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Abstract

Becoming a reverse engineer (RE) requires rigorous
training and understanding of program structure and
functionality, and experts develop heuristic strategies
and intuitions from real-world experiences. This paper
attempts to capture REs’ strategies and intuitions
within a predictive cognitive model and demonstrate
the feasibility of assisting novice REs using an
intelligent recommender called CAVA (Cognitive Aid for
Vulnerability Analysis). CAVA leverages physiological
sensors to assess a novice’s cognitive states and provides
real-time visual hints when the novice’s attention and
engagement diminish. We instrumented Ghidra and
conducted pilot experiments with REs. Open-loop
experiments with 9 REs confirmed the feasibility of
identifying novices from experts using physiological
signals, and a pilot closed-loop experiment tested the
feasibility of providing visual recommendations to a
novice. Despite challenges in recruiting REs, our
progress suggests that CAVA is a promising approach
to improve novice performance and our understanding of
experts’ behavior when performing complex real-world
reverse engineering tasks.

1. Introduction

Understanding how cyber attackers exploit software
vulnerabilities is non-trivial, even for experienced
analysts. Defending against such an attack requires
writing a code without vulnerabilities or finding
them before practical exploitation. Unfortunately,
reverse-engineering a code is a daunting task.

In fact, attackers exploit previously vulnerabilities
that have not been fully patched, indicating that defenders
cannot catch up with attackers, according to Google
Project Zero1. In 2022, 41 zero-day vulnerabilities have
been exploited, and 40% of them were simply variants
of previously-patched bugs, with more than 20% being
variants of previous 2021 in-the-wild zero-day bugs. This

1https://security.googleblog.com/2023/07/
the-ups-and-downs-of-0-days-year-in.html

trend follows what Google Project Zero observed in 2020,
where 25% of all zero-day vulnerabilities were variants
of previously disclosed vulnerabilities. This finding
highlights the downside of either automated machine
learning (ML)-based automation tools that suffer from
non-zero false alarms [12, 6] or systems that dynamically
diversity or obfuscate code to delay attacks [1], and how
human performance could bridge the gap. In other words,
25-40% of zero-day exploits could have been avoided
if thorough investigation was conducted with human
reverse engineers with proper tools.

Training can help reverse engineers (REs) understand
common vulnerability types and exploitation methods
to some limit, because REs require good intuitions
and strategies that experts develop from real-world
experiences. Online communities and forums provide
opportunities for novice REs to get support from other
REs and gain insights [23]. However, a major limitation
is receiving support in a timely manner. An ideal
approach to train a novice RE includes an expert RE who
provides inputs specific to the vulnerability cases, but
such a training approach is expensive and not scalable.

This paper attempts to capture expert REs’ intuitions
and strategies in a cognitive model, and visually
provide them to novices as an intelligent recommender.
We propose a closed-loop recommender called CAVA
(Cognitive Aid for Vulnerability Analysis) that leverages
on-body and off-body physiological sensors to assess a
novice RE’s cognitive states, such that the recommender
chimes in with hints when the novice’s attention and
engagement diminishes in real time. Hints are provided
by CAVA’s cognitive model that is trained with experts’
strategies. In concert, when a novice’s cognitive
load is high and the projected behavior deviates from
that of experts, the cognitive model provides a visual
recommendation using different hues and lightness.

We instrumented the Ghidra Reverse Engineering
Framework, and developed a deep learning approach to
extract the specifics of the behavioral data, including
keyboard and mouse activities, at different panels. We
also incorporated the cognitive visualizer in Ghidra.
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To evaluate the effectiveness of CAVA, we conducted
pilot experiments with REs with varying levels of
experience and skillset. The open-loop CAVA evaluation
tested the feasibility of identifying novices from experts
using behavioral and physiological data, and the
closed-loop CAVA evaluation tested its effectiveness and
usability. In total, we recruited 9 REs for the open-loop
evaluation, and 1 for the closed-loop evaluation. Our
results hint that CAVA is a promising approach to
virtually support novices to become experts in reverse
engineering with trust and usability without incurring
additional cognitive load.

