially the number of meta-path instances
between startups, to measure the proximity among
startups. For instance, if there are two instances of the
M1 meta-path between two startups, their proximity is
set as two. With each type of meta-path, we calculate the
PathCount between every pair of startups and then build
a homogeneous graph of startups. The homogeneous
graph consists of startups as nodes and edges among
them. An edge exists only when the PathCount between
two nodes is greater than zero, and the weight on each
edge is the value of PathCount. We construct eleven
such homogeneous graphs based on the eleven types of
meta-paths. In the next section, we will introduce the
second part of VenGNN (i.e., multi-head graph attention
network) that merges the eleven homogeneous graphs
toward predicting startup success.

Fused Heterogeneous Graph Attention Network.
Graph Attention Network (GAT) (Veličković et al.,
2018) is one of the state-of-the-art GNN models. The
key feature of GAT is an attention mechanism that
automatically learns the attentional weights among
nodes. Each attentional weight indicates the importance
of one node to another. Prior studies have
shown that GAT outperforms most of the existing
state-of-the-art GNNs on many prediction tasks (e.g.,
node classification and link prediction) with various
heterogeneous graphs (Lv et al., 2021). In observation
of the success of the attention mechanism, we
develop a fused heterogeneous attentional layer that
utilizes the attention mechanism to model the multiple
homogeneous startup graphs that we have constructed
based on the defined meta-paths. Specifically, given the
startup node features X and M homogeneous startup
graphs (M is 11 in our setting), we specify the fused
heterogeneous attention layer as:

hi =
M

∥
m=1

σ(
1

K

K∑
k=1

∑
j∈Nm,i

αk
m,ijWk

mXj), (1)

where Nm,i denotes the i-th node’s direct neighbors
on the m-th homogeneous graph; K is the number of
heads for stability concerns (Vaswani et al., 2017); hi

is the output representation of the i-th node; α() is the
activation function; || is the concatenation operation;
αk
m,ij and Wk

m represent the attention mechanism and
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the corresponding learnable parameters of the k-th head
and m-th homogeneous graph, respectively. We stack
two layers of the fused graph attention layer, where the
second layer takes the first layer output as input.

Despite the success of the graph attentional layer
shown in prior studies (Veličković et al., 2018; Wang
et al., 2019; Zhang et al., 2021), it still faces a critical
challenge, namely the over-smoothing issue, as do other
GNN models (Oono & Suzuki, 2021). Over-smoothing
causes the performance of GNN to decrease as the
number of layers (e.g., attention layers) increases. It also
indicates that ordinary GNN cannot capture and pass
long-distance information over the graph.

Sampled Self-Attention. In order to further capture
long-distance information and address over-smoothing,
we propose a sampled self-attention design to learn
additional node representations. The learned node
representations will be combined with the outputs of
the last graph attentional layer. The self-attention
mechanism (Vaswani et al., 2017), a key design in
sequence representation learning tasks, is formalized as:

Self-Attention(V ) = softmax(
V V T

√
dv

)V, (2)

where V ∈ RL×d denotes the packed value matrix
for self-attention; L is the sequence length; d is the
feature dimension, and dv is a scaling factor. As
shown in Equation 2, the self-attention design passes
messages globally over the value matrix. However, if
such global self-attention is applied to all nodes on a
graph, the computational cost can become exponentially
expensive, even infeasible on large graphs with
numerous nodes. To overcome this computational issue,
we propose a random-walk-based sampling technique.
Specifically, we conduct multiple-round random walk
graph sampling starting with each startup node on the
HVIN. Each round of random walk sampling results in
a path over multiple startup nodes on the HVIN. Let
us denote the multiple paths from the i-th startup node
as Si = {S1

i , S
2
i , ..., S

b
i }, where b is the total number of

paths. The length of each sampled path (i.e., the number
of startup nodes on each path) is set as L. The i-th node’s
representation output through the self-attention can be
denoted as:

gi =

b∑
j=1

(W 2
i )

T Self-Attention(Sj
iW

1
i ), (3)

where j denotes the j-th path; W 1
i ∈ Rd×d′

is a learnable weight matrix that transforms node
representations from the original feature space to the
hidden space. The dimension of the hidden space is the
same as that of hi in Equation 1; W 2

i ∈ RL×1 is another
learnable parameter matrix that fuses the L nodes’
representations of a path into one; the summation over b
sampled paths ensures stability. The designed sampled

self-attention passes messages over sampled node
sequences, not only capturing long-distance information
but also enhancing computational efficiency.