Contributions. CAVA is the a closed-loop intelligent
recommender that provides expert REs’ intuitions and
strategies when a novice RE encounters challenges in
exploring and exploiting a potential vulnerability:

• CAVA utilizes a cognitive model that estimates
the novice’s cognitive states based on the
neurophysiological and behavioral responses.

• CAVA visualizes experts’ recommendations when the
novice experiences stress, fatigue, and overload.

• CAVA is the closed-loop system that has been
integrated with Ghidra V9.0 with neurocognitive
analysis pipeline, cognitive model, and cognitive
visualization.

• CAVA has shown promising results from pilot
experiments with REs: 38% utilization of
recommendations, reduced user confusion, reduced
time on vulnerability analysis, and high usefulness.
CAVA has potential to transfer experts’ strategies.

2. Problem Definition

This paper attempts to (1) understand how expert
reverse engineers (REs) navigate a piece of code until
they identify points of interest (POIs) and points of
vulnerabilities (POVs), and (2) apply (1) to provide visual
recommendations to novices when they are cognitively
overloaded. Eventually, visual recommendations can
support novices to learn experts’ strategies and apply
insights to other reverse engineering tasks.

2.1. Desired Properties

• Engagement & trust: CAVA should not reduce
the level of engagement as an RE receives visual
recommendations, and an RE should not lose trust
in CAVA’s recommendations.

• Computational and communication efficiency:
Multiple components are involved in CAVA, such
as (1) measuring physiological states using sensors,
(2) inferring cognitive states to determine the
visual recommendation types, and (3) displaying

Table 1. List of physiological sensors. ∗ indicates

on-body sensors.
Sensors Functionalities
32-channel
actiCHamp
EEG∗

Scalp electrode array measuring
confluences of brain activity

Portalite
fNIRS∗

Uses blood oxygenation for metabolic
activity within specific brain areas

Shimmer
GSR+∗

Measures the electrical resistance of the
skin

Shimmer
HR∗

Measures heart rate that corresponds to
emotional arousal

Smarteye
AIX
eyetracker

Camera calculates eye gaze, head
position, pupil size, and correlates pupil
dilation to objects of interest

recommendations. All steps should not incur
computational and communication overhead to ensure
that an RE receives recommendations as needed.

2.2. Assumptions

CAVA utilizes on-body and off-body sensors to collect
physiological responses and infer behavioral and
cognitive states (Table 1). Some sensors require active
calibrations, requiring REs to follow instructions (e.g.,
eyetracker, EEG), while other sensors can calibrate
passively by observing signals. In our experiment
(Section 5), sensor placement and calibration took
approximately 30-45 minutes. We assume that on-body
sensor placement and calibration time do not impact the
quality of data that CAVA collects for its closed-loop
recommendation generation.

3. CAVA System Overview

When a novice RE explores a piece of software using a
vulnerability analysis tool, CAVA’s primary objective is
to guide the novice with the next action as if an expert RE
is with the novice, especially when the novice seems to be
cognitively overloaded (e.g., degraded attention, fatigue,
etc.). CAVA attempts to (1) capture expert REs’ behavior,
(2) estimate the novice’s cognitive state using a variety
of physiological sensors as mentioned in 1 along with
behavioral movement from the keyboard and mouse, and
(3) provide hints in a timely manner without increasing
the novice’s cognitive workload. CAVA uses Ghidra,
which is an open-source software reverse engineering
tool developed by National Security Agency 2.

Example. Alice, who is a novice RE, is currently
examining a program with a potential SQL injection
vulnerability using a reverse engineering tool (Figure 1).

2https://ghidra-sre.org/
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Figure 1. CAVA overview. Given previously-captured

expert REs’ strategies, CAVA estimates the novice’s

cognitive state using physiological sensors, keyboard,

and mouse activities, and provides hints in a timely

manner without increasing cognitive workload.

Alice is also using CAVA that constantly measures and
infers her cognitive states as she performs vulnerability
analysis. The code is quite complex with many reference
pointers, and CAVA detects that Alice might feel
stressful and overwhelmed. To ensure that Alice remains
focused to finish the current task, CAVA’s cognitive
visualizer (CAVA-CV) gets inputs from cognitive model
(CAVA-CM) to highlight lines in the program as follows:
(1) CAVA-CM notifies CAVA-CV to highlight the
previous n lines of code that Alice investigated to offload
them from her memory. The intensity of the highlights is
consistent with the memory decay (i.e., recently-visited
lines are more vivid compared to others). (2) Based
on previously-collected experts’ strategies, CAVA-CM
informs CAVA-CV to use another color to highlight the
next line that Alice should examine.

4. Cognitive Recommender System

Modeling an expert RE’s mental and cognitive states
is crucial in developing a cognitive recommender. In
this section, we describe details of cognitive model
(CAVA-CM) in (1) capturing experts’ strategies, (2)
predicting novices’ actions, and (3) providing visual
recommendations (CAVA-CV).

4.1. CAVA Cognitive Model (CAVA-CM)

CAVA uses Adaptive Control of Thought-Rational
(ACT-R), which is a cognitive architecture for creating
a wide variety of highly accurate models of human
cognition.3 ACT-R provides a theoretical framework
to model complex human cognition and processes such
as memory retrieval, pattern matching, and decision
making [2]. ACT-R integrates symbolic knowledge
and sub-symbolic computations to reflect individual
differences and emergent cognitive biases, and accounts

3https://act-r.psy.cmu.edu/publication/

for training effects by modeling learning processes [14].
Using ACT-R, we developed a Generalized Decision
Making (GDM) model to represent the mental models of
Ghidra users. The GDM model personalizes the cognitive
model against an individual or groups of individuals.

4.2. CAVA Cognitive Visualizer (CAVA-CV)

A cognitive visualizer (CAVA-CV) represents and
attempts to predict cognitive activity in two-fold: (1)
augment limited cognitive resources such as working
memory by representing recent activity in a way that
support current activities; (2) predict future activity
to provide recommendations over possible actions to
facilitate decision making and scaffold the development
and transfer of expertise. The Instance-Based Learning
(IBL) models are at the core of CAVA-CV’s decisions to
readily use the experimental behavior and align model
behavior against the experimental trace. IBL models’
predictions on future decision and behaviors can be
used to optimize interventions such as dynamic layout
recommendations and cognitive visualizations.

As users navigate the code, each action (e.g., mouse
clicks) is represented as an experience in memory.
After a user takes an action, CAVA-CV leverages
activation computations to represent cognitive activity
in visualizations such as code highlighting. Activation
is composed of a number of additive factors, combined
using a Bayesian framework. Recency represents the
near-term working memory context for local situation
awareness (e.g., by helping to remove accidental returns
to already examined pieces of code). Frequency
represents the longer-term distribution of activity,
emphasizing importance and centrality (e.g., frequency
of visiting some pieces of code indicates important
information). Association represents sequential patterns
of activity capturing structural dependencies such as
function calls or control structures (e.g., providing a
natural exploration path over the call graph). Similarity
represents semantic features in code graph such as
variable use, function distance, and beacons, possibly
with similarity learning to capture the code structure.

CAVA-CV utilizes model-tracing [9] to track a user’s
interactions in Ghidra and uses the activation equation
from ACT-R [3] to generate levels of intensity for the
highlighting module. The input to the model is a label
representing a piece of code (e.g., a line, block, function,
or other structured piece of information), henceforth
referred to as a “line”, and a timestamp. The activation
Ai of a line is computed as follows:

Ai = ln
n

∑
j=1

t−dj +MP ∗∑
k

Sim(vk, ck)
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Figure 2. Examples of various forms of the cognitive

visualizer (CAVA-CV) to inform highlighting.

Numbers indicate the click sequence in each example.