The combination of the output of the sampled
self-attention layer (i.e., gi) and that of the last
attentional layer (i.e., hi) is fed into a Feed-forward
Neural Network (FNN). The last layer of the FNN is
a Sigmoid activation function because our problem is a
binary node classification problem. The output of the
FNN can be denoted as: y′i = FNN (gi + hi), where y′i
is the predicted likelihood of success for startup node i.
Finally, we can formalize the learning objective of our
VenGNN model with cross-entropy loss as:

L = argminΘ−
1

N

N∑
i=1

yi log(y
′
i)+(1−yi) log(1−y′i),

(4)
where N is the total number of nodes and yi is the
ground-truth label of the i-th node. Θ denotes all
the learnable parameters of our VenGNN model. To
solve the learning objective, we develop a learning
algorithm based on widely used gradient descent and
back-propagation techniques to estimate the optimum
model parameters.
3.6. Transfer Learning for Enhancing Startup

Success Prediction
The developed VenGNN model can be used for

predicting startups’ success across funding rounds and
different time windows. The knowledge gained in
previous predictions (e.g., success in Series-B funding
round) could be useful for future predictions (e.g.,
success in Series-C). Therefore, we further apply
transfer learning techniques to transfer knowledge
across different startup success prediction tasks. For
instance, when we train our VenGNN model for
predicting startups’ success in one funding round
(e.g., Series-C), we use the parameters of the last
FNN layer, learned in the previous training procedure
(e.g., predicting startups’ success in Series-B), as the
initialization of the current training procedure. As
revealed in prior studies (Torrey & Shavlik, 2010),
machine learning models incorporating transfer learning
techniques on related tasks start at a higher performance
point and converge to a higher asymptote with a steeper
slope. Thus, we expect that training our VenGNN model
with transfer learning techniques could further enhance
the prediction performance, which will be examined and
demonstrated in the evaluation.
4. Empirical Evaluation
4.1. Experimental Setup

Data Description. We obtain the Crunchbase 2013
snapshot, which is an instance of Crunchbase dataset
when the database was updated to include information
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on companies and investors up to December 31, 2013.
This snapshot serves as a historical record of the startup
ecosystem at that time and is useful for analysts and
researchers who want to understand how the industry
was evolved over time. Our objective is to predict if
a startup candidate could receive a next series funding
round (e.g. Series-B), go IPO or get acquired within an
observational time window (e.g., three years). Note that,
to ensure sufficient information to capture the growth
potential of startups, we will focus on startups that have
received at least one round of funding. We also exclude
any events or developments that occurred after the date
of receiving funding to prevent information leakage.
For example, we extract all the startups that received
Series-A funding between Jan 1, 2008 and Dec 31,
2010. For each startup, we only preserve information
happening on and before its date of receiving Series-A
funding, and label this startup as positive if it receives
Series-B, goes IPO, or gets acquired in the following
three years, otherwise negative. We sort all targeted
startups w.r.t. their dates of receiving Series-A funding,
and select the earliest 60% startups as the training
set, subsequent 20% as the validation set and the
remaining 20% as the test set. This setting replicates
real-world situations and reduces the risk of unintended
information leakage.

To fully assess the efficacy of our proposed
framework, we developed a range of datasets that
concentrate on different time periods and funding
rounds. Seven datasets were created, consisting of three
sets focusing on performance across different funding
rounds within the period of Jan 1, 2008 to Dec 31,
2013, and four sets focusing on the alteration of rolling
time windows, each spanning six months, for a specific
funding round (Series-A). In each dataset, we have
presented a tabulation of the total count of different
nodes, including investors, startups, persons, institutes,
locations, and categories. In addition to nodes, we
further provide the mean count of every meta-path (M1
to M11) identified in the dataset. The percentage of
positive cases in each dataset is between 20% and 26%.