The first term accounts for recency and frequency,
where t is the time since the jth visit to line i and d
is a constant decay rate. The second term accounts
for similarity between lines, where Sim(vk, ck) is the
dissimilarity between the current line and line i for
feature k (usually linearly scaled between 0.0 and -1.0,
from perfect match to very different). MP is a mismatch
penalty parameter that scales the similarity value, and is
set at default to 1.

The activation would be determined for each other
line in comparison to the current line for the purpose
of highlighting other relevant lines to the current one.
As shown in Figure 2, multiple CAVA-CV versions have
been developed to scale up in complexity and the kinds of
cognitive mechanisms represented in the computations.
In the first example, starting from the left, the model
relies only on recency from the activation equation. This
model captures temporal patterns of activity so that the
most recent clicks are highlighted darkest, and fading
further into the past. The second example combines
recency with frequency. This model captures centrality
in patterns of activity, not only highlighting more recently
clicked pieces of code darker, but also those lines that
are visited more often and therefore more important
to the current task. These first two examples provide
a historical visualization of a user’s past activity, but
do not rely on the similarity term from the activation
equation. This kind of information can help alleviate
working memory constraints by providing a user a visual
external aid of where they have been investigating, thus
offloading internal mental resources.

In the third example, the model makes use of
associative knowledge. The model keeps track of
sequential activity patterns (e.g., the last three click
locations) to predict future mouse clicks. The fourth
example incorporates similarity from the activation
equation. This model can generalize sequential patterns
of activity to new pieces of code that are similar to
previous experience. These similarities can be defined by
the structure of code, code semantics, beacon similarity,

or any other kinds of information that could be deemed
useful in relating one piece of code to another.

The last two models can be used to provide assistance
to a user and help guide them to where they should visit
next. For example, the model can be trained using an
expert’s sequence of actions that could then be used to
guide novices to where an expert would likely visit given
the novice’s prior sequences of actions. Figure 3 is a
snapshot of CAVA where blue and red colors represent
past activity and recommendations, respectively, and
lightness is based on the recency and frequency. The
right-most panel displays the estimated four cognitive
states, each of which is determined by combining the
following physiological responses:

• Stress: GSR, heart rate, and pupil dilation
• Cognitive load: Task load (from EEG), inverse of

O2Hb from fNIRS, and the eye blink rate
• Fatigue: Eye gaze entropy, blink rate, EEG alpha band,

inverse of heart rate, and engagement (from keyboard
and mouse clicks)

• Insight: P300 (from EEG) [18], pupil dilation, and
event prediction

5. Implementation & Evaluation

We developed plugins to monitor user activities at
different panels on Ghidra V9.0. CAVA release note
describes the plugins in detail [15].

5.1. System Integration

Four main modules are involved in the closed-loop CAVA
system: CAVA-CM, CAVA-CV, neurocognitive analysis
pipeline, and Ghidra. During run time, the CAVA-CM
module listens for UDP messages from the CAVA-CV
module (e.g., mouse clicks), from the neurocognitive
analysis pipeline (e.g., neurocognitive state data), and
Ghidra events. Upon receiving a user activity, CAVA-CM
processes it and returns a result to drive user-centered
interventions. In return, CAVA-CV generates responses
to highlight on Ghidra. The cognitive models are
implemented in ACT-UP [19] that has been designed
for scalability and computational efficiency.

5.2. Experiment with Reverse Engineers (REs)

Institutional Review Board (IRB) approved our research
protocol that involves the following tasks and procedure.

RE tasks. Our experiment consists of 20 basic tasks and
6 advanced tasks. Basic tasks represent those that are
continuously performed throughout reverse engineering
tasks such as opening a specific program for analysis
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Figure 3. CAVA-CV in Ghidra. In the listing view, red represents recommendations as if an expert were guiding

the current analyst, and blue represents the analyst’s past activities based on recency and frequency. Color and

lightness recommendations are driven by the cognitive states analyzed in real time by CAVA-CM (far-right plug-in).

in Ghidra, navigating to different locations within the
target program, searching for ASCII strings, using
cross-references to navigate the program, navigating
into a called function, following a path in the program’s
control flow, analyzing and navigating cross references to
a particular function, analyzing a program and indicating
locations where a particular variable is used, relabeling
generically-named function and parameter names, and
determining the entry point for a program.

An advanced task consists of a Point of Interest
(POI) triage, followed by Point of Vulnerability (POV)
analysis and annotation on a target program in Ghidra.
All tasks are from the Bryant challenge program [10]
and in-house experts vetted task difficulties. During a
POI triage, an analyst needs to determine an estimated
value in continuing analysis. This task is procedurally
unconstrained, and provides a direct assessment of the
time taken to perform the initial triage as well as a
measure of whether the participant makes a correct
assessment. Our expectation is that the user will use some
of the previous subtask techniques in performing their
analysis and assessment, but the precise steps taken will
require post-experiment interview with video playback
to determine if finer-grained objective measures can
be made and how prior experience transfers to a new
POI/POV. When the analyst determines to continue to
POV, (s)he performs careful analysis of a particular
program segment and annotates instructions which
are likely to be implicated in an exploitable program
defect. This task provides a direct assessment of code
comprehension performance and skill and post analysis
can provide indications of correctness. Just as in the POI
triage, we expect the user to make use of skills which
were demonstrated when performing prior subtasks.

Procedure. We recruited participants with prior
experience in reverse engineering; they were either
government/military personnel without compensation,
or employees who were provided a charge number for
their time spent to participate in this experiment.

After signing an informed consent form, candidate
participants responded to an online preliminary survey
to assess their general knowledge in computer science
and reverse engineering, as well as years of experience
in vulnerability analysis and Ghidra usage. Among
12 who expressed interest, we invited 9 to proceed.
An experiment consisted of placing neurophysiological
sensors and calibrating them, following instructions in
Ghidra to complete 26 tasks in total, and completing
the post-experiment survey. Each experiment took
approximately 3 hours.

5.3. Open-Loop Experiment

To support novice REs, an important assessment is
distinguishing users according to their background
knowledge, primarily based on neurophysiological and
behavioral responses. We can then minimize unnecessary
cognitive recommendations, which annoys users and
prohibits new tools from adaption. To ensure that
novices are distinguishable from experts using behavioral
and neurophysiological responses, we conducted pilot
open-loop experiments with 9 REs first. Table 3
summarizes their demographics. We assigned knowledge
level based on their responses in the preliminary survey.

Time and response accuracy analyses. Figure 4
visualizes the average amount of time that participants
spent on POI/POV tasks that they answered correctly
and incorrectly, based on their prior knowledge level. In
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Table 3. Participant demographics. RE and Ghidra

columns represent the number of years of experience.

We assigned RE knowledge (RE KNWL) based on

their responses to a preliminary survey.
Age Deg. RE Ghidra RE KNWL

P1 36–45 BS < 3 < 3 Novice
P2 46–55 MS < 3 < 3 Medium
P3 46–55 MS < 3 < 3 Novice
P4 26–35 MS < 3 < 3 Medium
P5 26–35 MS < 3 None Novice
P6 26–35 MS 3–6 6–10 Novice
P7 36–45 MS < 3 3–6 Medium
P8 26–35 MS < 3 < 3 Advanced
P9 56+ PhD None None Novice

general, participants spent less time on tasks that they
answered correctly compared to tasks that they answered
incorrectly. For POI/POV tasks that they answered
correctly, prior knowledge helped in reducing time spent
on identifying vulnerabilities. We asked Likert-scale
questions after each POV task regarding the confidence
and use of strategies after each POV task (1:least – 5:
most): (a) advanced indicated the highest confidence
(5.3) compared to novices (3.4) and medium (2.5), and (b)
advanced indicated the highest confidence (5) compared
to novices (3.6) and medium (2.6). These results indicate
that people with prior experience may have strategies to
efficiently explore and exploit vulnerabilities, supporting
findings by Votipka et al. [24].