Benchmark Methods. We compare our approach
against various benchmark methods as well as ablations
of our own approach. Three groups of benchmarks are
selected: (1) Feature-based approach that only considers
startup features, including Centrality (Bonaventura
et al., 2020), LR (Zbikowski & Antosiuk, 2021)
and XGBoost (Xu et al., 2022); (2) Homogeneous
GNN-based approaches, including GCN (Kipf &
Welling, 2017) and GAT (Veličković et al., 2018);
(3) Heterogeneous GNN-based approaches, including
HAN (Wang et al., 2019) and SHGMNN (Zhang et al.,
2021). Three ablated version of our approach is also

included for comparison: VenGNN-S that removes the
sampling-based self-attention module, VenGNN-A that
removes the graph attention module, and VenGNN-T
that removes the transfer learning module.
Evaluation Metrics. We select three groups of
evaluation metrics for comprehensive examining the
approaches. The first group is overall correctness,
including AUC, AUPR, F-1 and Accuracy. The second
and third group are Precision@K and ROI@K, where
K = 5, 10, 20. In our context, ROI@K refers to
the top-K ranked return over investment (ROI). In
general, it is calculating the average ROI of top-K
ranked predictions. Since we are predicting mainly on
if startups could receive next round of funding, the ROI
is defined as:

ROI =


Post-Valuation - Pre-Valuation

Pre-Valuation
if receives next round

− 1 if not

(5)
It is usually inaccessible to startups’ valuation data, thus
we estimate startup valuation using the money raised
(accessible in the dataset) and estimated dilutions during
a specific round:

Post-Valuation = Raised Money/Estimated Dilution
(6)

Pre-Valuation = (1− Estimated Dilution)
× Raised Money/Estimated Dilution

(7)

Here the estimated dilution w.r.t. each targeted funding
round (Series-B,C,D) is 19%, 16.25%, 13.5%, based
on the mean value generated by Radicle, a disruptive
research firm using a statistical model to estimates
start-up valuations from their Funding Round stage and
amount raised 3. In our analysis, to ensure the robustness
of the results, each experiment was repeated 10 times
and the mean values of the metrics are reported.
4.2. Experimental Results

Next, we provide an in-depth discussion of the
main experimental results. We evaluate these methods
over seven datasets using a variety of performance
metrics. To begin with, we showcase the performance
of all methods on three of our main datasets (DA→B,
DB→C, and DC→D) in Table 1. We have made several
noteworthy observations. First, it is important to note
that our problem at hand is non-trivial. In particular, we
examine the performance of LR and XGBoost, which
are popular feature-based supervised models applied in
various contexts. Upon closer inspection, we found their
performance are poor, with AUC values hovering around
50%, barely distinguishable from a random classifier.
This underscores the need for more sophisticated models
to better tackle our focal problem’s nuances.

3https://finerva.com/report/dilution-data-funding-rounds/
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Dataset DA→B

Metrics Overall Correctness Precision@K ROI@K
AUC AUPR Accuracy F1 P@5 P@10 P@20 ROI@5 ROI@10 ROI@20

Centrality 50.43 41.83 52.07 40.46 44.00 47.00 40.00 79.92 81.00 51.66
LR 55.85 45.41 55.85 45.15 54.00 49.00 48.00 52.63 47.13 53.65

XGBoost 55.20 46.19 56.53 46.00 50.00 52.00 48.50 69.20 66.20 78.11
GCN 58.54 49.35 57.74 33.52 58.00 70.00 62.50 75.30 187.97 121.56
GAT 62.60 53.22 60.19 36.94 68.00 67.00 63.00 59.31 80.84 65.71
HAN 59.19 46.89 58.48 35.47 60.00 60.00 63.00 99.15 121.99 123.53

SHGMNN 61.81 48.44 58.98 36.58 60.00 57.00 59.50 99.78 89.14 98.79
VenGNN-S 69.20 57.14 63.19 42.99 60.00 60.00 63.00 99.15 121.99 123.53
VenGNN-A 67.39 55.84 62.79 42.35 60.00 64.00 52.00 87.16 132.24 72.18

VenGNN 69.57 58.85 63.22 43.52 82.00 81.00 62.00 258.74 237.52 152.36

Dataset DB→C

Metrics Overall Correctness Precision@K ROI@K
AUC AUPR Accuracy F1 P@5 P@10 P@20 ROI@5 ROI@10 ROI@20

Centrality 49.59 41.21 54.14 34.68 38.00 39.00 38.00 37.81 23.78 5.60
LR 54.07 45.39 55.56 36.69 44.00 51.00 50.50 16.50 16.57 31.95