Sample entropy analysis using eyetracking data.
We analyzed eyetracking data that indicates cognitive
states. Pupil dilation, for example, is closely tied to
Noradrenaline activity in the Locus Coeruleus region
of the brain and can be taken as a proxy for activation
of the sympathetic nervous system [20]. To compute
the entropy of the gaze locations on the screen during
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Figure 4. Average time that participants spent on

POI/POV tasks. Participants spent more time on

POV tasks that were incorrect, and participants’ prior

experience level is inversely related to the amount of

time spent on tasks that they answered correctly.

the Ghidra tasks, we used Sample Entropy (SE), which
is defined as the negative natural logarithm of the
conditional probability that two sequences similar for
n points remain similar at the next point [5].

SE can determine relative levels of expertise between
different REs and relative difficulty of different problems,
and we observed differences in SE values according to
their knowledge levels on the POV responses (Figure 5).
Novices spend ample time on specific regions that they
are only familiar with, resulting in low entropy but high
in the amount of time spent. On the other hand, experts
know specific areas that might have vulnerabilities, hence,
they scan through potential vulnerabilities very fast,
resulting in high entropy in a short period of time.

Cognitive workload using fNIRS. The Functional
Near-Infrared Spectroscopy (fNIRS) sensor was used to
observe changes in cognitive load over the task sequence.
This sensor is attached to the forehead and measures

Table 2. POV responses. BO, SQL, ML, and NP stand for buffer overflow, SQL injection, memory leak, and null

pointer, respectively. The expertise column corresponds to pre-assigned expertise levels using the preliminary

survey responses. Total represents the number of POVs that the corresponding participant answered correctly.
POV1 POV2 POV3 POV4 POV5 POV6 Total Knowledge

P1 TP: SQL TP: BO FP TP: SQL TP: BO TP: BO 1 Novice
P2 TP: BO TP: BO TP: BO FP TP: BO FP 2 Medium
P3 TP: BO FP TP: BO TP: SQL FP TP: BO 3 Novice
P4 FP FP FP TP: SQL FP FP 4 Medium
P5 FP FP FP TP: SQL TP: BO Unsure 2 Novice
P6 FP FP FP FP TP: BO Unsure 1 Novice
P7 FP FP TP: BO TP:SQL TP: ML FP 2 Medium
P8 TP: SQL FP FP TP: SQL TP: BO FP 3 Advanced
P9 TP TP FP TP: BO Unsure FP 2 Novice

Answer TP: BO TP: NP FP TP: SQL FP FP
Difficulty D M E D D M
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Figure 5. Sample entropy (SE) vs. knowledge.

Eyetracking patterns show higher entropy on REs with

reverse engineering knowledge compared to novices.

changes in concentrations of oxygenated hemoglobin
(O2Hb) and deoxygenated hemoglobin (Hhb). An
increase in O2Hb and decrease in Hhb is associated with
task complexity and cognitive workload [7].

We applied z-score to the recorded O2Hb and
Hhb values, and averaged sensor values for each task.
Although each participant appears to have a different
sensor response, a clear flip in polarity for one or
both of the O2Hb and Hhb values was observed when
the POI/POV tasks began. As participants switched
from well-defined introductory tasks to more free-form
POI/POV tasks, their workload could either increase if
they find POV discovery challenging, or decrease if they
found the interface familiarity tasks more challenging.
Workload could also decrease if they found the POI/POV
tasks too challenging and gave up.

In particular, P8 (advanced) displayed the expected
pattern of increased O2Hb and decreased Hhb at the
onset of the POI/POV tasks as shown in Figure 6, except
for POI5 and POI6 when the fNIRS sensor died to result
in constant O2Hb and Hhb values. P7’s sensor values
indicate that workload increased up until the POI/POVs,
then dropped off. This output may be indicative of fatigue
over the course of the POI/POVs, or could indicate that
the participant was more familiar with POI/POV tasks
than the Ghidra interface familiarity tasks, and therefore
needed to exert less effort to understand them.

Task load and engagement using EEG. We conducted
frequency band analysis on the collected EEG data at 500
Hz sampling rate to estimate task load and engagement.
Signals were notch-filtered at 60 Hz to remove powerline
artifacts and band pass-filtered between 1 and 128 Hz.

For each POI/POV task pair, we observed that the
task load is significantly higher during POV, while
engagement is significantly higher during the POI triage.
For example, the engagement index for P6 is higher

POI/POV tasksIntroductory tasks

Z-
sc

or
ed

 fN
IR

S
Z-

sc
or

ed
 fN

IR
S

Figure 6. fNIRS responses and workload assessment.

A flip in polarity for one or both of the O2Hb and

Hhb values is observed when the POI/POV tasks

with higher cognitive demand begin.

during triage, while task load is higher during analysis as
shown in Figure 7. This pattern suggests that participants
are more alert and attentive during triage, while they
are searching for a vulnerability. Differently, while
analyzing and describing a vulnerability, a higher task
load indicates that participants may be storing more in
working memory as they remember and describe the
result of triage, explaining whether or not a vulnerability
exists in the code. More insight can be gained from
measures of engagement and task when one understands
the details of the task. During a difficult task (e.g.,
POI5 includes a large amount of complicated code but
no vulnerability), many participants have significantly
higher engagement during triage, while they search the
complex code base for a vulnerability that does not exist.
In-depth analyses can be found in another paper [16].

Various analyses results from physiological sensor
responses suggest the possibility of inferring when
an RE faces challenges in vulnerability discoveries,
supporting the potential benefits of a closed-loop
cognitive recommender system.

5.4. Pilot Closed-Loop Experiment

This pilot experiment involves CAVA-CV that provides
real-time visual recommendations according to the
estimated cognitive states of the analyst wearing
neurophysiological sensors. The experiment procedure
remained the same, and the analyst interacted with
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Average Tasks Load across POI/POV Tasks for P6 

Average Engagement across POI/POV Tasks for P6 

POI1.      POV1 POI2.      POV2 POI6 POV6POI5      POV5POI4.      POV4POI3.      POV3

POI1.      POV1 POI2.      POV2 POI6 POV6POI5      POV5POI4.      POV4POI3.      POV3

Figure 7. Task load (TL) and engagement index (EI)

for POI/POV tasks. EI is higher during POI triages,

while TL is higher during POV analyses.

Figure 8. Utilization of CAVA recommendations. Our

participant utilized 38% of CAVA recommendations.

the instrumented Ghidra as shown in Figure 3. Due
to challenges in recruiting REs, we pilot-tested the
closed-loop CAVA system with 1 participant. We
compared the participant’s behavior with one who has
similar RE experience in the open-loop experiment.

Preliminary results. We observed high agreement
between user actions and recommendations from
CAVA-CM (38%) on 6 POI/POV tasks, reflecting
possibility of trust and usability of cognitive visualization
(Figure 8). POI1, in particular, highlights effectiveness of
expertise-based recommendations with 55% agreement.

We compared the mouse entropy when Ghidra
displays recommendations to the baseline Ghidra
interface. As shown in Figure 9, cognitive visualization
directs the user’s attention appropriately, indicating
reduction in user confusion. We also observed
significantly reduced time spent on POI/POV tasks using
the cognitive recommendations, as shown in Figure 10.

En
tr
op

y

Figure 9. Mouse entropy for a POI & POV task.

CAVA-CV directs the user’s attention appropriately,

reducing user confusion.

Figure 10. Time spent in POI tasks using CAVA-CV.

CAVA-CV has potential to significantly reduce time

analysts spend on POI tasks.

At the end of each task, we asked the participant
to rank the usefulness of the recommendations using
a Likert scale (1: not useful at all – 7: very useful).
As shown in Figure 11, the participant indicated that
the recommendations were generally useful, except for
POI/POV5 where he faced technical issues.

In terms of computational and communication
efficiency, our closed-loop performance was under
250ms, which includes time to read multimodal
sensor inputs, estimate cognitive states, and visualize
recommendations. The participant did not notice any
delay in receiving the visual recommendations.