XGBoost 49.86 41.63 53.84 34.24 46.00 39.00 38.00 2.40 -12.99 -14.19
GCN 60.24 52.25 64.04 42.67 68.00 66.00 54.50 109.60 92.88 46.59
GAT 62.12 54.15 62.73 38.98 76.00 56.00 49.00 131.80 73.63 45.02
HAN 57.80 51.23 59.49 33.65 36.00 39.00 47.50 167.55 96.92 119.70

SHGMNN 62.98 53.48 59.39 34.14 90.00 65.00 57.50 206.64 102.88 55.61
VenGNN-S 66.61 53.24 64.44 42.90 78.00 79.00 61.50 110.57 99.20 51.53
VenGNN-A 68.58 56.83 63.74 40.16 70.00 49.00 42.00 104.77 43.97 20.44
VenGNN-T 68.25 59.25 62.73 39.77 78.00 73.00 62.00 183.04 112.73 89.18
VenGNN 69.19 60.71 65.32 43.44 96.00 61.00 61.50 233.99 132.09 90.88

Dataset DC→D

Metrics Overall Correctness Precision@K ROI@K
AUC AUPR Accuracy F1 P@5 P@10 P@20 ROI@5 ROI@10 ROI@20

Centrality 49.98 46.97 51.88 46.28 46.00 45.00 42.50 -9.21 -11.97 -14.01
LR 55.05 50.27 53.33 47.91 46.00 50.00 51.50 -13.82 -5.78 -4.30

XGBoost 54.27 47.61 52.92 47.44 40.00 41.00 44.00 -18.61 -18.26 -12.46
GCN 55.86 51.01 58.33 49.03 60.00 63.00 67.00 -2.89 9.92 21.09
GAT 62.34 56.40 56.88 38.13 74.00 66.00 57.50 31.62 18.48 5.61
HAN 56.47 54.27 53.54 35.48 58.00 56.00 61.00 -2.14 -0.80 8.92

SHGMNN 52.85 51.64 52.29 34.12 62.00 62.00 58.00 29.31 24.14 14.51
VenGNN-S 63.80 61.12 56.46 39.54 78.00 69.00 69.00 64.75 42.32 35.06
VenGNN-A 63.06 59.03 58.13 39.03 74.00 61.00 52.00 40.50 17.82 3.71
VenGNN-T 66.62 58.42 60.63 44.88 84.00 71.00 66.50 52.24 36.44 34.61
VenGNN 66.86 59.46 61.42 45.87 84.00 66.00 55.00 75.30 38.86 12.90

Notes: The best results are highlighted in bold. All numbers are shown in % format.

Table 1: Overall Performance of Various Models

Second, we observe that our proposed VenGNN
consistently outperforms all the benchmark methods
regarding multiple performance metrics. Aside from
the feature-based methods, stronger benchmark methods
include homogeneous GNNs (GCN and GAT) and
heterogeneous GNNs (HAN and SHGMNN). Our
VenGNN model achieves the best AUC and AUPR, with
the largest margin being 20% compared with the second
best model (SHGMNN). Similar observations can be
made for other performance metrics, such as F-1 and
Accuracy. Our model also outperforms other models
by at least 30% in terms of Precision@K. Meanwhile,
attributed to its high predictive power, our VenGNN
model can achieve an ROI that is on average twice the
return by other models. This strongly demonstrates the
superiority of our model over other benchmark methods.

We conducted ablation studies to better understand
the effectiveness of different modules in our model.
We first analyze the two main designs in our model
architecture: the sampled self-attention and the graph
attention modules. Upon examining the performance
of the models while excluding the two modules
respectively (denoted as VenGNN-S and VenGNN-A),
we found that they exhibit comparable performance.
However, when compared with VenGNN, both models

have slightly lower AUC or AUPR values and
significantly lower Precision@K and ROI@K. We can
conclude with confidence that the sampled self-attention
and graph attention modules are indispensable and
crucial components of our model architecture.