6. Limitations

One major challenge was recruiting participants with
prior experience in reverse engineering. Although we
actively recruited participants from government, military,
universities, and industries, we were only successful

Figure 11. Usefulness ranking that indicates user

acceptance in visualizing recommendations.
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in recruiting 9 REs for the open-loop and 1 for the
closed-loop experiment. Remote experiments can be
offered at the cost of reduced accuracy. For example,
we can ship some sensors (e.g., eyetracker, heart
rate/GSR monitor) that participants can easily set up and
calibrate. Without neurophysiological inputs, however,
we will lose the accuracy of distinguishing cognitive
states with similar physiological responses (e.g., stress
vs. excitement) and may result in unnecessary visual
recommendations. Identifying relationships between
cognitive and physiological states and minimal sensor
requirement are active research areas.

In the cognitive modeling approach, one current
limitation includes lack of access to all available
contextual information, and some of the outcomes/tool
actions. For example, our current instrumentation
cannot determine that a pop-up window (e.g., the relabel
window) was activated given an input action or whether
the user interacted with the window. Therefore, these
contexts and tool actions will need to be inferred based on
the input actions given a particular goal. Validating the
inference process against video data of user interactions
may increase the confidence in the cognitive model.

Since the GDM model in CAVA-CM learns experts’
behavior and processes of tackling reverse engineering
tasks, CAVA is generalizable to guide novices on tasks
that the system has not been exposed to. Additional
details of CAVA-CM models are in another paper [9],
and we leave it as our future work to evaluate how CAVA
adapts to novel tasks.

7. Related Work

We review related work that focus on understanding
mental models, processes, and guidelines of REs (i.e.,
systems that automatically identify vulnerabilities or
dynamically rewrite/obfuscate code is outside the scope).
To understand REs’ mental models and processes,
Votipka et al. compared the descriptions of the RE
processes between experts and novices [25], and found
that both groups followed roughly the same steps. Fang
et al. surveyed REs to identify the types of automation
they use, and found that REs preferred dynamic over
static analyses [11, 13]. Another interesting finding is
that REs deal with ambiguity by discussing with others
and relying on visualization techniques (i.e., mapping
system semantics on a whiteboard).

Since reverse engineering is a complex task, REs tend
to rely on the community for guidance and knowledge
to achieve their goals. Votipka et al. investigated 1,590
discussions among 688 REs over Tweeter, Reddit, and
StackExchange [23]. According to their investigation,
REs are most interested in features for customizing

Ghidra. They also observed limited evidence of collective
sensemaking on the forums, with few REs participating
in multiple discussions threads and most acting as either
knowledge producers or consumers. They also found
that the forums operated similarly, but Twitter was
most often used to announce information (e.g., tutorial
links, tool overviews, vulnerabilities in Ghidra) and REs
used StackExchange mostly to get support for specific
problems. Reddit acted as a middle option.

These findings confirm that REs can benefit
from CAVA that provides experts’ recommendations
as real-time visual highlights. While closed-loop
recommender systems have been proposed, prior work
oftentimes lack realization [17, 4, 8, 22] or results
are oftentimes based on simulation results [21]. Our
work includes developing Ghidra plugins and running
open-loop and closed-loop experiments with REs.

8. Conclusions

This paper is a first attempt to develop a closed-loop
recommendation system that visualizes expert
recommendations according to the RE’s current
cognitive states. When a novice RE starts experiencing
fatigue, stress, and increase in cognitive load, CAVA
guides the novice RE to where an expert would likely
visit given the novice’s prior sequences of actions. We
developed plugins for Ghidra V9.0 to collect behavioral
responses, and to incorporate ACT-UP cognitive model
and cognitive visualizers. In particular, CAVA aims at
minimizing computational and communication delays
to analyze cognitive states and provide appropriate
recommendations in real time. According to our pilot
experiments with REs, our approach is promising in
helping novices learn vulnerability analysis procedures,
enhancing user trust, usability, and acceptance.
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