Another effort we have made on improving our
model performance is to incorporate transfer learning
into our model. Transfer learning allows our model
to learn from the models built for previous funding
rounds and better predict future funding rounds.
To demonstrate the effectiveness, we compare the
performance of our VenGNN model with and without
transfer learning module (denoted as VenGNN and
VenGNN-T, respectively). Note that the transfer
learning module does not provide any added value to the
prediction from Series-A to Series-B investment rounds
(in the case of DA→B), as there are no knowledge
of prior models to learn from. But for the other two
cases (DB→C and DC→D in Table 1), we can observe
that the transfer learning module indeed improves the
performance of our model, especially in terms of
Precision@K and ROI@K.
4.3. Robustness Check

When investigating the investment activities, we
have been focusing on a fixed time period in our
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Metrics AUC Precision@5 ROI@5
Dataset D−4

A→B D−3
A→B D−2

A→B D−1
A→B D−4

A→B D−3
A→B D−2

A→B D−1
A→B D−4

A→B D−3
A→B D−2

A→B D−1
A→B

Centrality 47.34 47.65 48.78 47.15 34.00 42.00 38.00 60.00 9.04 17.78 121.49 106.66
LR 57.03 52.03 57.96 57.53 40.00 42.00 52.00 62.00 17.32 42.26 360.52 68.75

XGBoost 55.11 51.29 55.61 50.78 32.00 52.00 40.00 50.00 12.10 59.63 82.91 59.85
GCN 60.40 56.40 63.02 53.61 58.00 64.00 62.00 56.00 39.12 79.06 120.53 157.30
GAT 61.70 50.90 58.52 56.50 52.00 70.00 54.00 68.00 29.00 96.23 97.20 107.16
HAN 55.80 53.70 58.49 57.99 50.00 58.00 62.00 64.00 45.20 68.20 146.77 149.53

SHGMNN 58.80 57.00 53.58 56.92 56.00 50.00 68.00 52.00 67.07 54.59 93.56 55.97
VenGNN-S 64.10 60.60 60.50 60.30 60.00 72.00 48.00 62.00 89.10 97.20 118.10 214.00
VenGNN-A 60.70 61.10 63.56 61.59 76.00 78.00 62.00 84.00 121.42 142.24 208.25 205.25
VenGNN-T N/A 61.90 63.41 65.40 N/A 74.00 68.00 76.00 N/A 119.80 500.90 280.58
VenGNN 66.50 61.30 63.58 65.91 76.00 80.00 68.00 90.00 151.15 384.91 379.40 366.36
Notes: The best results are highlighted in bold. All numbers are shown in % format.

Table 2: Overall Performance of Various Models (Varying Time Window)

experimental analysis. To further demonstrate the
robustness of our proposed approach, we conduct
experiments by changing the time period in the form of
rolling windows with a targeted funding round (Series-A
to Series-B). More specifically, we constructed four
datasets, i.e., D−1

A→B, D−2
A→B, D−3

A→B, and D−4
A→B, with

each rolling back six months consecutively. Using these
datasets, we evaluate all models and report the AUC
score, Precision@5 and ROI@5, as shown in Table 2. In
comparison of our VenGNN model with other models,
we have similar observations as earlier and our model
consistently outperforms other models, especially in
terms of Precision@K and ROI@K.

We see notable improvements of performance from
the ablated models (i.e., VenGNN-S and VenGNN-A) to
VenGNN, with a margin of 10%. This reinforces the
importance of the two modules. The ablation analysis
for the transfer learning module is conducted slightly
different from the previous case. Essentially, the idea
is to leverage the knowledge obtained from models
built using earlier datasets and apply it to the later
ones. When comparing VenGNN-T to VenGNN, it is
important to note that the performance improvement is
not as significant as in the previous case. However,
it still demonstrates the effectiveness of incorporating
transfer learning into the startup success prediction
process across consecutive time windows.
5. Conclusion

In this paper, we introduce a novel venture
graph neural network (VenGNN) approach to predict
high-potential startups, with multiple contributions.
First, we construct a heterogeneous venture information
network (HVIN) from a publicly available startup
database and define multiple types of meta-paths based
on relevant theory and findings. The constructed HVIN
and meta-paths serve as the basis for our developed
VenGNN approach. Second, we design a novel
fused heterogeneous attentional layer for modeling
multi-graph data and integrate centrality encoding and
sampled self-attention techniques for addressing the
over-smoothing issue. Third, we further employ transfer
learning techniques for transferring useful knowledge
across different model training processes. We validate

the superiority of our methodological designs using
intensive empirical evaluations with a unique dataset
from Crunchbase and demonstrate the interpretability of
our VenGNN model with insightful analysis.
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